
Systematically Studying Kinase Inhibitor Induced
Signaling Network Signatures by Integrating Both
Therapeutic and Side Effects
Hongwei Shao1,2, Tao Peng3, Zhiwei Ji1, Jing Su1, Xiaobo Zhou1*

1Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 2Department of Modern Mechanics, University of

Science and Technology of China, Hefei, Anhui, P.R. China, 3Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, Texas, United

States of America

Abstract

Substantial effort in recent years has been devoted to analyzing data based large-scale biological networks, which provide
valuable insight into the topologies of complex biological networks but are rarely context specific and cannot be used to
predict the responses of cell signaling proteins to specific ligands or compounds. In this work, we proposed a novel strategy
to investigate kinase inhibitor induced pathway signatures by integrating multiplex data in Library of Integrated Network-
based Cellular Signatures (LINCS), e.g. KINOMEscan data and cell proliferation/mitosis imaging data. Using this strategy, we
first established a PC9 cell line specific pathway model to investigate the pathway signatures in PC9 cell line when
perturbed by a small molecule kinase inhibitor GW843682. This specific pathway revealed the role of PI3K/AKT in
modulating the cell proliferation process and the absence of two anti-proliferation links, which indicated a potential
mechanism of abnormal expansion in PC9 cell number. Incorporating the pathway model for side effects on primary human
hepatocytes, it was used to screen 27 kinase inhibitors in LINCS database and PF02341066, known as Crizotinib, was finally
suggested with an optimal concentration 4.6 uM to suppress PC9 cancer cell expansion while avoiding severe damage to
primary human hepatocytes. Drug combination analysis revealed that the synergistic effect region can be predicted
straightforwardly based on a threshold which is an inherent property of each kinase inhibitor. Furthermore, this integration
strategy can be easily extended to other specific cell lines to be a powerful tool for drug screen before clinical trials.
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Introduction

The basic components of biological systems, genes, proteins,

metabolites and other molecules work together in a highly

orchestrated manner within cells to promote normal development

and sustain health [1]. Understanding how these interconnected

components of biological pathways and networks are maintained

in health, and how they become perturbed by genetic or

environmental stressors and cause disease, is challenging but

essential to developing new and better therapies to return

perturbed networks to their normal state. To achieve this goal,

the Library of Integrated Network-based Cellular Signatures

(LINCS) project (http://lincs.hms.harvard.edu/) aims to develop a

library of molecular signatures, based on gene expression and

other cellular changes that describe the response of different types

of cells when exposed to various perturbing agents, including

siRNAs and small bioactive molecules. Diverse high-throughput

screening approaches are applied in LINCS project to interrogate

the cells, which provide molecular changes and intuitive patterns

(gene or protein profile) of cell response for biologists. The data

acquired from these approaches were collected in a standardized,

integrated, and coordinated manner [2,3] to promote consistency

and comparison across different cell types. These data will also be

made openly available as a community resource that can be easily

scaled up and augmented to address a broad range of basic

research questions and to facilitate the identification of biological

targets for new disease therapies.

Nevertheless, it is not so straightforward for biologists to

uncover the cell signaling and regulatory pathways from such

abundance of information. As a result, it is increasingly recognized

that mathematical approaches, such as statistical inference, graph

analysis, and dynamic modeling, are desired to make sense of

different observed patterns. In the past decades, substantial effort

has been devoted to constructing and analyzing large-scale gene or

protein networks based on different types of data and literature

mining. Woolf et al. [4] used Bayesian approach to infer the

signaling network responsible for embryonic stem cell fate

responses to external cues based on measurements of 28 signaling

protein phosphorylation states across 16 different factorial

combinations of stimuli. The inferred network predicted novel

influences between ERK phosphorylation and differentiation as

well as between RAF phosphorylation and differentiated cell

proliferation. The graph analysis, alone or combined with

additional information regarding the network nodes, such as the

functional annotation of the corresponding genes or proteins,
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provide testable biological predictions on several scales, from

single interactions to functional modules. The functions of

unannotated proteins can be inferred on the basis of the

annotation of their interacting partners, as it was done for S.

cerevisiae and Arabidopsis proteins using interaction, co-expres-

sion, and localization data [5–7]. A dynamic model that correctly

captures experimentally observed normal behavior allows re-

searchers to track the changes in the system’s behavior due to

perturbations. Heinrich et al. [8] developed a mathematical

theory that described the regulation of signaling pathways as a

function of a limited number of key parameters. They found that

phosphatases had a more pronounced effect than kinases on the

rate and duration of signaling, whereas signal amplitude was

controlled primarily by kinases. Morris et al. [9] proposed a novel

approach, termed constrained fuzzy logic, to convert a prior

knowledge network into a computable model. Then a context-

specific network model can be created by training this model

against the experiment data. These models shed light on the design

principles of biological control systems but are rarely context

specific and cannot be used to predict the responses of cell

signaling proteins as well as phenotypes to specific ligands or

compounds.

In cellular pathways, especially those involved in signal

transduction, kinases are known to be the major regulators which

can modify up to 30% of all human proteins. Deregulation of

specific kinase activity has emerged as a major mechanism by

which cancer cells evade normal physiological constraints on

growth and survival. As a result, there are considerable efforts to

develop selective small molecule inhibitors for a host of kinases

that are implicated in different cancers [10]. In LINCS project,

small molecule kinase inhibitors are also an area of focus in various

perturbing agents tested. Thus, integration of different types of

datasets in LINCS database will be a desired but challenge task to

reveal the response of biological network perturbed by various

kinase inhibitors. In this paper, we proposed a novel strategy to

study the kinase inhibitor induced network signatures and assess

the kinase inhibitor effect by considering both suppression effect

on cancer cells and side effects on primary human hepatocytes

in silico. This strategy integrated KINOMEscan data of kinase

inhibitors, proliferation/mitosis imaging data of cancer cells and

cue signaling response data of primary human hepatocytes in

LINCS database to establish a systematical network model. To our

knowledge, proliferation/mitosis imaging data was first used to

establish the content-specific pathway model which can bridge the

gap between specific kinase inhibitors and cell phenotypes. PC9

cell line was then chosen as an example of cancer cells for specific

pathway development. Integrating this PC9 cell specific model

with side effects on primary human hepatocytes, we can screen out

the proper kinase inhibitors with optimal concentration levels to

suppress the PC9 cancer cell proliferation while avoiding severe

damage to primary human hepatocytes.

