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Abstract

We investigated the development of the mental representation of the magnitude of fractions during the initial stages
of fraction learning in grade 5, 6 and 7 children as well as in adults. We examined the activation of global fraction
magnitude in a numerical comparison task and a matching task. There were global distance effects in the
comparison task, but not in the matching task. This suggests that the activation of the global magnitude
representation of fractions is not automatic in all tasks involving magnitude judgments. The slope of the global
distance effect increased during early fraction learning and declined by adulthood, demonstrating that the
development of the fraction global distance effect differs from that of the integer distance effect.
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Introduction

Common fractions (hereafter, fractions) denote rational
number quantities by the ratio of two whole (integer) numbers
(e.g. 1/3). Fractions are theoretically crucial as they depend
upon a deeper understanding than natural numbers [1]. They
are also fundamental in mathematics education as they play a
major role in higher-level mathematics topics such as
probabilities and algebra. However, fractions represent
considerable difficulty for children studying arithmetic. The
difficulty in comprehending fractions may seem surprising as
several theorists assume that the understanding of magnitude
and ratios is evolutionarily hardwired [2,3]. In fact, evidence is
still controversial whether adults represent the global
magnitude of fractions at all, or rather, they only rely on integer
components when interpreting fractions [4-7]. Further, in
contrast to the theoretical and practical significance of fraction
learning, to date only a couple of studies examined the mental
representations of fractions in children [8,9]. Here, our objective
was to gain further detailed understanding of how the
representation of fractions changes with development right
during the school years when fraction knowledge is just
consolidating. To this end we tracked global magnitude
activation in grade 5, 6 and 7 children (10- to 12-year-olds) as
well as in adults in a number comparison task and in a number

matching task, and studied whether global fraction magnitude
is activated automatically or not.

Some authors suggest that we have an evolutionary ancient
cognitive system that allows us to approximate ratios. This
system designed for proportional understanding would be
present in monkeys [3], preverbal children [10] and young
children [11]. So children would be able to process ratios
before receiving formal instruction on fractions. From this angle
it is striking that fractions are one of the most difficult topics of
early mathematics education to grasp [12,13]. Children
experience difficulties to apprehend the global magnitude of
fractions (i.e. their real value) and do not seem to have an
appropriate representation of the quantity they symbolize. For
example, most grade 5 children fail to place a fraction on a
graduated number line [14] and struggle when asked to order
fractions [15]. Pupils often process numerators and
denominators as being two independent whole (natural)
numbers and then apply procedures that can only been used
with whole numbers [16,17]. This phenomenon is the “whole
number bias” [18]. Consequently, pupils make mistakes such
as 1/4 + 1/2 = 2/6 when they use erroneous componential
strategies to solve this type of problem.

The above difficulties are directly related to the question of
how fractions are represented in the human mind. Currently it
is debated whether fractions are mentally represented by
maintaining a separate representation of whole number
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components and/or by having a representation of the global
magnitude of the fraction which may be based on the
evolutionarily grounded magnitude representation. Before
discussing this controversy, it is necessary to mention that
evidence suggests that the magnitude of standalone integers
(which provide the components of fraction notation, like '3' and
'4' in '3/4') is most probably represented in a non-verbal
approximate format [19]. The most robust signature of this
system is its ratio sensitivity which means that number
discrimination is generally subject to Weber's Law, i.e. the ratio
between the to-be-compared numbers determines
discrimination performance [19]. A consequence of ratio
sensitivity is the so-called symbolic numerical distance effect
which means that closer numbers are harder (slower and more
error prone) to compare than further away numbers (e.g.
comparing 1 vs. 4 is faster and more accurate than comparing
1 vs. 2). The symbolic distance effect has been shown in
children in overt number comparison [20,21] and in the
numerical Stroop paradigm which does not require explicit
number magnitude analysis [22,23]. Further, EEG studies have
demonstrated that magnitude information represented by single
digits is accessed as fast in young children as in adults even if
no explicit magnitude processing is required and when
perceptual properties of stimuli are perfectly balanced [23]. The
above findings suggest that the magnitude analysis of single
digits is fast and automatic even in young children. Hence,
theoretically it is very likely that the processing of individual
digits as fraction components can be similarly fast and
automatic.

Studies on the mental representation of fractions used the
distance effects between the to-be-compared fraction
magnitudes and between their components as indices of global
or componential processes. In a comparison task, Bonato and
colleagues showed distance effects only between fraction
components [4]. Hence they concluded that participants relied
on the magnitude of components only. Kallai and Tzelgov [5]
used a numerical comparison task with fractions and integers
and a physical size comparison task assessing the automaticity
of fraction processing. Their results showed that when fractions
were compared to natural numbers, participants relied first on
the magnitude of components and then accessed the global
magnitude. When participants compared a proper fraction (i.e.
smaller than 1) to a natural number, the distance effect
denoted the activation of what the authors called a generalized
fraction (i.e. an entity smaller than one with a constant value).
However, when pairs of fractions were compared, participants
mostly relied on componential strategies. In contrast, other
studies argued that not only componential (i.e. the separate
magnitudes of the numerator and denominator) but also global
fraction magnitude (i.e. the overall magnitude of the whole
fraction) is represented. Meert and collaborators [6,7]
combined the comparison task with a priming manipulation. A
comparison between two fractions served as prime for a
consecutive comparison between two natural numbers. Results
showed that both the magnitude of components and the global
magnitude of fractions were accessed. Another recent study
using a comparison paradigm showed that educated adults can
mentally represent the global magnitude of fractions [24].

Ischebeck, Schocke & Delazer [25] and Jacob and Nieder [26]
used functional magnetic resonance imaging (fMRI) in
comparison and neural adaptation tasks, respectively. The
global magnitude of fractions modulated the activity of areas of
the intraparietal sulcus in both studies. These results suggest
that within the intraparietal sulcus, a fraction might be
represented by its global magnitude, rather than by the
magnitudes of its numerator and denominator. In summary,
evidence from adults is controversial; there is support for both
the componential and global magnitude representation view of
fractions.

