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Abstract

A recent study by van Ede et al. (2012) shows that the accuracy and reaction time in humans of tactile perceptual decisions
are affected by an attentional cue via distinct cognitive and neural processes. These results are controversial as they
undermine the notion that accuracy and reaction time are influenced by the same latent process that underlie the decision
process. Typically, accumulation-to-bound models (like the drift diffusion model) can explain variability in both accuracy and
reaction time by a change of a single parameter. To elaborate the findings of van Ede et al., we fitted the drift diffusion
model to their behavioral data. Results show that both changes in accuracy and reaction time can be partly explained by an
increase in the accumulation of sensory evidence (drift rate). In addition, a change in non-decision time is necessary to
account for reaction time changes as well. These results provide a subtle explanation of how the underlying dynamics of the
decision process might give rise to differences in both the speed and accuracy of perceptual tactile decisions. Furthermore,
our analyses highlight the importance of applying a model-based approach, as the observed changes in the model
parameters might be ecologically more valid, since they have an intuitive relationship with the neuronal processes
underlying perceptual decision making.
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Introduction

In perceptual decision making, attention has been shown to

affect choice behavior [1–4]. How attentional cues are processed

by the brain to affect decision process remains an open question.

Recently, van Ede et al., (2012) [5] addressed this question by

investigating whether the validity of an attentional cue affects the

accuracy and speed of a tactile perceptual choice via different

cognitive and neural processes. In their experiment, participants

received an auditory cue that indicated if a tactile stimulation

would be applied to the left or to the right hand. To investigate the

temporal dynamics of prior knowledge on the decision process, the

authors manipulated the time between a cue and the following

tactile target. Time courses were calculated for reaction time (RT)

and accuracy using a moving-window approach across different

cue-target-intervals (CTI; see Figure 1).

Importantly, van Ede et al. obtained magnetoencephalography

(MEG) recordings during the tactile paradigm. These MEG

recordings were found to explain the time course of the increasing

accuracy over CTI, but not the time course of the decreasing RT

over CTI. Based on these findings, the authors proposed a model

where changes in accuracy are explained by an increase of a

preparatory signal in the sensory cortex, whereas changes in RT

are explained by an additional process required to compare the

expected and the actual stimulus [5]. These results suggest that

accuracy and RT are affected by attention via different neural and

cognitive processes. Although interesting, the conclusions are

remarkable, as they undermine the notion of a close coupling

between accuracy and RT that has been advocated by many [6–

10]. In particular, in perceptual decision making, mathematical

models are used to describe and predict changes in the dynamics

of the decision process. Such models, like the drift diffusion model

(DDM), conceptualize the decision process as the accumulation of

sensory information over time toward a decision threshold

(Figure 2A; for review see [7]). Typically, these models can

explain variability in both speed and accuracy by a single

parameter. Along these lines, it might be the case that the

observed MEG pattern reflects a change of a single DDM

parameter, which can explain both accuracy and RT effects. This

would suggest that the cognitive processes underlying accuracy

and RT are not so separate after all.

To investigate which processes drive the behavioral results that

were reported by van Ede et al., (2012), we fit the DDM to both

the accuracy and RT data. We hypothesize that the accuracy and

RT time courses can be described by a gradually increasing drift

rate (v), as a function of an increasing CTI. Additionally, we

hypothesize that the perception of the cue might interfere with the

perception of the target, which might change the encoding of

sensory information before the actual decision is made (cf. the PRP

paradigm, [11]). Such an effect will typically affect the non-

decision time (Ter; [12]). Results will uncover possible latent

processes that might drive the observed effects of the attentional

cue in accuracy and RT, as reported by van Ede et al. (2012).
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Materials and Methods

Below we will first describe in short the task used by van Ede

et al., (2012). For details we refer to their original paper. Next, we

will describe the methods used to fit the drift-diffusion model to the

data.