Results

Summary of the Proteomic Data Available in LINCS
Database
Diverse high-throughput screen approaches were applied in

LINCS project to investigate the cell response to various

perturbations at different levels, such as gene expression, protein

activity and cell phenotypes. Table 1 lists the datasets available in

LINCS database except those at gene level. These datasets fall into

three categories: a) KINOMEscan data [11] and KiNativ data

[12] measure the interaction between inhibitors and target

proteins; b) liver cell cue signal response data represent the

protein phosphorylation states in the perturbed cells; c) other

imaging data capture the response of cell phenotype to perturba-

tion agents. In order to systematically reveal the kinase inhibitor

induced intracellular network signature based on these datasets,

we proposed a novel approach illustrated in Figure 1, which

involved not only the suppressive effect on cancer cells but also the

side effects on liver cells. Usually, cells can change their

phenotypes through different pathways to respond the perturba-

tion or stimulation from microenvironment. Thus, in our

approach, we first determine the cell phenotypes, e.g. different

phases in cell cycle, which are related to the kinase inhibitor we

concern. Then several canonical pathways related to these

phenotypes can be selected from literatures or pathway databases,

such as IPA (IngenuityH Systems, www.ingenuity.com) and KEGG

[13,14]. Meanwhile, proteins targeted by the kinase inhibitor can

be listed according to the drug databases or KINOMEscan data.

All the selected pathways are then filtered and those pathways

which contain the proteins in this list will be integrated into a

kinase inhibitor related generic pathway. Then, a mathematical

model, which uses ordinary differential equations (ODEs) to

represent the dynamics of the protein levels, can be developed

based on this generic pathway. After trained by specific

experiment data, the model can be used for capturing the kinase

inhibitor induced signature of a content-specific pathway system.

In this paper, cancer cell proliferation/mitosis data and liver cell

cue signaling response data were used for training the mathemat-

ical model to generate the pathway for therapeutic effect and the

pathway for side effects, respectively. Finally, overall considering

these two pathways, the kinase inhibitor induced network

signature can be studied from a holistic view. The detailed

modeling procedure will be described in the following sections.

Figure 1. Flow chart of proposed system approach to
investigate the kinase inhibitor induced pathway signature in
both therapeutic and side effects.
doi:10.1371/journal.pone.0080832.g001

Pathway Based Kinase Inhibitor Effect Prediction
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Binding Affinity of Kinase Inhibitor with its Targets
Most kinase inhibitors can interact with a wide range of proteins

with different activities. As a result, determination of the binding

affinity of a kinase inhibitor with different proteins will be the first

step in the modeling system to connect the kinase inhibitor to

cellular signaling pathway. A popular approach to test the binding

affinity is KINOMEscan screen, which is based on a competition

binding assay that is run for a compound of interest against each of

a panel of over 400 kinases. The readout from assay is ‘‘percent of

control’’, where the control is DMSO and a 100% result means no

inhibition of the kinase by the test compound. Figure 2 shows the

KINOMEscan data of kinase inhibitor GW843682 at 10 uM in

LINCS database. We can see that GW843682 at 10 uM

concentration can bind with a large amount of proteins (,80%

of tested proteins), which demonstrates a complex perturbation on

the signal transmission in the cell other than a single target

modulation. The table in Figure 2 lists six kinases which have the

highest binding affinity with GW843682. As the primary targets of

GW843682, PLK family kinases indeed show strong inhibition by

GW843682. The other two kinases, LOK and SLK, are also PLK

related proteins which function by association with and phos-

phorylating PLK family kinases [15,16]. Since PLK family kinases

are the early triggers for phase transition in cell cycle, cell cycle

arrest could be induced with the existence of GW843682.

The binding affinity of kinase inhibitors was only tested at one

concentration in LINCS KINOMEscan dataset. Thus, extension

of the kinase inhibitor binding affinity at different concentrations

becomes necessary for prediction of the cell responses to kinase

inhibitors with specific dosages. Fortunately, binding affinity

curves usually show a similar shape for different kinase inhibitors

if they can bind with a given protein. Figure 3 shows the binding

affinity data of three kinase inhibitors with their primary target

p38a [11]. It can be seen that a sigmoid curve can properly fit the

experimental data. Thus, for each protein which can be bound by

the inhibitor, a sigmoid function is adopted in this paper to

represent the relationship between ‘‘percent of control’’ and the

kinase inhibitor concentration. The parameters in this function are

acquired based on the KINOMEscan data at 10 uM and an

acceptable assumption that extremely low concentration (ELC) of

kinase inhibitor results in a high ‘‘percent of control’’ approaching

100% (details are described in materials and methods). Figure 4

shows the predicted curves for those proteins which can be bound

by GW843682. In this prediction, the ELC in our assumption was

set to be 0.00001 uM, which was much lower than the minimum

concentration 0.00019 uM used in cancer cell proliferation/

mitosis imaging assay. As expected, since PLK is the primary

target of GW843682, its capability of activating the downstream

proteins decreases rapidly while the concentration of GW843682

increases. It is also indicated that 10 uM GW843682 is enough to

completely suppress signaling transduction through PLK. For

other target kinases, extremely high concentrations are required to

strongly suppress their functions. We can see that even the

concentration of GW843682 achieves 1000 uM, the percentage of

unbound Wee1 is still larger than 50%. These binding affinity

curves can provide the connection between the kinase inhibitors

and signal transmission in the pathway network.

