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Abstract

Laminitis is a chronic, crippling disease triggered by the sudden influx of dietary starch. Starch reaches the hindgut
resulting in enrichment of lactic acid bacteria, lactate accumulation, and acidification of the gut contents. Bacterial
products enter the bloodstream and precipitate systemic inflammation. Hindgut lactate levels are normally low
because specific bacterial groups convert lactate to short chain fatty acids. Why this mechanism fails when lactate
levels rapidly rise, and why some hindgut communities can recover is unknown. Fecal samples from three adult
horses eating identical diets provided bacterial communities for this in vitro study. Triplicate microcosms of fecal
slurries were enriched with lactate and/or starch. Metabolic products (short chain fatty acids, headspace gases, and
hydrogen sulfide) were measured and microbial community compositions determined using Illumina 16S rRNA
sequencing over 12-hour intervals. We report that patterns of change in short chain fatty acid levels and pH in our in
vitro system are similar to those seen in in vivo laminitis induction models. Community differences between
microcosms with disparate abilities to clear excess lactate suggest profiles conferring resistance of starch-induction
conditions. Where lactate levels recover following starch induction conditions, propionate and acetate levels rise
correspondingly and taxa related to Megasphaera elsdenii reach levels exceeding 70% relative abundance. In lactate
and control cultures, taxa related to Veillonella montpellierensis are enriched as lactate levels fall. Understanding
these community differences and factors promoting the growth of specific lactate utilizing taxa may be useful to
prevent acidosis under starch-induction conditions.
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Introduction

Horses are hindgut fermenters, adapted to grazing
continually on marginal forages that change seasonally, thus
slowly [1]. The hindgut (caecum and colon) comprises roughly
two thirds of the volume of the equine digestive tract [2]. Here
complex plant material is fermented by microbes to short chain
fatty acids (SCFA) such as acetate, propionate, and butyrate,
which provide 60-70% of the daily energy needs of the horse
[3,4]. Rapid dietary change and modern feeding practices of
2-3 meals a day of starch-based concentrate and/or fructans
from rich pasture can disrupt normal fermentation in the

hindgut, causing lactic acidosis, and colic [5–8], and
predisposing animals to bouts of laminitis [9–11].

Laminitis is a chronic, crippling disease, accounting for 15%
of all lameness in horses in the United States, with over 27%
unable to return to normal work, and 4.7% mortality [12]. It is
characterized by weakened adhesion and eventual detachment
of the distal phalynx from the lamellae of the inner hoof wall
resulting in permanent rotation of the coffin bone and severe
pain. Factors released into the bloodstream by bacteria in the
gut during lactic acidosis are thought to serve as triggers for
dietary laminitis [13-15], however the molecular mechanisms
underlying induction are unknown.
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Surveys of equine hindgut bacteria using culture based
methods [16] and 16S rRNA gene sequencing [17-19] have
detected a diverse community of novel microbes dominated by
Firmicutes, with Bacteroidetes, Proteobacteria, and
Verrucomicrobia as other major phyla. Studies have detected a
greater proportion of fibrolytic bacteria than starch and lactate
utilizing bacteria in the cecum than in the colon [20,21],
reflecting a substrate content normally low in starch and
soluble carbohydrates due to the action of endogenous
enzymes and absorption of nutrients in the small intestine.

Experimental in vivo models of laminitis induction using
starch gruel or oligosaccharide [22] have revealed changes in
hindgut microbiota during the developmental stage (24-36
hours post induction), correlated with a drop in pH and an
increase in lactic acid concentration [23,24]. Lactic acid
bacteria, specifically members of the Streptococcus bovis/
equinus group (now renamed Streptococcus lutetiensis [25]),
have been implicated as major producers of lactic acid, rapidly
increasing in numbers as lactic acid levels rise and the pH
drops. At the lowest caecal pH (4-4.5) and levels of lactic acid
reaching 1000 µmol/g caecal fluid, acid sensitive fibrolytic and
gram negative bacteria die off, while Lactobacilli sp. and
Mitzuokella sp. increase [23,26,27]. By 32-36 hr, hindgut
lactate levels and pH approach normal levels in most horses
[23,28]. In other experiments of starch induction, blood D-
lactate levels peaked at 20-24 hr, then declined and
disappeared by 36-40 hr [29].