Task
Seventeen participants performed two sessions (,1500 trials) of

a cued somatosensory task in which they where asked to decide

whether a tactile stimulus of 20 ms was presented at the lower or

upper part of the fingertips of either the left or right hand. In 80%

of the trials, the stimulus was preceded by an auditory cue of

Figure 1. Behavioral time courses showing the effects of a valid or invalid attentional cue on accuracy and the response time (RT) of
tactile decisions. Lines represent the average accuracy (A) and the average RT (B) for validly (solid) and invalidly (dashed) cued trials within each
temporal window.
doi:10.1371/journal.pone.0080222.g001

Figure 2. Results from fitting the DDM to the data of van Ede et al. A. The drift-diffusion model (DDM) assumes an accumulation process,
until the evidence reaches a decision threshold. An increase of drift rate causes faster and more correct choices (red arrow). Non-decision time reflects
the time other then the decision time (e.g. process sensory information and execute a motor response). B. Change in reaction time (RT) explained by
drift rate (v) and non-decision time (Ter) for validly (blue) and invalidly (grey) cued trials compared to the baseline (uncued) RT. C. Time course for drift
rate (v), showing the percentage increase from the baseline drift rate for validly (red) and invalidly (grey) cued trials. D. Time course for the
percentage change in non-decision time (Ter) for validly (green) and invalidly (grey) cued trials compared to the baseline non-decision time.
doi:10.1371/journal.pone.0080222.g002
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25 ms that indicated at which hand the tactile stimulus could be

expected. In 75% of these cued trials, the cue was valid, meaning

that the stimulus occurred at the expected hand. In 25% of the

cued trials, the stimulus occurred at the unexpected hand (ie., the

cue was invalid). Importantly, the cue-stimulus-interval (CTI)

varied across the cued trials: At each trial, a new CTI was drawn

randomly from a uniform distribution ranging from 0 to 1000 ms.

These different CTI’s allowed for a time course analyses of the cue

effects.

DDM Expectations
Typically, a model-based explanation of both an increase in

accuracy and a decrease in RT involves a change in either the

starting point (e.g. [13–19]), or the drift-rate of the decision process

(e.g. [13,17,20,21]). However, the task used by van Ede et al.,

(2012) was balanced in such a way that the attentional cue was not

informative for the different choice alternatives. That is, the cue

represents prior information about the likelihood that the stimulus

would be applied to the left or to the right hand and not about the

choice alternatives (upper or lower part of the fingertips). As such,

by design, the differences in validly and invalidly cued trials can

not be the result of a starting point difference.

In contrast, an increase in the drift rate would result in faster

and more correct choices for the cued alternative [1–4], which is in

line with the observed behavioral results. As such, we expect that

the main effects of the attentional cue in accuracy and RT can be

explained by a change in drift rate. However, other parameters

might be involved as well. For example, since the task design is as

such that the attentional cue will affect both bounds, it might affect

the boundary separation (decision threshold) parameter of the

model. Additionally, as short CTI’s might result in sensory

interference [12], we might expect non-decision time effects in RT

as well. Note, however, that these parameters are unlikely to

explain the data in isolation: the non-decision time parameter

cannot explain the observed differences in accuracy and a change

in the boundary separation parameter can only predict an increase

in accuracy when slower response times are expected (speed-

accuracy trade off). For this reason, we tested whether these

parameters play a role in the decision process, in combination with

the drift rate parameter.

DDM model-selection
To test which of these parameters are required to explain the

behavioral effects, we first run a model-selection procedure using

the whole dataset (that is, not split for different CTIs). Parameters

of four models were estimated: Model 1, in which drift rate was

allowed to vary across the three conditions (valid, invalid, uncued);