Cell Cycle Related Pathway for Cancer Cells
Abnormal cell expansion is a prominent hallmark in cancer

development. Targeting the cell cycle related pathway is a

potential way for kinase inhibitors to decelerate or suppress the

unregulated cancer cell growth. In LINCS project, dose responses

of eight kinase inhibitors in seventeen human cancer cell lines were

tested to determine their effect on cell proliferation and mitosis.

Cellular Imaging technique was applied at different time points to

capture the cell response and five readouts were acquired from

these images as listed in Table 2 (details are described in materials

and methods). All these readouts are referring to the number of the

cells in different cell cycle stages. Thus, we selected the cell cycle

related pathways from literatures and pathway databases, such as

IPA and KEGG. Then those pathways, which contained the

primary targets of different inhibitors in LINCS KINOMEscan

data, were screened out and integrated into a kinase inhibitor

related pathway, as shown in Figure 5. In this pathway map, 26

proteins and complexes were involved. Perturbations by kinase

inhibitors on these proteins or complexes will be transmitted

through protein-protein interactions and then regulate the

production of cyclin-dependent kinase complexes, e.g. CycE/

Cdk2. These complexes are necessary in sustaining the normal

process of cell cycle and lack of these complexes will result in cell

cycle arrest. Since few cells stay in the quiescent phase called G0

for the cell lines in growth media, these cells are not considered

separately and incorporated into G1 phase in this work. As a

result, the final output of this pathway system will be the cell

number in four distinct phases of cell cycle, G1, S, G2 and M.

Based on this pathway network, a mathematical model was

developed using hill function as described in materials and

methods.

Table 1. Datasets in LINCS database.

Dataset Description

KINOMEscan Data A competition binding assay that is run for a compound of interest against each of a panel of 317 to 456 kinases.

KiNativ Data A competition binding assay that is run for a compound of interest against each of a panel of 194 to 316 kinase labelling
sites.

Apoptosis Imaging Data Dose response of anti-mitotic compounds in human cancer cell lines at 24, 48, and 72 hours to determine their effects on
apoptosis.

Growth Inhibition Data A DNA stain based assay to determine cell viability following compound treatment.

Proliferation/Mitosis Imaging Data Dose response of anti-mitotic compounds in human cancer cell lines at 24, 48 and 72 hours to determine effect on cell
proliferation and mitosis.

Mitosis/Apoptosis Imaging Data Dose response of anti-mitotic compounds in human cancer cell lines at 24, 48 and 72 hours to determine effect on
apoptosis, mitosis and cell death.

Liver Cue Signal Response Data Protein phosphorylation response of primary human hepatocytes and transformed liver cell lines to pairwise
combinations of small molecule inhibitors and ligands.

doi:10.1371/journal.pone.0080832.t001
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PC9 Cell Line Specific Pathway Network
In order to obtain the content-specific pathway model, the

proliferation/mitosis imaging data of a non-small cell lung cancer

(NSCLC) cell line, PC9, exposed to kinase inhibitor GW843682

with twelve concentrations was used (Figure 6, data for each

readout have been scaled for visualization). In this data, we can see

that remarkable effect of the GW843682 on PC9 cell line emerged

when the concentration level achieved 11.11111 uM. Using the

predicted values of ‘‘percent of control’’ for 12 different

concentration levels tested in the PC9 proliferation/mitosis

imaging assay, we trained the cell cycle related pathway model

to fit these readouts from the assay based on a two stage approach

described in materials and methods. After the first stage of the

parameter estimate approach, we can obtain a specific pathway

network for PC9 cell line, as shown in Figure 7. Compared to the

original pathway in Figure 5, we can see that the links between

AKT and Wee1, p38 and CycE/Cdk2, as well as ERK and CycB/

Cdk1 are deficient, which means that these signaling cascades are

not as significant as other interactions in modulating the

proliferation and mitotic progression of PC9 cell line. In these

deficient links, AKT-dependent phosphorylation at Ser642 pro-

motes a change in Wee1 localization from nuclear to cytoplasmic

and this relocation will make cells enter G2/M checkpoint before

mitosis [17]. Another link between p38 and CycE/Cdk2 is also

involved in G1/S checkpoint [18]. Loss or attenuation of these cell

cycle checkpoint functions can compromise the fidelity of DNA

which has already been identified as a risk of developing lung

cancers [19]. In other words, the deletion of these links will

attenuate the cells’ capability of controlling the abnormal

expansion of cell number. The resistance of signaling transmission

Figure 2. KINOMEscan data of GW843682 at 10 uM.
doi:10.1371/journal.pone.0080832.g002

Figure 3. Binding affinity curves of p38a bound by three kinase inhibitors at different concentrations.
doi:10.1371/journal.pone.0080832.g003

Pathway Based Kinase Inhibitor Effect Prediction
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in these links is a signature of PC9 signaling pathway and it reveals

a potential mechanism how PC9 cancer cells altered its signaling

pathway for rapid expansion of themselves.

Based on this specific signaling pathway, we refined those non-

zero parameters in the second stage. However, estimated

parameters still varied in these repetitions. This might be caused

by multimodal of the objective function or non-determinacy of the

parameters in the mathematical model based on current dataset.