While to date only about a handful of studies investigated
fraction processing in adults, to our knowledge, only two
studies have so far been conducted on the mental
representation of fractions in children. In the first study, Meert
and colleagues [8] tested grade 5 and grade 7 Belgian children
in a comparison task. The influence of the congruity between
the global magnitude of a fraction and the magnitude of its
components on fraction processing was assessed. Pupils had
to compare fractions with common denominators or common
numerators. For pairs of fractions with common denominators
(e.g. 3/8_7/8), the magnitude of the numerator is always
congruent with the global magnitude of the fraction (e.g. in this
case, 7 is larger than 3 and 7/8 is larger than 3/8). In this
situation, strategies based on numerator magnitude processing
only would be successful. However, for pairs of fractions with
common numerators (e.g. 2/3_2/7), the magnitude of the
denominator is incongruent with the global magnitude of the
fraction (e.g. in this case, 7 is larger than 3, but 2/3 is larger
than 2/7). In this situation, strategies based on holistic
processing might be beneficial in terms of cognitive cost as
there is an incongruity between the magnitude of the
denominator and the global magnitude. Numerical distance
effects were then tested in a comparison task involving
fractions. Additionally, a priming paradigm was used. The
comparison of fractions preceded a comparison of natural
numbers. The natural numbers of interest were components
used in the primed fractions (e.g. 2/3_2/7 primed 3_7). If
participants access the global magnitude for fractions with
common numerators, interference for the comparison of natural
numbers should be observed as participants first had to inhibit
the response due to the incongruency for the comparison of
fractions. Result showed that pupils used both the global
magnitude of fractions and the magnitude of components.
Hence, it was concluded that a hybrid (global and
componential) representation of fraction magnitude exists.
Such conclusions were drawn from the second study where
children were asked to either place a fraction on a number line
or translate a given position on a number line into a fraction [9].
When a fraction was given to map onto a number line, children
used holistic strategies; but when a spatial cue was translated
into a numerical fraction, children used componential
strategies.

In the current study we examined the development of the
activation of the mental representation of global fraction
magnitude. Going beyond previous studies we used two
fraction processing tasks conceptually tapping into different
levels of global magnitude processing, a number comparison
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task and a number matching (same/different judgement) task.
Both tasks are robust and reliable measures of number
processing [27]. In the number comparison task (hereafter:
comparison task) participants selected the numerically larger of
two numbers. In the number matching task (hereafter:
matching task), participants decided whether two fractions
equalled each other numerically, or were numerically different.

Potential theoretical models of the two experimental tasks
are shown in Figure 1. In the comparison task componential
magnitudes (‘cM’ in Figure 1) are likely activated (arrows with
‘a’). Global magnitudes (‘gM’) can potentially get activated
directly by the whole fraction (‘b’) or after componential
magnitudes are activated (‘c’). Finally, magnitude analysis
outcomes are linked to response labels and response
processes (‘d’ and ‘e’). A major difference between the tasks is
that in the comparison task participants make an explicit
relative global magnitude judgement between the two fractions
and label them appropriately as 'smaller' or 'larger'. Hence, as it
is typically the case in psychophysical comparison tasks, a
global distance effect can be expected with high probability.
However, these effects may only reflect general comparison
processes rather than representational properties as shown for
example by Holloway and Ansari [28]. In contrast in the
matching task participants do not have to make an explicit
relative global magnitude judgement and do not have to label
fractions by their relative global magnitude, or even extract the
global magnitude information. Moreover, all analysis-relevant
different fraction pairs are assigned to the same response
option (‘Different’). First, this response option is linked to the
fraction pair rather than to a single fraction. Second, the
'Different' response option is unlikely to be uniquely associated
with any of the individual fractions in a pair. Hence, stimulus-
response associations with single fractions most probably do
not manifest in performance measures. Hence, the matching
task poses a more stringent test for a magnitude representation
related global distance effect than the comparison task and
potentially appearing global distance effects could be attributed
to the manifestation of representational overlap rather than to
stimulus-response associations.

The above account is compatible with the view of Van Opstal
and Verguts ([29]; see also 30) who suggested that the
comparison distance effect is the consequence of a decision
process based on the strength of stimulus-response
associations rather than a direct expression of accessing
number representations. As shown in Figure 1, according to
this suggestion, the global distance effects in the comparison
task represents the relative strength of response associations
linked to both numbers (the arrow labelled 'global DE'). Hence,
the global distance effect would not be a pure measure of the
magnitude representation in comparison tasks; rather, it would
be confounded by decision processes. In contrast, Van Opstal
and Verguts [29] argued that the distance effect emanating in
same/different judgement tasks is a consequence of accessing
number representations. Overall, both above accounts suggest
that the matching task is a more stringent test of global
magnitude activation than the comparison task. In fact, it is a
significant empirical question whether and how the global
distance effect is different in the two tasks. Most probably, a

stronger distance effect can be expected in the comparison
than in the matching task and the difference between the tasks
could characterize the difference between the distance effect
related to stimulus-response associations (comparison task)
and representational overlap (matching task).

A significant difference between integers (symbolic digits)
and fractions is that the digit-to- (global) magnitude link is
overlearnt already by the end of grade 1 as demonstrated by
behavioural and Stroop congruency effects [21] and task-
irrelevant symbolic distance effects [31]. In contrast, global
magnitude information is usually implicit in fraction notation and
relative magnitude relations are often far from evident
especially when several different fractions are presented (90 in
our experiment). As shown in Figure 1, the magnitude of the
individual components of fractions can be expected to get
activated (arrows labelled 'a') and the global magnitude may
also get activated (arrows labelled ‘b’ and 'c'). However, it is an
empirical question whether this global magnitude is activated
and is used for example for associating with response labels in
certain task contexts. Hence, while a global distance effect in
the comparison task may only be a marker of stimulus-
response associations [29], it is also a significant question
whether this global magnitude activation happens at all in a
task-relevant manner (that is, it cannot be taken for granted as
in the case of integers). As reviewed above, previous fraction
comparison studies provide controversial evidence.

Our intention was to study the initial stages of fraction
knowledge consolidation. Formal fraction instruction starts at
grade 4 in the French Community of Belgium where the testing
was carried out. As grade 4 pupils still make a large number of
errors in fraction tasks we decided to test from grade 5
onwards in order to get stable results. Therefore, grade 5, 6
and 7 (10 to 12 year-old) Belgian pupils as well as adults took
part in the study. Involving adults allowed defining the mature
state of the representation of fractions and using it for
comparison with children. First, we aimed to see whether the
comparison and matching tasks show dissociation in any of the
age groups. As outlined above, global distance effects in the
comparison task can be attributed to stimulus/response
associations. However, their mere presence can suggest that
global magnitude is activated at least in a task-relevant
manner. In contrast, global distance effects in the matching
task would appear in the absence of an explicit (magnitude)
comparison task. Hence, potential global distance effects could
be attributed to the manifestation of a global fraction magnitude
representation. Second, we studied the development of global
distance effects. Sekuler and Mierkiewicz demonstrated that
the slope of the distance effect is decreasing with age in single-
digit symbolic integer magnitude discrimination [21]. Meert and
colleagues did not report slope changes with grade 5 and 7
children in comparison task [8]. Here we aimed to replicate
those results with both the comparison and matching tasks with
3 child groups and one adult group. Including the adult group
also allowed for tracking potential long-term changes in the
slope of the global distance effect. We also investigated the
functional significance of global distance effects in relation to
'real-life' measures of mathematical performance with fractions.
Children solved paper and pencil tests besides the
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experimental tasks. The items were based on tasks used in
previous studies which measured children’s understanding of
fractions [13,14]. There were five different tasks: estimation
task, comparison task, graduated number lines, arithmetic
operations and simplification of fractions. In the estimation task,
pupils were asked to place a fraction on a non-graduated
number line. Estimation has been identified as one of the most
important aspect of student’s initial learning of fractions [32].
The comparison task was similar to the experimental task
without any time pressure. Graduated number lines allowed us
to measure how children represent quantities symbolized by
fractions. In the arithmetic task, pupils were asked to solve
addition, subtraction and multiplication of fractions. In the
simplification task, they had to reduce fractions to their lowest
terms by dividing both the numerator and denominator by their

greatest common divisor. Test performance was then related to
global distance effect measures.