Model 2, in which both drift rate and non-decision time were

allowed to vary across the three conditions; Model 3, in which

both drift rate and boundary separation were allowed to vary

across conditions; and Model 4, in which drift rate, non-decision

time and boundary separation were all allowed to vary across the

three conditions. All other parameters were held fixed across

conditions. We used the Diffusion Model Analysis Toolbox

(DMAT) to fit the DDM to the individual data [22]. The DMAT

toolbox maximizes the likelihood of observing a proportion of

responses within a given number of reaction time (RT) bins (the

0.1, 0.3, 0.5, 0.7, 0.9 quantiles) using SIMPLEX optimization

routines [23]. Because the fit of more complex models (with more

free parameters) is necessarily better than (or equally good as) the

fit of simpler models, it is crucial to consider the number of free

parameters when performing model comparisons. Therefore, for

each subject and each model, the Bayesian information criterion

(BIC) was calculated to determine the model with the best trade-

off between fit quality and model complexity [24,25]. The BIC

corrects the log-likelihood of the model’s fit to the data based on

the number of free parameters, in such a way that if a more

complex model is only slightly better in terms of fit, the simpler

model will have a better (lower) BIC value, and should be

preferred. To compare between the BIC values of the different

models, we calculated for each model and each subject the BIC

weights [24]. These BIC weights represent the probability that the

model is the best model, compared to all other fitted models. The

BIC weights were averaged across all subjects. Next, the model

with the largest average BIC weight was chosen as the model that

explained the difference between conditions (valid/invalid and

neutral) the best. This model was then fitted to the data of each

separate time-window to obtain the parameter time-courses.

DDM time courses
We fitted the best model to both the accuracy and RT data of

the valid and invalid conditions using a moving window approach.

Each window was defined as a CTI range of 250 ms that moved in

60 steps from 125 to 875 ms (see [5]). The model-parameters that

accounted for the difference in accuracy and RT between the cued

and uncued conditions in the whole dataset (see above) were free

to vary across the valid and invalid conditions of each window.

This allowed us to determine how these parameters were affected

by the validity of the attentional cue, over the course of the

increasing CTI.

Post-hoc analysis of percentage change from baseline
To test whether the model parameters changed with CTI, we

performed a 262 repeated measures ANOVA with window and

validity as within subjects factors. To diminish the dependencies

between parameters due to the moving-window approach, we only

considered the first (from 0 ms to 250 ms) and the last window

(from 750 ms to 1000 ms).

Results

The study by van Ede et al., (2012) shows that the accuracy and

reaction time (RT) of tactile perceptual decisions are affected by

the validity of an attentional cue via different cognitive and neural

processes. We fitted the drift diffusion model to their data to

decompose the decision process into parameters that represent

latent cognitive processes that underlie the tactile choices.

For each subject we first fitted the DDM to the whole data set

and performed model selection. For sixteen of the seventeen

subjects, we found higher BIC weights [24] for Model 2: The

model with both a variable drift rate and non-decision time was

more likely to explain the accuracy and RT data than the other

models (mean[SD] BIC weights for Model 1 = 0.06[0.24], Model

2 = 0.67[0.40], Model 3 = 0.14[0.31] and Model 4 = 0.14 [0.25]).

Figure 3 shows, for each subject separately, the accuracy and RTs

for the experimental conditions across the whole data set, together

with the accompanying predictions of Model 2.

To obtain the parameter time courses, we fitted Model 2 to the

data using a moving window approach (see Materials and

Methods). For each window, we estimated the drift rate (v) for

validly and invalidly cued trials, which is thought to reflect the

quality of accumulated evidence (Figure 2A). In addition, we

estimated a non-decision component (non-decision time Ter) for

validly and invalidly cued trials reflecting changes in sensory and

motor processes [7]. All other parameters where held fixed for

each window using the participant-specific parameter values that

were estimated by fitting the DDM on the whole dataset. Figure 4

shows the quantile probability plots (QPP) for each window,

Do Behavioral Measures of Attention Dissociate?
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averaged over participants, separately for the validly and invalidly

cued conditions. With the constraint in mind that only drift rate

and non-decision time were allowed to vary across conditions the

model fits are reasonably good. There is some deviation between

the data and the model in the tails of the distribution. This is a

common observation, often explained by the increased spread in

the tails of RT distributions. Note also that, for the invalidly cued

trials, the predicted RTs are faster, resulting in a deviance between

the model and the data. This is especially visible for the middle

(0.3, 0.5 and 0.7) quantiles. This deviance is most likely a reflection

of the lower number of trials for the invalidly cued trials (mean(SD)

#trials = 85.8 (34.9) for invalid, against 254.6 (110.8) for validly

cued trials), resulting in a larger variance in the RT data, both

within and across subjects.

To show how the model parameters change over the increasing

CTI, a time course for the drift rate and non-decision time was

constructed by calculating the percentage change from their

baseline values within each subset of the data.