As a result, coefficient of variation (CV) is used to investigate

which parameters are determinable in this model. CV is a

normalized measure of dispersion of a probability distribution of a

variable, which is defined as the ratio of the standard deviation to

the mean. Figure 8 shows the CV distribution of nonzero

parameters in the mathematical model. It is indicated that most

of the parameters (,95%) can be considered to be identifiable

since their CV values are not greater than 1 [20]. The rest

parameters include dG1, dS , dG2, nG2, HCycE=S and HLCK=PI3K . In

these parameters, we found that the mean values of dG1, dS , dG2
and nG2 are very small, but not small enough to be considered as

zero in the first stage of the estimate approach. This is a factor that

can result in such kind of larger CV. As the variation of

parameters shown in this system, such sloppy parameter estimates

are in fact a consistent feature of systems biology models [21], and

may reflect underlying robustness of biological networks, which

always have a tolerance against a significant fraction of perturba-

tions in cellular microenvironment [22].

Figure 4. Binding affinity prediction for GW843682 with seven target proteins.
doi:10.1371/journal.pone.0080832.g004

Figure 5. Cell cycle related pathway extracted from literatures and pathway databases.
doi:10.1371/journal.pone.0080832.g005

Pathway Based Kinase Inhibitor Effect Prediction
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Prediction Capability of PC9 Cell Specific Pathway Model
After the second stage of the parameter estimate, the parameter

set which can produce the minimum error between the simulation

results and experimental observations was selected as the final

estimate. Figure 9 shows the simulation results when PC9 cells are

treated by GW843682 with four concentration levels: 1.23 uM,

3.70 uM, 11.11 uM and 33.33 uM (Results for other concentra-

tion levels are shown in Figure S1). The simulation results

represent a proper fitting to the experimental data with low mean

square errors. In order to verify the prediction ability of this

pathway model, leave-one-out cross-validation was employed. In

each repetition, the observation in each condition is used once as

the validation data while using the remaining observations to train

the model. Figure 10 shows the predicted profiles for four

conditions which are left out in turn for validation (Predicted

profiles for other conditions are the same as the profiles in Figure

S1). It demonstrates that in most conditions, a reliable prediction

can be achieved to represent the validation data based on the

pathway model trained by the remaining data. Nevertheless, for

the condition with 3.70 uM concentration level, mean square

error between the prediction and validation data is a little bit

larger than those in other conditions. This bias is due to the sparse

sampling in the region around 3.70 uM where PC9 cell response is

very sensitive to the concentration level of GW843682.

Figure 11 shows the sensitivity analysis of the parameters

representing activating rate or inhibiting rate at different

concentration levels (Sensitivity analysis for other parameters is

shown in Figure S2). This sensitive analysis demonstrates that the

system model developed for the PC9 cell line pathway is rather

robust for most parameters, which is consistent with the CV

analysis. The sensitive parameters include kLCK=PI3K , kRas=PI3K ,

kPI3K=AKT , kAKT=CycE , kWee1=CycB, kCycD=G1, kCycE=S and kCycB=M .

In these parameters, kLCK=PI3K , kRas=PI3K , kPI3K=AKT and

kAKT=CycE are all involved in the PI3K/AKT pathway, which

has been confirmed to be associated with survival, proliferation,

and invasiveness of most tumour cells [23,24]. Especially under

high concentration of GW843682, we can see that the alteration in

PI3K/AKT pathway will modulate the proliferation process more

sensitively. As a result, suppression of PI3K/AKT pathway activity

can be considered as an assistant approach to achieve a more

effective therapeutic result while using GW843682 treatment.

Other sensitive parameters are all the downstream proteins close

to cell cycle process, which reveals a higher tolerance to

perturbation in upstream network than downstream network.

Primary Human Hepatocyte Specific Pathway
The liver is the principal organ that is capable of converting

drugs into forms that can be readily eliminated from the body.

However, the liver is also susceptible to the toxicity of these

accumulated drugs, known as hepatotoxicity [25]. Even when the

drug is introduced within therapeutic ranges, it may also cause the

damages to liver functions. A huge number of drugs have been

implicated in causing liver injury [26] and it is the most common

Table 2. Readouts from proliferation/mitotic imaging data.

Readout Description

Cell Count The total number of cells (nuclei) stained with Hoechst 33342 and detected in the DAPI channel

EdU positive cells The percentage of actively proliferating cells that have average FITC (EdU) intensity above the EdU threshold

Mitotic cells The percentage of cells that are MPM2-positive

Non-mitotic cells that are EdU-positive The percentage of EdU-positive cells within the non-mitotic population

Mitotic cells that are EdU-positive The percentage of EdU-positive cells within the mitotic population

doi:10.1371/journal.pone.0080832.t002

Figure 6. Heatmap for proliferation/mitosis imaging data of PC9 cell line exposed to GW843682.
doi:10.1371/journal.pone.0080832.g006

Pathway Based Kinase Inhibitor Effect Prediction
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reason for a drug to be withdrawn from the market. As a result,

assessment of their side effects on the liver cells after the treatment

will provide useful information for drug prescreen before clinical

trials. In this paper, we also established a liver cell specific signaling

pathway by integration of multiplex data (KINOMEscan and cue

signal response data) to investigate the kinase inhibitor induced

side effects on normal function related proteins in liver cells.

Construction of the liver cell specific signaling pathway was

based on the cue signal response data of primary human

hepatocytes in LINCS database. In this assay, cells were explored

to the pairwise combinations of 5 small molecule inhibitors and 6

ligands. Then phosphorylation states of 12 intracellular proteins

were monitored by bead-based ELISA assay at four time points

which were 10 min, 30 min, 90 min and 360 min. Figure 12

shows this dataset visualized by DataRail software [2]. Each

column represents a treatment condition which combines an

inhibitor (or no inhibitor) and a ligand (or no ligand) while each

row represents the measurement on each protein. The curve in

each box shows the protein level variation at four time points.