Methods

Participants
Initially 117 children took part in our study: 45 grade 5, 35

grade 6 and 37 grade 7 children. Twenty-five grade 5 children,
twelve grade 6 children and seven grade 7 children were
excluded from the sample because their mean score was
below 60% in one or several of the experimental tasks.
Therefore, the final sample was composed of 73 children: 20
grade 5 children (mean age: 10 years 5 months old, 5 girls), 23
grade 6 children (mean age: 11 years 6 months old, 10 girls),

Figure 1.  Potential theoretical models of the two experimental tasks.  This figure shows models of the Comparison (A) and the
Matching (B) tasks. The to-be-compared fraction pairs are shown in the thick boxes (3/8 vs. 4/7). [cM] = Componential magnitude
representation, that is, the representation of individual digits, like that of '3'. [gM] = The global magnitude representation of a fraction.
Arrows labeled [a] = activation of componential magnitude representation. Arrows labeled [b] = direct activation of global magnitude
representation. Arrows labeled [c] = indirect activation of global magnitude from componential magnitude representations. Arrows
labeled [d] = Activation of response labels associated with magnitudes. Arrow labeled [e] = activation of response labels in the
matching task. In the comparison task distance effects result from the differential strength of stimulus/response associations
(association between cM/gM and arrows with [c]). In the matching task distance effects result from the representational overlap
between magnitude representations.
doi: 10.1371/journal.pone.0080016.g001
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30 grade 7 (mean age: 12 years 4 months old, 16 girls). All
children came from the same racially diverse population and
were from middle socio-economic background. Fifteen young
adults were also tested (8 females, 3 left-handed). They were
all graduate students (mean number of years of graduate
education = 4). The mean age was 24 years (range 22-29). For
children, written consent was obtained from parents and head
teachers. Adult participants signed a consent form. The study
received ethical permission from the Ethics Committee of the
Faculty of psychology and education sciences at the Université
Libre de Bruxelles.

Stimuli
Paper and pencil tasks.  Children's knowledge of fractions

were assessed by a paper and pencil task (see Information
S1). There were five tasks: estimation, comparison, graduated
number lines, arithmetic operations and simplification. The
estimation task involved 4 items for which pupils were asked to
place a fraction on a non-graduated number line going from 0
to 1. One point was given if they placed the mark at a point
situated within 1cm of the right location, and no point was
attributed if the mark was further away. In the comparison task,
children chose which of two fractions was larger. There were
16 pairs of fractions with different features: same
denominators, same numerators, no common components and
comparing a fraction to the unit (e.g. 1/2_4/4). One point was
attributed for each correct answer. In the graduated number
line task children placed a fraction (4 items) or the number 1 (4
items) on a graduated number line on which 0 and another
fraction were indicated (e.g. Place 2/9 on the graduated
number line, knowing 0 and 5/9). One point was given if they
placed the fraction at the right graduation. Arithmetic
operations included 8 additions and subtractions with same or
different denominators, 4 multiplications of fractions and 4
multiplications of a fraction by an integer. For the simplification
task, pupils were asked to reduce 4 fractions in lowest terms.
30 minutes were allocated for children to complete the paper
and pencil tests.

Comparison task.  90 pairs of fractions were used in this
task (stimuli are shown in Table S1). Denominators could be
between 2 and 9, and numerators between 1 and 8. The global
magnitude of fractions was always smaller than 1. Stimuli were
grouped into three Global distance conditions: Close (global
magnitude difference < 0.3), Medium (0.3 < global magnitude
difference < 0.5) and Far (global magnitude difference > 0.5).
Pairs of fractions were equally distributed along the three
conditions.

There were five different categories of stimuli: (A) 18 pairs of
fractions with the same numerator (Mean global distance =
0.30), (B) 18 pairs of fractions with the same denominator
(Mean global distance = 0.31), (C) 6 pairs of fractions for which
the numerator of fraction 1 and the denominator of fraction 2
were the same (Mean global distance = 0.31), (D) 6 pairs of
fractions for which the denominator of fraction 1 and the
numerator of fraction 2 were the same (Mean global distance =
0.30), and (E) 42 pairs of fractions with no common
components (Mean global distance = 0.30). The size of the

stimuli was 250 pixels x 250 pixels. Stimuli were randomly
presented.

In order to control for interrelationships between numerators,
denominators and global distance we ran correlation analyses
between global and component distances of fraction pairs.
There was a significant positive correlation between global
distance and distance between numerators (r = 0.476;
p<0.001), and a marginally significant correlation between
global distance and distance between denominators (r =
-0.183; p = 0.084). There was no significant correlation
between distance between numerators and distance between
denominators (r = 0.044; p = 0.0683).

Matching task.  135 pairs of fractions were distributed
among three conditions: Identical, Equivalent and Different.
There were 15 pairs of Identical fractions (e.g. 1/2_1/2), 30
pairs of Equivalent fractions (e.g. 1/2_2/4) and 90 pairs of
Different fractions (e.g. 1/2_2/3). The 90 stimuli of Different
fractions were the same as the pairs used in the Comparison
task.

Procedure
Children first carried out the paper and pencil test as a group

and then carried out the experimental tasks individually. There
were two experimental tasks: a comparison task and a
matching task. In both tasks, stimuli were presented on the
screen of a computer using the Presentation program
(Neurobehavioral systems). Black characters were presented
on a white background. In each trial a fixation cross appeared
on the screen for 300 msec, followed by a 200 msec blank
screen. The pair of fractions stayed on the screen for 7000
msec or until the participant gave a response, followed by a
200 msec inter-stimuli interval. Two different types of vinculums
(horizontal and diagonal) and two different types of fonts (arial
and brush) were used. Each pair of fractions was made of
different vinculum and different fonts to change the physical
appearance of each fraction. The variation of fonts and
vinculums was introduced to get participants’ attention focused
on the semantic content of the stimuli rather than on their
physical aspect [33]. The order of stimulus presentation was
randomized.