Figure 3. Quantile probability plots showing the best fitting model (see methods) for each subject. Each graph represents the
proportion correct choices and reaction time (RT) distributions for each condition (data points) and the DDM quantile probability functions
describing them (lines). RT distributions are represented by five quantiles (colors), plotted along the y-axis for each condition. Conditions (neutral,
validly and invalidly cued trials) are split into correct and incorrect responses and divided over the x-axis, representing response probability. Lines
connecting the quantiles between conditions represent changes in RT distributions across conditions, for incorrect and correct responses.
doi:10.1371/journal.pone.0080222.g003
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Results show that changes in accuracy and RT can be explained

by a combination of processes: for validly cued trials, we found an

increase in drift rate and a decrease in non-decision time when

CTI increases (Figure 2C, D; interaction validity 6window resp.

F(1,16) = 7.6; p = 0.014 and F(1,16) = 19; p,0.001). Figure 2B

shows the RT timecourse separated in RT changes related to drift

rate (v) and RT changes related to non-decision time (Ter). These

results confirm that both drift rate and non-decision time are

necessary to explain a substantial part of the RT data. Note

however that, although there is no difference in drift rate between

the validly and invalidly cued conditions at the very early CTIs

(see Figure 2C), we do find a difference between the RT effects

related to drift rate for these conditions at these time points (see

Figure 2B). This unexpected effect is most likely due to the larger

variance in the RT data of invalidly cued trials resulting in an

overestimation of the drift rates for invalidly cued trials (see also

Figure 4). As a result, the real drift rate for invalidly cued trials

might be lower than the model predicts, explaining the early

Figure 4. Group quantile probability plots for the validly and invalidly cued trials. Data points represent group mean for correct (right)
and incorrect (left) choices in each time course window. Lines represent the group average of the DDM predicitions.
doi:10.1371/journal.pone.0080222.g004
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difference between RT effects between baseline and invalidly cued

trials.

Discussion

A recent study by van Ede et al. (2012) shows that the accuracy

and reaction time (RT) of tactile perceptual decisions are affected

by the validity of an attentional cue via distinct cognitive and

neural processes. To elaborate this finding, we fitted the drift

diffusion model to the data. The observed changes in the DDM

parameters provides a subtle explanation of how the speed and

accuracy of cued tactile decisions are affected by two distinct

processes, as argued by van Ede et al. The increase in accuracy for

validly cued trials can be explained by a gradual increase in drift

rate. The decrease in RT for validly cued trials can be explained

by this increase in drift rate as well, but only partly: an additional

decrease of the non-decision time is necessary to account for effects

in RT that are unrelated to the decision process (e.g. sensory or

motor processes; Figure 2B, D).

Note also that the model with variable drift rate and non-

decision time produced a better fit to the data than the model

where only drift rate was allowed to vary across conditions (as

measured by a better balance between fit quality and model

complexity [25]). As such, the observed behavioral changes seem

to be driven by two distinct processes. However, these processes do

not separate the accuracy and RT effects in the same way that van

Ede et al., (2012) suggested by their MEG analysis. In this analysis,

the authors transformed the behavioral and MEG time-courses

using a logistic function. Results of these transformations showed

that the time-course of the MEG signal was similar to the time-

course of the increase in accuracy (for validly vs invalidly cued

trials), leading to the conclusion that the MEG signal could only

explain the observed accuracy, but not the observed RT effects. As

such, the authors concluded that the attentional cue affects

accuracy and RT via different cognitive and neuronal processes.

However, our results show that the time-course of the changing

drift rate is remarkably similar to the effects observed in the

accuracy time-course (see Figure 1A, and 2C). Therefore, it is

likely that the reported MEG signal by van Ede et al. (2012) drives

the change in drift rate, and not solely the change in accuracy. In

addition, drift rate affects RT as well, which is shown by Figure 2B.

As such, both changes in drift rate and non-decision time are

necessary to account for the effects of the validity of the attentional

cue observed in the RT time course.

In sum, by fitting the DDM to the data of van Ede et al, we were

able to distinguish between processes that are related to a decision

component (drift rate) and a process related to a sensory or motor

component (non-decision time). Both of these processes affect RT

(drift rate & non-decision time) with one of them (drift rate)

simultaneously affects accuracy as well.