According to the proteins monitored in the assay, a series of

related canonical pathways was filtered based on the prior

knowledge from literatures and pathway databases. Then we

simplified the pathway network to contain only measured and

perturbed proteins as well as any other proteins necessary to

Figure 7. PC9 cell line specific pathway.
doi:10.1371/journal.pone.0080832.g007

Figure 8. Coefficient of variation analysis for parameters in PC9 cell line specific pathway.
doi:10.1371/journal.pone.0080832.g008

Pathway Based Kinase Inhibitor Effect Prediction
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Figure 9. Comparison between simulation results and proliferation/mitosis data of PC-9 cell line. MSE: Mean square error.
doi:10.1371/journal.pone.0080832.g009

Figure 10. Leave-one-out cross-validation for PC9 cell line specific pathway model.
doi:10.1371/journal.pone.0080832.g010

Pathway Based Kinase Inhibitor Effect Prediction
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preserve logical consistency between those that were measured or

perturbed, resulting in a compressed pathway shown in Figure 13.

This pathway contains several well-known pathways as well as

their crosstalks, such as PI3K/AKT pathway and p38 MAPK

pathway. Inhibitor target proteins in these assays are PI3K, MEK,

MTORC, p38 and AKT. Perturbations on these proteins will

modulate the downstream transcription factors which will finally

affect several normal functions, such as protein synthesis and cell

survival. Based on this generic pathway, mass action law was used

to develop the mathematical model. Primary human hepatocyte

specific pathway model was then established by minimizing the

difference between protein levels from mathematical model and

ELISA data using the approach described in Materials and

Methods. Figure 14 shows the simulation results when primary

human hepatocytes are exposed to MEK inhibitor and TNF

(Simulation results in other conditions are shown in Figure S3).

Due to the variation between readouts from a large number of

conditions and the simplified pathway model, several predications

in these figures do not match the experimental dataset very well,

such as AKT level in different conditions. However, this pathway

model still captures the dynamic features of most protein levels in

Figure 11. Sensitivity analysis of parameters in PC9 pathway model. Each parameter is increased by 2% of its estimated value.
doi:10.1371/journal.pone.0080832.g011

Figure 12. Cue signal response data of primary human hepatocyte. Each column represents a treatment condition which combines an
inhibitor (or no inhibitor) and a ligand (or no ligand) while each row represents the measurement on each protein. The curve in each box shows the
protein level variation at four time points.
doi:10.1371/journal.pone.0080832.g012

Pathway Based Kinase Inhibitor Effect Prediction
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most conditions and can be used to predict the response of primary

human hepatocytes to various perturbations.

Effect Index Provides Combination of Therapeutic Effect
and Side Effect
In order to comprehensively assess the effect of kinase inhibitors

in treating the cancer disease, it is necessary to combine both the

therapeutic effect and side effect at system level. As a result, we

defined an evaluation criterion for the kinase inhibitors using an

effect index which is a ratio between therapeutic effect and side

effect. Figure 15 shows the five normalized effect indexes and an

averaged effect index of three different kinase inhibitors with

different concentrations on PC9 cell line, which can represent

three typical cases of kinase inhibitor induced effect. For

GW843682, when the concentration is extremely low, there is

almost no effect on both cancer cells and liver cells. However, once

the concentration achieves 2.5 uM, the integrated effect increases

rapidly and reaches the peak value at 5 uM. This is due to the

strong suppression on the cancer cell proliferation with slight

damage to normal function of liver cell. If the concentration

continues to increase, side effect of the kinase inhibitor emerges

and plays a comparable role with the therapeutic effect. Thus, the

integrated effect index begins to decrease. Finally, the integrated

effect index will decrease to a constant value when the

concentration reaches an extremely high level, which can result

in the maximum suppression on both cancer cells and liver cells. In

a word, along with the incensement of concentration, side effect

will come up with a delay to the therapeutic effect. In this case, an

Figure 13. Cue signal response data-related pathway for primary human hepatocytes.
doi:10.1371/journal.pone.0080832.g013

Figure 14. Comparison between simulation results and Cue signal response data of primary human hepatocyte exposed to a
combination of TNF and MEK inhibitor.
doi:10.1371/journal.pone.0080832.g014

Pathway Based Kinase Inhibitor Effect Prediction
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optimal concentration can be chosen as the concentration

producing the peak value of integrated effect index, which is

5 uM for GW843682. For AZD-6482, it shows similar curve with

GW843682 before achieving the peak value. However, when the

concentration continues to increase, the effect index will stay at the

peak level with slight decrease, which means that the kinase

inhibitor causes tiny side effect on liver cells while compared with

the suppressive effect on PC9 cancer cells. As a result, it is

reasonable to choose the minimum concentration producing the

peak value of integrated effect index as the optimal concentration

for this case, e.g. 4.6 uM for AZD-6482. In the last case, we can

see that with the increase of BMS345541 concentration, the effect

indexes stay at zero or even become negative. This indicates that

the kinase inhibitor has less suppressive effect on this cancer cell

line while only exhibits side effect on liver cells. Obviously, since

this kinase inhibitor cannot be used to suppress the cell expansion

of this cancer, no optimal concentration will be suggested.

However, for the consistency with previous cases, we defined

0 uM as the optimal concentration for this case in the paper.