In the Comparison task, participants were asked to decide
which of two fractions was larger. If the larger fraction
appeared on the left of the screen, they had to press “q” key, if
it appeared on the right of the screen, they had to press “m”
key on an AZERTY keyboard. In the Matching task, they had to
decide whether pairs of fractions were same or different. There
were three conditions: Identical (e.g. 1/2_1/2), Equivalent (e.g.
1/2_2/4) and Different (e.g. 1/2_2/3). Pairs of fractions were
considered to be the same when they represented the same
quantity (i.e. Identical and Equivalent conditions). Participants
had to press “m” key when fractions were the same. In the
Different condition, fractions did not represent the same
quantity. When pairs of fractions were different, participants
had to press “q” key. Participants were allowed to take a short
break between the tasks. Participants were explicitly told to
ignore the physical appearance of the stimuli. The order of the
computer-based tasks was counterbalanced. The duration of
the computer-based tasks was approximately 25 minutes.
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Data analysis
Trials on which there was an incorrect response were

removed prior to reaction times (RT) analyses. Trials in which
RT was greater than the participant's mean RT plus three
standard deviations were excluded from analyses (2.8% of the
trials in the matching task, and 1.9% of the trials in the
comparison task).

First of all, a MANOVA was run on accuracy in all of the
paper and pencil subtests (Estimation, Comparison, Graduated
Number Lines, Arithmetic Operations and Simplification) with
Grade (3 levels: Grade 5, Grade 6, Grade 7) as a fixed factor.
Tukey-HSD tests were used for post-hoc comparisons.

Second, ANOVAs were run in order to keep comparability
with the whole literature. The main objective was to detect
whether there was a representation of global fraction
magnitude. Hence, various analyses focused on the global
distance effect. First, accuracy (percentage of correct
responses) and mean RT (milliseconds) was determined in
each condition in each participant. The effect of global
numerical distance was directly compared across tasks by
analyzing the stimuli from the Different Condition of the
matching task and stimuli from the Comparison task. Those
stimuli were identical in both tasks. Three categories of stimuli
were defined according to the global distance between pairs of
fractions: close, medium, and far distance. A repeated
measures ANOVA was used on accuracy and RT. There was
one between-subjects factor, Grade (grade 5, grade 6, grade 7
and adults); and two within-subjects factors, Task (Matching
and Comparison) and Global Numerical Distance (close,
medium and far). Pairwise comparisons in the above and all
other analyses were done by post-hoc Tukey-HSD tests. In
order to control for the development of speed of processing,
proportionally transformed RT were also analyzed [34].
Proportionally transformed RT was computed for two different
magnitudes of numerical distance: Distance Level 1: (close
distance – medium distance) / far distance; Level 2: (close
distance – far distance) / far distance. These values were
entered into a Grade × Task × Distance Level ANOVA. It is to
note that we always divided by the value of far distance values
in order to assure that all values are in a common metric.

Third, in order to further specify distance effects we
computed the mean slope of the distance effect in each task for
both accuracy and RT by taking the mean of close minus
medium and medium minus far distance values for original RT
and ran a Grade × Task ANOVA on slope values. Moreover, in
order to see whether the slope was significantly different from
zero, the value of the slope in in each Task and Task × Grade
cell was tested against zero by running one sample two-tailed
t-tests [35].

A similar analysis was done on proportionally transformed
RT data. In proportionally transformed data the slope of the
distance effect was computed by calculating two levels of
distance and averaging them: Level 1: (close distance –
medium distance) / far distance; Level 2: (medium distance –
far distance) / far distance. These values were also analyzed
by a Grade × Task ANOVA. We tested for the presence of
speed/accuracy trade-offs by correlating accuracy and RT
scores in the whole sample and in each group separately at an

alpha level of p = 0.05. The above Grade × Task ANOVAs on
slope values were also run when taking the slope of the
accuracy global distance effect as a covariate.

Fourth, stepwise multiple regression analyses investigated
whether global and/or componential numerical distance values
predicted mean RT in each task. These were in the same way
as in Ischebeck et al. [25]. In the first stage of the analysis, the
independent variable which best correlated with the dependent
variable (RT) was included in the model. In the second stage,
the next independent variable with the highest partial
correlation with the dependent variable was also included in the
model. The process is repeated until the addition of the
remaining independent variable does not significantly increase
adjusted R2 or until the last variable is included. The entrance
criterion was set at p ≤ 0.05 and the exit criterion at p ≤ 0.1.
The final model is reported for each analysis. In the
comparison task the regression analyses were also run in each
individual and the proportion of participants demonstrating
significant global distance regression outcome was
investigated by examining binomial distribution probabilities. In
addition, the individual beta values were used to represent the
slope of the global distance effect at the individual level. In
order to test whether this slope differed by grade, the beta
values from the Comparison task (there were no significant
global distance regression results in the other task) were
entered into an ANOVA with a Grade factor.

Fifth, in order to keep consistency with the data analysis of
Meert et al. [8], a linear mixed model analysis was run on RT
with grade (grade 5, grade 6, grade 7 and adults), global
distance, distance between numerators, distance between
denominators, type of fraction ((A) same numerators, (B) same
denominators, (C) numerator of fraction 1 and denominator of
fraction 2 are the same, (D) denominator of fraction 1 and
numerator of fraction 2 are the same, and (E) no common
components) and task (comparison vs. matching) as fixed main
effects [8]. The model also included the following interactions:
global distance x grade, global distance x task and global
distance x type of pair x task. Two random factors were also
included in the model: the random intercept for participants and
the random intercept for the pairs of fractions.

Finally, we computed correlations between the slope values
of the distance effect in each task for both accuracy and RT
with performance on the paper and pencil tests.

Results

Paper and pencil tests
Table 1 shows results in paper and pencil tests. A MANOVA

was run on accuracy for the 5 subtests of the paper and pencil
tasks with Grade as a fixed factor. The MANOVA showed a
significant Grade effect, F(2, 35) = 8.65, η2

p = 0.19, p = 0.001.
Post hoc test showed that grade 5 children had worse
performance than grade 6 and grade 7 children (p < 0.05).
There was a grade effect in the comparison task; post-hoc test
showed that grade 5 children performed worse than grade 6
and grade 7 children (p < 0.001). There were significant grade
differences in the arithmetic operation; post-hoc test showed
that grade 5 children performed worse than grade 6 and grade
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7 children (p < 0.05). Post hoc test also showed significant
differences between grades in the graduated number line
subtest: Grade 5 children performed worse than grade 6 and
grade 7 children (p < 0.001). Finally, post hoc test also showed
significant grade differences in the simplification subtest: Grade
5 children performed worse than grade 6 and grade 7 children
(p < 0.05).