Another advantage of using a formal model in the behavioral

analysis is that it allows us to interpret the behavioral results of the

study by van Ede et al. within a conceptual framework that

describes the dynamics of the decision process. Drift rate is

thought to reflect the quality of sensory evidence [7], which seem

to improve by attentional cueing. This effect in drift rate might be

compatible to the proposed model by van Ede et al. where an

increase of the preparatory signal in the sensory cortex results in

an increase of the level of performance. Furthermore, the

compatibility effect described by the authors might influence RT

via the non-decision component where the validly cued choices

benefit from the cue prior to the target, resulting in a faster cue-

target comparison [5]. However, the authors note that in their

proposed model these different effects on RT cannot be

disambiguated, and as a consequence it will be problematic to

infer preparatory processes solely on the basis of RT data. By using

a model-based approach we are able to disentangle the RT effects

in two measurable parameters that might be used to identify the

underlying neuronal processes that a responsible for both accuracy

and the different RT effects.

An alternative explanation of the observed effects of the validity

of the attentional cue might involve the parallel processing of the

attentional cue and the tactile target (Figure 5). According to this

idea, the encoding of the auditory cue is followed by a focused

attention to the hand associated with the cue. For short CTIs, this

process results in a delay in processing the target, resulting in a

psychological refractory period (PRP; [11,12,26,27]). To under-

stand the similarity with a typical PRP paradigm one could think

of the tactile task used by van Ede et al. (2012) as two separate

tasks that the participants had to perform simultaneously. Task 1

involves detection of the cue, which automatically draws the

attention to the cued hand by means of a stimulus-response

association (see [28]). Task 2 involves target detection, which draws

the focus to the stimulated hand. Although Task 2 might benefit

from a valid cue in Task 1 when the focus of attention is similar for

both tasks, at very small CTIs the processing of a target in Task 2

will still be delayed by the processing of the cue itself (Task 1). This

effect becomes smaller for larger CTIs, as the overlap between the

tasks becomes less. However, when the cue is invalid, the benefit is

not apparent, as the target always triggers a refocus to the other

hand after an invalid cue.

This PRP-like effect might account for both the increase in non-

decision time and the decrease in drift rate: processing the cue

causes a delay in processing the target (non-decision time) and

interferes with the process of collecting tactile evidence of the

spatial location of the target (drift rate; see Figure 5). As explained,

when CTI increases, the influence of the PRP effect gradually

becomes less apparent. As such, non-decision time decreases, and

drift rate increases (resulting in a faster accumulation time).

However, for the invalidly cued trials, the drift rate and non-

decision time will be similar to those observed in the uncued trials,

across different CTI’s (see Figure 5). In all, this alternative

explanation explains how the validity of an attentional cue affects

the dynamics of the decision process, resulting in the observed

behavioral effects. Furthermore, the model-based approach

provides a framework where different components of the decision

process can be measured, which might be useful in investigating

the underlying neuronal processes of tactile decision making [29].

Importantly, although a model like the DDM might be

informative at the cognitive level and provide explanations that

are biologically plausible, the dynamics of the underlying neural

network may be more complex then the model predictions assume

(e.g., [30,31]) That is, subtle changes in the underlying neuronal

network can result in mechanistically different predictions than

would have been expected from a model-based account (e.g.,

[32]). For example, the DDM cannot distinguish between different

mechanisms within the non-decision time that might affect the

decision process [33]. As such, although the model-based

approach is useful to inform the analyses of brain imaging

methods, and to identify latent cognitive processes, caution has to

be made in suggesting a one-on-one mapping from the model onto

the neural substrate underlying the decision process.

Taken together, van Ede et al. show that the speed and accuracy

of tactile decisions have differentiating time courses depending on

the validity of an attentional cue. The model-based approach

provides a subtle explanation of how the underlying dynamics of

the decision process might give rise to these different effects. In

particular, we show here that the validity of the attentional cue
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affects the decision making process, but that the temporal

proximity of a cue might interfere with general processing of a

subsequently presented target stimulus. Our analyses highlight the

importance of applying a model-based approach, as it shows that

the underlying processes of accuracy and RT might not be so

distinct after all. Furthermore, the observed changes in the

estimated model parameters might be ecologically more valid, as

they have a intuitive relationship with the neuronal processes

underlying perceptual decision making [29,34,35].
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times for validly cued and invalidly cued trials, as indicated on the timeline with red (valid) and blue (invalid) lines.
doi:10.1371/journal.pone.0080222.g005
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