According to the optimal concentration defined above, each

kinase inhibitor in the KINOMEscan database can be tested by

our system model to evaluate its capability of controlling the

proliferation of PC9 cancer cells while avoiding severe damage to

liver cells. In this paper, 27 kinase inhibitors have been screened

and the optimal concentrations for these kinase inhibitors were

shown in Figure 16. Obviously, three kinase inhibitors with 0 uM

optimal concentration should be discarded since they have less

effect on PC9 cancer cells. In the remaining candidates, we

selected the six kinase inhibitors which have the highest integrated

effect indexes as listed in Table 3. In these kinase inhibitors, we

can see that MLN8054 can produce a best effect index but needs

higher concentration than PF02341066. Overall considering effect

index, cancer cell number and optimal concentration,

PF02341066 is suggested to be the best candidate for PC9 cancer

cell treatment, since it has the similar effect with MLN8054 while

requiring a lower concentration. In fact, PF02341066, known as

Crizotinib, has been approved by the U.S. Food and Drug

Administration for the treatment of ALK-rearranged NSCLC in

August 2011 [27], which supports the prediction from our system

approach.

Evaluations of Kinase Inhibitor Combinations
It is well known that, for drug combination, two drugs working

together may produce an effect greater than the expected

combined effect of the same agents used separately. This case is

known as synergic combination. Otherwise, we call the output of

combination case as additive effect which produce equivalent

effect or antagonism which produce less effect. In addition,

different ratio combinations of dose for the same two drugs

sometimes can produce totally different effects, such as one

combination is synergistic while another is antagonistic. Therefore,

it is also significant to predict the synergy combinations of dose

ratios using our mathematical model. Although a number of

available mathematical combination indexes can be used to assess

the effect of drug combination, we prefer to choose Bliss

independence [28], because it is not only a famous synergy

quantification method but also convenient for calculation in our

system model. According to this Bliss combination index

CIBliss(x,y), the combination effect can be considered as synergy if

CIBliss(x,y),1, additivity if CIBliss(x,y) = 1 and antagonism if

CIBliss(x,y).1. Based on the prediction of integrated effect profiles

for the kinase inhibitors in the KINOMEscan database, we choose

the four best kinase inhibitors listed in Table 3 to analyse the

combination effect of each two in PC9 cancer cell treatment. The

simulation results for heatmaps of Bliss combination index are

shown in Figure 17. It can be seen that all of them show the similar

pattern which separates the synergetic, additive and antagonistic

regions by two distinct and straight boundaries. Each boundary

can correspond to a threshold for the kinase inhibitor, such as

4 uM for PF02341066 and 6 uM for MLN8054. When the

concentrations of both combined kinase inhibitors are lower than

their thresholds, the dose combinations will produce a synergetic

effect. When only one kinase inhibitor achieves the concentration

higher than its threshold, the combination effect is additive. If both

the kinase inhibitors achieve the concentrations higher than their

thresholds, they show antagonistic property. It is remarkable that

the threshold for each kinase inhibitor will not change in different

combinations. As a result, if we have obtained the thresholds for

two kinase inhibitors separately, it will be easy to infer the

synergistic region for the combination of these two kinase

inhibitors. The predicted synergistic regions for different combi-

nations are potentially helpful to conduct the clinical trials for drug

combination.

Figure 15. Effect indexes of three typical kinase inhibitors. I) Strong side effect at high concentration. II) Less side effect at high
concentration. III) Side effect without therapeutic effect.
doi:10.1371/journal.pone.0080832.g015
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Discussion

Drug effect on the human body during the cancer treatment is

not only the alteration of disease progression, but also the damage

to the functions of different organs. Although, different drugs, such

as the kinase inhibitors considered in this work, can target different

proteins to inhibit the cancer cell proliferation, few detailed drug

side effect profiles have been involved in literatures. In order to

account for both therapeutic effect and side effect of kinase

inhibitors, we focused on their effect on cancer cells as well as liver

cells, since the liver plays a central role in transforming and

clearing chemicals and is susceptible to the toxicity from these

agents. In this paper, a system approach involving cancer cell

specific pathway and primary human hepatocytes specific pathway

was developed by integrating KINOMEscan data, proliferation/

mitosis imaging data and cue signal response data in LINCS

database.

The established PC9 cancer cell specific pathway model

indicates the deficiency of two checkpoint related links which

can result in abnormal expansion of cell number. This kind of

signature from cancer cell specific pathway model can be used as a

potential feature to evaluate the risk of cancer development.

Sensitivity analysis of PC9 cancer specific pathway reveals several

critical cascades on modulating the proliferation process of the

cancer cell. These cascades are a part of PI3K/AKT pathway,

which is associated with cell survival and proliferation. In many

human cancer and tumour cells, this pathway is overactive

reducing apoptosis and allowing proliferation. Our mathematical

model also confirms the important role of PI3K/AKT pathway in

PC9 cancer cell. As consistent with previous study [23,24],

targeting the proteins in PI3K/AKT pathway is suggested to be a

therapeutic approach for PC9 cancer.

In order to assess the integrated effect of kinase inhibitors on

both cancer cells and liver cells, a normalized effect index is

defined based on the number of cancer cells and the levels of

several selected proteins in liver cells after treatment. According to

the results obtained from simulation, an optimal concentration can

be suggested for each kinase inhibitor. When overall considering

the integrated effect index, cancer cell number and optimal

concentration, PF02341066 is screened out to be the proper kinase

inhibitor for PC9 cancer treatment while avoiding damage to

primary human hepatocytes from 27 candidates. Furthermore, the

simulation result from drug combination analysis shows that the

synergistic effect is located in rectangular region. It is worth noting

that the boundary of this rectangular region can be determined by

a threshold for each kinase inhibitor. This threshold seems to be an

inherent property of the kinase inhibitor and will not change no

matter what another kinase inhibitor is in the drug combination.

Based upon this feature, it will be straightforward to predict the

synergistic regions of different combinations once the threshold for

each kinase inhibitor has been already available.

In this work, binding affinity prediction is an important input of

our system model. However, it is only based on a single point form

KINOMEscan data and a simple assumption for our simulation.