Experimental tasks
ANOVAs on original data.  Accuracy in both tasks is shown

in Figure 2. A Grade × Task × Numerical distance ANOVA was
run on data collected in the different condition of both tasks.
There was a main effect of grade, F(2,70) = 16.32, η2

p = 0.32, p
< 0.001, as accuracy increased with grade (Mean and standard
deviation: Grade 5 = 78% ± 16; Grade 6 = 84% ± 13; Grade 7 =
87% ± 11.3; Adults = 87%.3 ± 7.2). Post-hoc tests showed that
grade 5 children performed worse than grade 6 children, grade

Table 1. Mean percentage and standard deviations of
correct responses for the different questions of the paper
and pencil test.

 Estimation Comparison Number Lines Operations Simplification
Grade 5 66.2 ± 8 68.4 ± 4 28.6 ± 2 19.1 ± 8 35 ± 3

Grade 6 90.2 ± 5 87.2 ± 5 63.7 ± 8 55.9 ± 9 66.3 ± 5

Grade 7 92.4 ± 5 93.5 ± 5 82.8 ± 7 63.3 ± 9 88.2 ± 5

doi: 10.1371/journal.pone.0080016.t001

7 children and adults (all ps < 0.001). There was a main effect
of task, F(2,64) = 53.20, η2

p = 0.43, p < 0.001, as overall there
were more correct responses in the matching task (93%) than
in the comparison task (84%). There was a significant Task x
Distance interaction, F(2,64) = 77.93, η2

p = 0.53, p < 0.001.
Post hoc tests showed that there was an expected graded
distance effect in the Comparison task as all levels of distance
were significantly different from each other (all ps < 0.001). The
levels of numerical distance were not different from each other
in the matching task.

RT in both tasks are shown in Figure 3. A Grade × Task ×
Numerical distance ANOVA showed a significant task effect,
F(1, 168) = 11.24, η2

p = 0.22, p = 0.002. Overall, participants
were faster in the Matching task (M = 2514 ± 486) than in the
Comparison task (M = 2776 ± 641). Results also showed a
significant Task × Distance interaction, F(56, 168) = 2.12, η2

p =
0.75, p = 0.007. Post hoc Tukey tests showed that there was
an expected graded distance effect in the Comparison task (all
levels of distance were significantly different from each other:
all ps < 0.001). There was no graded distance effect in the
matching task. There was a Task × Grade, F(3, 168) = 24.97,
η2

p = 0.65, p < 0.001, interaction as the comparison task was
responded slower than the matching task in grade 6
(comparison – matching RT = 186 ms), grade 7 (comparison –
matching RT = 86 ms) and adults (comparison – matching RT
= 151 ms) but the pattern of results was the opposite in grade 5
(comparison – matching RT = -394 ms). Further, there was a
Task × Distance × Grade interaction, F(2, 132) = 3.21, η2

p =
0.08, p = 0.015. Grade × Task × Distance post-hoc contrasts

Figure 2.  Accuracy for both tasks.  This figure shows the accuracy for the Comparison task (A) and Matching task (B) by global
distance (close, medium and far) for each grade. Vertical bars denote 95% confidence intervals.
doi: 10.1371/journal.pone.0080016.g002
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showed that in grade 5 there was no difference between levels
of distance (all ps > 0.56). In grade 6 the difference between
close and far distance was significant (p < 0.001), the
difference between medium and far distance was marginal (p =
0.09), and the difference between close and medium distance
was not significant (p > 0.10) in the Comparison task. In grade
7 and adults all levels of distance were significantly different
from each other (all ps < 0.001) in the Comparison task.

Another ANOVA examined proportionally transformed RT
data and delivered perfectly consistent results with the
ANOVAs run on raw RT.

The slope of the distance effect in original data.  The
mean slopes of accuracy distance effects are shown in Figure
4A. A Grade × Task ANOVA on accuracy slope values showed
only a Task main effect, F(1, 70) = 155.75, η2

p = 0.44, p <
0.001 reflecting that the slope of the distance effect was
steeper in the comparison (0.123%) than in the matching task
(0.011%). The mean slopes of RT distance effects in original
RT are shown in Figure 4B. There was a Grade main effect,
F(1, 70) = 5.19, η2

p = 0.38, p = 0.008. There was also Task
main effect, F(1, 70) = 33.53, η2

p = 0.19, p < 0.001, and a
Grade × Task interaction, F(2, 70) = 5.12, η2

p = 0.25, p = 0.008.
As all analysis outcomes were similar to the outcome of
proportional RT analysis, we only describe post-hoc results for
the proportional RT analysis below.

One sample t-tests against zero checked whether the slope
of accuracy and RT distance effects were significantly different
from zero. An analysis run an all groups’ data showed that the
slope of both the accuracy, t(87) = 19.29; p < 0.001, and RT,

t(87) = -8.71; p < 0.001. Distance effect differed from zero in
the comparison task but not in the matching task. There were
similar results in grade 5, accuracy: t(19) = 11.29; p < 0.001;
RT: t(19) = -2.1; p = 0.048, grade 6 accuracy: t(22) = 9.46; p <
0.001; RT: t(22) = -4.81; p < 0.001, grade 7 accuracy: t(29)=
13.87; p < 0.001; RT: t(29) = -9.03; p < 0.001, and adults
accuracy: t(14) = 6.50; p < 0.001; RT: t(14) = -5.33; p < 0.001.
In addition, the slope of the accuracy distance effect in the
matching task also became significantly different from zero in
grade 7, t(29) = 2.49; p = 0.018.

The slope of the distance effect in proportionally
transformed RT data.  Slopes determined by proportionally
transformed RT data are shown in Figure 4C. According to the
Grade × Task ANOVA there was a Grade main effect,
F(3,84)=3.54, η2

p = 0.11, p = 0.018, because the slope was
larger in grade 7 than in any other grade (p = 0.003 for all).
There was a Task effect, F(1,84)=35.37, η2

p = 0.30, p < 0.0001,
and a Task × Grade interaction, F(3,84) = 3.2, η2

p = 0.10, p =
0.027. The Task × Grade interaction was present because the
slope was steeper in the Comparison task than in the Matching
task in grade 6 (p < 0.001), grade 7 (p < 0.0001) and in adults
(p = 0.01) but not in grade 5 (p = 0.5).

At the level of the whole sample only the large global
distance condition showed speed/accuracy trade-off, r = -.27; p
= 0.008. Separate analyses on data of age groups showed that
this effect was driven exclusively by Grade 7 children, r = -0.48;
p =0.007. All other correlations remained non-significant
(lowest p = 0.17).