Such kind of prediction may be not accurate enough because of

the lack of binding information. In the future, more KINOMEs-

can data on different concentration levels of the kinase inhibitors

will help to improve the simulation results and provide significant

information for optimizing drug concentration.

Although our model is established based on the data of PC9 cell

line in this paper, this system approach will be easy to generate

specific model for other cancer cell using corresponding imaging

data. Thus, we provide an online tool named KIEP (Kinase

Inhibitor Effect Prediction) for users to test a kinase inhibitor effect

on the cancer cells they concern in silico (http://ctsb.is.wfubmc.

Figure 16. Optimal concentration of each kinase inhibitor for PC9 cancer cell line treatment.
doi:10.1371/journal.pone.0080832.g016

Table 3. Six kinase inhibitors with highest effect index for PC9 cell line.

Kinase Inhibitor MLN8054 PF02341066 JWE-035 GSK461364 AZD-6482 NU7441

Effect Index 0.8070 0.8070 0.8065 0.8063 0.8055 0.8053

Cancer Cell Number 3.4931 3.4929 3.4928 3.4927 3.5185 3.5269

Optimal Concentration 7.0 4.6 6.8 8.6 4.6 6.2

doi:10.1371/journal.pone.0080832.t003
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edu/itNETZ/KIEP.html). As we can expect, this model has the

potential capability of predicting drug effect on different cancer

cells and liver cells to conduct the drug design or combination

before clinical trials.

Materials and Methods

KINOMEscan Assay and Binding Affinity Prediction
KINOMEscan platform is based on a competition binding assay

that is run for a compound of interest against each of a panel of

over 400 kinases. This assay has three components: a kinase-

tagged phage, a test compound, and an immobilized ligand that

the compound competes with to displace the kinase. The amount

of kinase bound to the immobilized ligand is determined using

quantitative PCR of the DNA tag. The readout from assay is

‘‘percent of control’’, where the control is DMSO and where a

100% result means no inhibition of the kinase by the test

compound.

In order to extend the binding affinity from KINOMEscan data

at 10 uM in LINCS database, a sigmoid function was adopted to

represent the relationship between ‘‘percent of control’’ and the

kinase inhibitor concentration, which was expressed as

P~1{
1

1ze{a:( log (C){b)
ð1Þ

where P is the ‘‘percent of control’’ and C is the kinase inhibitor

concentration; a and b are two parameters which determine the

shape of the function. In order to obtain the values of unknown

parameters a and b for each kinase bound by its inhibitor, at least

two data points are needed. Besides the KINOMEscan data at

10 uM concentration level, we assumed that the ‘‘percent of

control’’ under extremely low concentration (ELC) of kinase

inhibitor is 99%, as shown in Figure 3. Since few binding events

occur under low concentration condition, this assumption is

reasonable and acceptable. Based on two points, unknown

parameters a and b can be acquired. Then, we can use Equ (1)

to predict the ‘‘percent of control’’ values for any given

concentration level.

Figure 17. Combination effect of different kinase inhibitors. The combination effect is: I) synergy, if CIBliss(x,y),1. II) additivity, if CIBliss(x,y) = 1.
III) antagonism, if CIBliss(x,y).1.
doi:10.1371/journal.pone.0080832.g017
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Cancer Cell Line Proliferation/Mitosis Imaging Assay
In LINCS project, dose response of eight kinase inhibitors in

seventeen human cancer cell lines was tested to determine the

effect on cell proliferation and mitosis. In these assays, each kinase

inhibitor was diluted into twelve different concentrations with two

duplicates. Before the exposition, Hoechst, EdU and anti-MPM2

primary antibody were added for identification of all nuclei,

actively proliferating cells and mitotic cells, respectively [29–31].

Then at 24, 48 and 72 hours after exposition, cells were imaged

using the ImageXpress Micro screening microscope. Each

acquired image has three channels called DAPI, FITC and Texas

Red which can record the signal intensities of Hoechst, EdU and

anti-MPM2 primary antibody, respectively. Finally, image analysis

using a customized Matlab program [32] was performed on these

channels to report five readouts as listed in Table 2.

Mathematical Model for Cancer Cell Pathway
Based on the cell cycle related pathway, a mathematical model

was developed using hill function to represent the activating or

inhibiting profile of a protein by its upstream protein. In

biochemistry, the binding of a ligand to a macromolecule is often

enhanced if there are already other ligands present on the same

macromolecule, known as cooperative binding. Analogously,

protein activation is also a kind of binding process. The Hill

function has the capability of providing a way to quantify this

effect. Thus, for each protein in the pathway, its variation was

quantified by the summation of a series of hill functions and a

degradation term, which can be expressed as

dy

dt
~

XM

i~1
fz(xi)z

XN

j~1
f{(xj){dy:y,

f+(x)~kxy:x
+nx=(H+nx

x zx+nx )

ð2Þ

where y is the concentration of activated proteins;

xi(i~1,2, � � �M) are the ith protein which activates protein y,

while xj(j~1,2, � � �N) are the jth proteins which inhibits protein y;

f+(x) is the activating profile (+) or inhibiting profile (2) caused by

protein x, respectively; kxy is activating rate (+) or inhibiting rate

(2); Hx is the microscopic dissociation constant and nx is the Hill

coefficient; dy is the degradation rate of protein y. There are totally

21 ODEs and 151 parameters in this pathway model (detailed

equations are listed in Text S1.).