Figure 3.  RT for both tasks.  This figure shows RT for the Comparison task (A) and Matching task (B) by global distance (close,
medium and far) for each grade. Vertical bars denote 95% confidence intervals.
doi: 10.1371/journal.pone.0080016.g003
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In order to account for potential speed/accuracy trade-offs
we ran the analysis of RT slope data from the comparison task
with a Grade factor taking the slope of accuracy data as a
covariate. The Grade effect remained highly significant both
when considering original RT, F(3,83)=6.29; η2

p = 0.18; p <
0.001, and proportionally transformed RT, F(3,83)=3.21; η2

p =
0.19; p = 0.027).

Regression analyses.  Stepwise multiple regression
analyses assessed whether global and/or componential
distance effects predicted RT in each age group. In the

matching task there were only componential distance effects
(see Table 2). The regressions yielded a total R = 0.42
(adjusted R2 = 0.16) in grade 5, R = 0.41 (adjusted R2 = 0.17)
in grade 6, R = 0.32 (adjusted R2 = 0.09) in grade 7, and R =
0.18 (adjusted R2 = 0.03) in adults. The global distance effect
was not a significant predictor of RT.

In the Comparison task, the regressions yielded a total R =
0.40 (adjusted R2 = 0.16) in grade 5, R = 0.39 (adjusted R2 =
0.21) in grade 6, R = 0.58 (adjusted R2 = 0.31) in grade 7, and
R = 0.40 (adjusted R2 = 0.30) in adults. Global distance

Figure 4.  Mean slopes.  This figure shows mean slopes of accuracy (A) and RT distance effects (B); Average slope of the distance
effect for proportionally transformed RT (C); and mean beta values for each group (D).
doi: 10.1371/journal.pone.0080016.g004
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predicted RT in Grade 6, Grade 7, and adults (see Table 2).
The relationship appeared because participants were faster as
the global distance between fractions got larger. In addition, the
distance between numerators predicted RT in Grade 5, Grade
7, and adults. Distance between denominators predicted RT in
adults.

Mean beta values for significant global distance as a
predictor of RT are shown in Figure 4D. An ANOVA with a
Grade factor compared the global distance regression beta
values across participant groups. The Grade effect was
significant, F(3,84)=4.63, η2

p = 0.14, p = 0.005. Post-hoc tests
showed that beta was more negative in grade 7 (p = 0.007) and
in adults (p = 0.0266) than in grade 5. Correlations between
beta values and performance in paper and pencil tasks are
shown in Table 3.

Linear mixed model analysis.  In order to further confirm
results, a linear mixed model was run on RT. Results were
coherent with the ones obtained with the ANOVAs. There was
a significant effect of Grade (p =0.001), a significant Global
Distance effect (p = 0.001), a significant Grade x Global
Distance interaction (p = 0.046), a significant Global Distance x
Task Interaction (p < 0.001) and a significant Global Distance x
Grade x Task interaction (p = 0.021).

Correlations between distance effects and paper and
pencil task performance.  Table 3 shows correlations
between task performance, accuracy, original and
proportionally transformed RT distance effect slopes as well as
beta values. Performance on each of the paper and pencil
tasks positively correlated with performance on any other paper
and pencil tasks. There were negative correlations between
paper and pencil tasks and the accuracy and RT distance

Table 2. Results of the stepwise multiple regression analyses by group.

 Coeff. Comparison task Matching task

Group  Num Denom Global Num Denom Global
Grade 5 β -0.40 -0.01 0.03 -0.17 0.36 0.02
 t (86) -3.06 -0.37 0.79 -2.1 4.77 0.68
 P. Corr. -0.40** -0.01 0.02 -0.18* 0.37** 0.02
 Z. Corr. -0.16** -0.01 -0.03 -0.02 0.02 -0.02

Grade 6 β 0.03 0.04 -0.38 -0.18 0.35 -0.03
 t (86) 0.91 1.43 -2.80 -2.24 4.32 -0.79
 P. Corr. 0.02 0.04 -0.37* -0.19* 0.35** -0.02
 Z. Corr. -0.06** 0.08** -0.12** 0.01 0.05** -0.02

Grade 7 β -0.29 0.04 -0.68 -0.04 0.32 -0.02
 t (86) -2.25 1.80 -5.70 -0.06 3.84 -0.05
 P. Corr. -0.28* 0.04 -0.56** -0.04 0.32** -0.02
 Z. Corr. -0.07** 0.11** -0.20** 0.01 0.07** -0.04

Adults Β -0.20 0.09 -0.64 -0.02 0.12 -0.002
 t (86) -1.86 1.09 -7.78 -0.525 7.34 -0.05
 P. Corr. -0.19** 0.09* -0.64** -0.02 0.12** -0.002
 Z. Corr. -0.15** 0.1** -0.18** -0.03 0.06** -0.03

Coeff. = Coefficients; P.Corr = Partial Correlations; Z. Corr = Zero-Order Correlations; Num = Distance between numerators; Denom = Distance between denominators;
Global = Global Distance. * p ≤ 0.05. ** p ≤ 0.01.
doi: 10.1371/journal.pone.0080016.t002

Table 3. Correlations between task performance and accuracy and RT distance effect slopes.

 PPEst PPComp PPOp PPNbLine PPSimp CompAcSlope CompRTSlope MAtchAcSlope
PPComp 0.56**        

PPOp 0.46** 0.54**       

PPNbLine 0.51** 0.66** 0.70**      

PPSimp 0.38** 0.50** 0.56** 0.70**     

CompAcSlope -0.29* 0.43** -0.28* 0.43** -0.26*    

CompRTSlope -0.18 -0.34** -0.31** -0.44** -0.29** 0.15   

MatchAcSlope 0.07 0.15 0.01 -.02 0.04 -.01 -0.25  

MatchRTSlope -0.02 -0.16 0.05 0.05 -0.19 0.13 0.19 0.05

Abbreviations: PP = Paper and pencil; Est = Estimation; Comp = Comparison; Op = Operations; NbLine = Number Line; Simp = Simplification; Ac = Accuracy; RT =
Response Times.* p ≤ 0.05. ** p ≤ 0.01.
doi: 10.1371/journal.pone.0080016.t003
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effect slope in the comparison task. However, the negative
correlation between the estimation task and the distance effect
slope in the comparison task did not reach significance. There
were no correlations between tasks and the accuracy and RT
distance effect slope in the matching task. This is not surprising
as no global distance effect was found in the matching task.