In this paper, we used the proliferation/mitotic data of PC9 cell

line treated by GW843682 to establish the PC9 cell line specific

pathway. In order to train the mathematical model using this kind

of data, it is necessary to convert the output of the model into the

readouts from the assay. According to the readouts listed in

Table 2, we generated four variables based on the pathway output

G1, S, G2 and M, which can be expressed as

FC(t)~
G1(t)zS(t)zG2(t)zM(t)

G1(24 h)zS(24 h)zG2(24 h)zM(24 h)
,

t~48 h,72 h

ð3Þ

pP(t)~
S(t)zG2(t)zM(t)

G1(t)zS(t)zG2(t)zM(t)
,t~24 h,48 h,72 h ð4Þ

pM(t)~
M(t)

G1(t)zS(t)zG2(t)zM(t)
,t~24 h,48 h,72 h ð5Þ

pP NM(t)~
S(t)zG2(t)

G1(t)zS(t)zG2(t)
,t~24 h,48 h,72 h ð6Þ

where t is the time point, such as 48 h and 72 h; FC(t) is the fold

change of cell number while compared to the cell number at 24 h;

pP(t) and pM(t) are the percentage of actively proliferating cells and

mitotic cells, respectively; pP_NM(t) is the percentage of actively

proliferating cells within non-mitotic population. From these

definitions, we can obtain 11 values for each test with a given

concentration level.

Mathematical Model for Primary Human Hepatocyte
Pathway
Based on primary human hepatocyte pathway, mass action law

was employed to build an ordinary differential equation for each

protein, which can be expressed as

d½pPk�
dt

~
XM

i~1

kik:ri:½pPi�:(½tPk�{½pPk�)

{
XN

j~1

kjk:rj :½pPj �:rk:½pPk�{dk:½pPk�
ð7Þ

where ½pPk� and ½tPk� are the phosphorylated and total amount of

kth protein. ½pPi� and ½pPj � are the phosphorylated proteins which

can activate and inhibit the phosphorylation of kth protein with

the reaction rate kik and kjk, respectively. ri is binding rate of drug

to ith phosphorylated protein, which can be obtained based on the

KINOMEscan data. dk is the degradation rate of kth phosphor-

ylated protein. There were totally 52 ODEs and 83 parameters in

this primary human hepatocyte pathway model (detailed equations

are listed in Text S2).

Parameter Estimation
In order to produce an optimized fitting simulation results to the

corresponding experimental data, we minimize the following

objective function to obtain the estimate for all parameters.

ĥh~ arg
h[H

min
XM

i~1

XN

j~1

wi
:(xexpi (tj){xsimi (tj ,h))

2 ð8Þ

where ĥh is estimate of the parameters and H is the parameter

space for h; x
exp
i (tj) and xsimi (tj ,h) represent the observation from

the assay and the calculated value from simulation with

parameters h at time point tj , respectively; wi is the weight to

rescale the errors from different measurements. Genetic algorithm

[33] is adopted as the search algorithm to minimize the objective

function. Due to the huge parameter space in this model, a two

stage approach was used to obtain a more reliable estimate for the

parameters. In the first stage called model selection, we repeated

the search algorithm fifty times within this huge parameter space

and chose the best estimate which generated the minimum error

between results from simulation and assay. Then, based on the

parameters which were zero in the best estimate, the model can be

simplified by removing the links or degenerating the hill functions.

In the second stage called parameter refinement, the non-zero

parameters were refined by repeating the search algorithm in a

reduced parameter space. After these two stages, an optimized

combination of parameters can be located in the parameter space

to represent the experimental data felicitously.
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Parameter Sensitivity Analysis
Parameter sensitivity analysis is used to examine whether the

system is preserved to the modest parameter changes and

quantitatively explore the sensitive parameters. In this work, local

parameter sensitivity analysis is employed to study the relationship

between cancer cell number and the perturbation on each

parameter value. The sensitivity coefficient (S) is calculated

according to the following formula:

Si~
LCN=LPi

CN=Pi

&
DCN=CN

DPi=Pi

ð9Þ

where CN is the cell number at 72 h after treatment; Pi is the ith

estimated parameters in the system and DPi is a small change of

the corresponding parameter. In this work, each parameter is

increased by 2% of its estimated value for investigating the

corresponding change of cell number.

Integrated Effect Index based on Therapeutic and Side
Effect
For therapeutic effect, cancer cell number is the only critical

factor we would like to control in the pathway model while there is

not a unique factor representing the side effect. For simplification,

we first choose ERK, p70S6K, CREB, cJun and NFkB as the

proteins representing the side effect, since these proteins are

directly related to the protein synthesis or cell survival in our

pathway model. Then the levels of these five proteins were divided

by the cancer cell number to generate five ratios, denoted by rERK,

rp70S6K, rCREB, rcJun and rNFkB. In order to integrate these ratios into

a novel factor, we normalize them using the formula expressed as

EIprotein~
rtreatedprotein{runtreatedprotein

rtreatedprotein

ð10Þ

where EIprotein is the normalized effect index based on each protein,

such as ERK or p70S6K; rtreatedprotein and runtreatedprotein are the ratios

obtained from the kinase inhibitor treated and untreated

condition. Finally, the five normalized ratios were averaged into

a novel factor denoted by EImean, which can be used to assess the

integrated effect of a kinase inhibitor.

Bliss Combination Index
For kinase inhibitor 1 and 2 in this study, given the system input

with dose combination (x,y), the corresponding Bliss combination

index CIBliss (x,y) is defined as follow

CIBliss(x,y)~
EI1(x)zEI2(y){EI1(x):EI2(y)

EI12(x,y)
ð11Þ

where EI1(x) and EI2(y) are the integrated effect indexes for the

single kinase inhibitor 1 with dose x and the single kinase inhibitor

2 with dose y, respectively; EI12(x,y) is the integrated effect index

for the kinase inhibitor 1 and 2 combination with dose (x,y). Based

on this Bliss combination index, the combination effect can be

considered as synergy if CIBliss(x,y),1, additivity if CIBliss(x,y) = 1

and antagonism if CIBliss(x,y).1.
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