Individual level analyses.  In order to assess individual
differences, the presence of the global distance effect was
tested by running regression analyses on individual datasets in
the Comparison task. In grade 5 three out of 20 (15% of grade
5 children; binomial cumulative probability of number of
participants ≥ 3: p = 0.99), in grade 6 eight out of 23 (34.8% of
grade 6 children; binomial cumulative probability of number of
participants ≥ 6: p = 0.89), in grade 7 nineteen out of 30 (63.3%
of grade 7 children; binomial cumulative probability of number
of participants ≥ 19: p = 0.0494) pupils showed a significant
global distance effect, and in adults ten out of 15 participants
showed a significant global distance effect (66.6% of adult
participants; binomial cumulative probability of number of
participants ≥ 10: p = 0.0593). A Kruskal-Wallis test was run to
compare the number of participants showing a significant
global distance effect across grades. Result showed a
significant effect between grades, χ2 = 12.7, p = 0.005; Mean
ranks: grade 5 = 34; grade 6 = 38; grade 7 = 50; adults = 56.
The Mann-Whitney U test was used as a post hoc test for
difference between two grades and showed significant
differences between grade 5 and grade 7 (p = 0.012) and
between grade 5 and adults (p = 0.009). There were also
significant differences between grade 6 and grade 7 (p = 0.04)
and between grade 6 and adults (p = 0.015).

Discussion

Fractions are crucial in mathematics learning. They are
fundamental to understand higher-level mathematics topics
such as algebra. However, fractions pose a serious learning
problem to young children which seems to contrast with the
proposal of an evolutionarily based global magnitude
representation. Here, we examined whether a global
magnitude representation of fractions is automatically
activated, in two conceptually different magnitude analysis
tasks. We used exactly the same pairs of fractions from both
tasks to answer our questions. Second, we examined changes
during child development revealed by modulations in the slope
of the global distance effect. Third, we not only studied group
level effects but also examined the presence of a global
fraction representation in each individual. Fourth, we examined
the functional significance of the global magnitude
representation of fractions by relating it to mathematical
performance on paper and pencil tests assessing children's
knowledge about fractions. Fifth, we compared the outcome of
several methods targeted at detecting the development of the
global magnitude representation of fractions.

The activation of global fraction magnitude
representation is not automatic for all magnitude-
related tasks and depends on task demands

We used two magnitude comparison tasks which according
to previous results are both robust measures of number
processing skills [27] and tap into conceptually different
aspects of global magnitude activation [29]. The same stimuli
were used in both tasks. Results were clear cut. ANOVAs
demonstrated robust Task × Global distance interactions:
There were strong global distance effects in the comparison
task in grades 6, 7 and adults whereas there were no global
distance effects in the matching task. Results were confirmed
by multiple testing corrected pair-wise comparisons of different
levels of global distance. Additional regression analyses
controlling for the effects of numerator, denominator and global
distance effects in turns, found that global distance was the
strongest predictor in the comparison task in grades 6, 7 and
adults. In contrast, only componential (numerator and
denominator) distance effects predicted RT in the matching
task. This indicates that the matching task was solved without
accessing the global magnitudes of fractions.

The fact of finding a global distance effect in at least one of
the tasks suggests that the global magnitude representation of
fractions can get activated under certain conditions. This is a
necessary precondition of any further associations between
global magnitude and response options. As outlined in the
introduction this is not a trivial finding because relative
magnitude relations between the to-be-compared fractions are
not as evident as between integers. However, the dissociation
between the comparison and matching tasks suggests that the
activation of the global magnitude representation of fractions
depends on task context/demands and is not automatic in all
tasks involving explicit magnitude judgements, i.e. global
fraction magnitude is not necessarily accessed in all fraction
tasks. We suggest that the global distance effect appears only
in tasks where the explicit labelling of smaller/larger relations is
requested (like in the comparison task). However, according to
Van Opstal and Verguts [29] such tasks are confounded by
stimulus-response associations and cannot provide a pure
measure of the magnitude representation. Previous studies did
not consider the above possibility.

Finding only componential distance effects in the matching
task is compatible with conclusions drawn by Bonato et al. [4]
and Kallai and Tzelgov [5]. However, some of these previous
findings may also have been due to task context. For example,
Meert et al. [7] and Schneider & Siegler [24] have
demonstrated that the activation of the magnitude of fractions
depends on the type of fractions used. Bonato et al. [4] used
only fractions of the form 1/x in their Experiments 1 and 2.
Obviously, this type of fractions encourages participants to
focus solely on the denominators. Further, in their experiments
3 and 4, the size of the numerators was always consistent with
the global size of the fractions, again, allowing a componential
strategy to be successful. Kallai and Tzelgov [5] contrasted
numerical and physical comparison of fractions with a
numerical Stroop paradigm. Results showed that participants
preferred to use strategies based on integer numbers,
indicating that there was no unique representation of the global
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magnitude of fractions in long-term memory. However, again,
in their first and fourth experiment, only fractions of the form 1/x
were used. Therefore, participants could base their judgement
on the denominators only. In the second experiment, proper
and improper fractions were used, but the larger the numerator
was, the larger the global magnitude of the fraction was,
encouraging the use of componential strategies. In the third
experiment, familiar fractions were used and they observed
hybrid strategies in the numerical comparison. This indicates
that the nature of the fractions used could have influenced the
type of processing.

It is important to point out that it is unlikely that global
distance effects in our study were confounded by denominator
and numerator distance effects. First, we used partial
correlations, successively controlling for numerator,
denominator and global distance effects. Second, the pattern of
results also makes any confounds unlikely. This is because,
the correlation of numerator and denominator distance with RT
was either non-significant or had exactly the opposite sign and
the absolute value of both correlations was smaller than the
correlation of global distance with RT and also had opposite
sign correlations with global distance (e.g. in adults: global
distance correlation in the comparison task, r = -0.635;
numerator r = -0.194; denominator r = +0.085). Therefore, the
global distance effect cannot be explained by the joint effect of
numerator and denominator distance, rather it can be
considered a strong effect on its own.

Age-related changes in accessing the global magnitude
representation

Overall accuracy was lower in grade 5 (78%) than in grades
6, 7 and adults (84-87%), the later three groups not being
significantly different from each other. Moreover, RT did not
differ in grades 6, 7 and adults. This suggests that competence
with the kinds of fractions used here reaches close to adult
levels in grades 6 and 7. Regressions analyses demonstrated
that global distance became a significant predictor of RT in the
comparison task from grade 6 upwards. ANOVA results and
stringent Group × Task × Global Distance post-hoc contrasts
were consistent with regression results, demonstrating global
distance effects between all levels of distance in grade 7 and
adults. Not all levels of global distance were significantly
different from each other yet in grade 6 and there were no
significant differences between levels of global distance at all in
grade 5 pupils. The slope of the global distance effect was
significantly larger in the comparison task than in the matching
task in grades 6 and 7 and adults but not in grade 5.

We not only examined group level data but also statistically
evaluated the significance of regression results in each
individual. The proportion of participants demonstrating global
distance effects increased with development and was 15%,
35%, 63% and 67% in grades 5, 6, 7 and adults, respectively.
The number of participants showing the global magnitude
representation signature became significantly different from
chance in grade 7 and in adults. Statistical comparison of the
number of participants with global distance effects across
groups also showed that the number of participants with global
distance effects increased between grades 5 vs. 7, 6 vs. 7, 6

vs. adults but was about the same between grades 5 vs. 6 and
7 vs. adults. The above group and individual-level data both
suggest continuous developmental progression in the use of
global fraction magnitude information in the comparison task.

As discussed, the fact of detecting global distance effects at
least suggests that the global magnitude representation of
fractions is exploited in a certain task context. Hence, first of
all, these findings suggest that grade 5 children do not yet rely
on global fraction magnitude even if the task context facilitates
it. Our findings suggest that pupils progressively have better
access to the global magnitude representation of fractions
during grades 5, 6 and 7 in a magnitude comparison task. Our
results are compatible with the findings of Siegler, Thompson
and Schneider [36] who also showed that fraction knowledge is
acquired at older ages than whole number knowledge. They
argue that knowledge about the magnitude of fractions is less
accurate than whole number knowledge at least until grade 8
[36]. It is interesting to note that in accuracy global distance
effects were significant already at grade 5. It is an interesting
avenue for further research to explore this accuracy vs. RT
dissociation in early stages of fraction acquisition.

The slope of the global distance effect was the largest in
grade 7 children, even larger than in adults. First, this suggests
that the slope increased from younger to older children. This
finding differs from the results of Meert et al. [8] who did not
show a change in the slope of the distance effect in grade 5
and 7 children. As the studies involved children of the same
nationality from the same school system at the same age this
discrepancy may be attributed to the potentially higher power of
our study to detect changes in the distance effect slope.
Second, our finding is in contrast to the classical findings of
Sekuler and Mierkiewicz [21] who reported that the slope of the
distance effect elicited by single-digit integer numbers
decreased with age. We suggest that the slope increased in
children because global magnitude became more readily
accessible in older than in younger children. We suggest that
our results are different from integer results [21,28] because
the acquisition and mobilization of global fraction magnitude is
much more demanding and happens at a later age than
learning and activating the magnitude of integers. Several
studies suggest that children very quickly acquire the meaning
of integers during grade 1 [20,22]. In fact, most children
probably learn some single Arabic digits already in
kindergarten. Hence, after grade 1 a reduction in the distance
effect slope may reflect more efficient resolution between levels
of numerical distance [21]. In contrast, the initial learning of the
global magnitude of fractions is a more effortful task. Hence,
initially we could expect no distance effects with fractions
(similarly, we could expect no numerical distance effects with
single digits in children who do not know any digits, yet). Then,
we could expect increasingly stronger distance effects as
children gradually acquire a more global vs. component sense
of fraction values, as observed here from grade 5 to 7. Even
later, it could be expected that after learning to retrieve global
magnitude values more efficiently, a reduction of the distance
effect would be observed because of the more efficient
resolution of categorical global distance differences.
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The above outlines potential age-related changes may have
been observed in our study as RT data showed that the slope
of the distance effect decreased from grade 7 to adults. Our
data support the possibility that adults do not have better
access (more automatic) to numerical magnitude of fractions.
Such a decrease would be similar to the decrease of the
integer distance effect as observed by Sekuler and Mierkiewicz
[21]. The above suggest that during the whole developmental
pathway a reversed U shaped curve could be expected. Initially
distance effects were getting larger as global fraction
magnitude information is becoming more accessible. Later,
distance effects would get smaller (but would remain
significant) because of either the more efficient resolution of
global distance categories, or because adults have generally
less practice with fractions than older children. Ultimately, this
hypothesis could be tested by studies covering for example
grades 5 to 12 of school. It is important to note that our data is
also controversial because the analysis of beta values showed
that the slope was the same in adults and in grade 7. This
directs attention to the important fact that even slightly different
measures can support theoretically very different conclusions.
Hence, it is highly beneficial to present the outcomes of
multiple analysis methods.

Functional significance of global distance effects
Relationships between knowledge of fractions and global

distance effect in the matching task and the comparison tasks
were also investigated. Knowledge of fractions was assessed
with three different tasks: estimation, comparison and
graduated number lines, arithmetic operations and
simplification [12,17,32]. Significant correlations were found
between the global distance effect slope in the comparison task
and knowledge of fraction. Accurate magnitude representations
of fractions are crucial. In a recent study, we showed that
children gained greater understanding of fractions after a
training focusing on their magnitude [37]. Our findings are also
in line with the results of Siegler et al. [36] who found strong
correlations between fraction arithmetic and the understanding
of the magnitude of fractions in grade 6 and grade 8 children.
The estimation task only correlated with the global distance
effect slope on accuracy and not on RT.

Our results are also compatible with the findings of De
Smedt, Verschaffel and Ghesquière [38] who also showed that
performance in a numerical comparison task involving natural
numbers in grade 1 is predictive of individual differences
mathematics achievement in grade 2. In a recent study, a
negative correlation between symbolic distance effect and
arithmetic skills was also found in 8-to-10-year-old children
[39]. We have not measured IQ. Therefore, it remains a
question whether global distance and performance correlations
reflect general IQ effects. However, Mazzocco and Devlin
found that Grade 6 children with a mean IQ of 116 only gave
59% correct responses when asked to order a set of fractions
[40]. That is, high IQ may not guarantee good performance in
fraction tasks.

It is important to point out some limitations of our study. First,
we collected cross-sectional data and may have biased data

towards high performers by selecting children who achieved at
least 60% correct performance on fractions tasks. However,
this selection seemed necessary so that we could avoid
including children who guessed solutions. Second, it is
currently difficult to decide (and it is beyond the scope of this
paper) exactly what strategy was used for processing identical
and equivalent fractions in the matching task.

Conclusion
Global distance effects were observed only in the

comparison task but not in the matching task. Our data suggest
that the global magnitude representation of fractions can be
accessed in certain task context. However, global magnitude
representation is not automatic in all tasks involving magnitude
judgements. Global distance effects in the comparison task
were probably confounded by general psychophysical
comparison processes and/or stimulus-response mappings.
Global distance effects appeared in RT from grade 6 onwards.
This suggests that the task-development activation of the
global magnitude representation undergoes development. The
slope of the global distance effect increased during early
fraction learning and declined or stayed steady by adulthood.
This demonstrates that the development of the fraction global
distance effect differs from that of the integer distance effect.
Individual data reflected group level findings. Global distance
effects from the comparison task showed correlations with
mathematical performance on paper and pencil tests assessing
children's knowledge about fractions. Even if global magnitude
activation stems from an innate ability to process non-symbolic
ratios, children still need to understand the relation between
magnitudes conveyed by symbolic fractions. This learning
process can be slow as children need to overcome the whole-
number bias and learn a new symbolic system.
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