Lactate levels in the hindgut are normally low due to the
activity of lactate utilizing bacteria. It is unclear why this
mechanism fails during conditions of starch induction. While
studies of lactate producers have pointed to specific taxa that
proliferate during the developmental stage of laminitis
[23,26,27], little is known about how the abundance of lactate
utilizing bacteria changes over the same time course, which
lactate utilizers survive the drop in pH, and which lactate
utilizers are active in the later stages to bring lactate
concentrations back to normal levels.

In this study we used fecal samples collected from 3 healthy,
adult horses eating an identical pasture based diet in an in vitro
model system to track bacterial metabolites and community
shifts over time in response to enrichment with starch and/or
lactate. Patterns of changes in lactate concentration and pH
were similar to those reported in published in vivo studies
[5,23]. Illumina 16s rRNA amplicon sequencing was used to
track changes in hindgut microbiota over the time course,
specifically identifying lactate utilizing taxa and bacterial groups
that proliferated as lactate levels drop. Additionally, we
identified community differences in cultures lacking the ability
to clear excess lactate, which may lead to further insight into
why some horses are resistant to starch induction, and point to
bacteria with the potential to attenuate or prevent lactic
acidosis.

Materials and Methods

Ethics Statement
This study was carried out in accordance with the guidelines

set forth by the Morris Animal Foundation and applied by the

Institutional Animal Care and Use Committee at the University
of Massachusetts, Amherst. We thank Dr. Carlos Gradil
(Department of Veterinary and Animal Sciences, University of
Massachusetts, Amherst, MA) for generously lending his time
and expertise in sampling, and the Hadley Farm, University of
Massachusetts, Amherst, MA for providing three horses for this
study.

Sampling and in vitro enrichments
Fecal samples were manually collected from the midrectum

of three Morgan geldings cohoused at the University of
Massachusetts, Hadley Farm and fed identical hay based diets.
None of the animals had received antibiotics, anthelmenthics,
or other medications for at least three months prior to sampling.
Samples were protected from oxygen exposure during
collection by inverting the glove around each as it was
removed, and placing each immediately in a container
evacuated of oxygen. Samples were kept as close to 39°C as
possible in a heated, insulated container during transport and
the following steps of dilution and inoculation. In an anaerobic
chamber, samples were diluted to make a 10% slurry in
anaerobic dilution media prepared as described by Bryant [30].
This slurry was used to inoculate basal media described by de
Carvalho [31] at 2.5% which was enriched with either 1%
soluble starch, 50 mM sodium lactate, or both 1% soluble
starch and 50 mM sodium lactate. Control cultures were diluted
at 2.5% of basal media with no enrichment. Cultures were kept
under anaerobic conditions, incubated at 39°C and sampled
every 12 hours for metabolite analysis and DNA extraction.
Sampling and enrichments were subsequently repeated for the
same horses, inoculant concentrations, culture and incubation
conditions in 125 ml serum bottles (Wheaton, Millville, NJ) fitted
with stoppers that enable headspace gas collection and
analysis.

Metabolite measurements
Short chain fatty acids (acetate, lactate, butyrate, succinate,

formate, and propionate) were measured for samples taken
over the time course using high performance liquid
chromatography (HPLC) (Shimadzu, Japan) with an Aminex
HPX-87H column (Bio-Rad, Hercules, CA). Headspace gases
were analyzed using a gas chromatograph (Shimadzu GC-8A,
Shimadzu, Japan) fitted with a HayeSep DB column 100/120
(Bandera, TX). Hydrogen sulfide levels were measured using
the methylene blue assay as in Cline [32] modified for culture
samples as follows: at each time point, 1.0 ml of culture was
removed from each serum bottle via syringe, transferred into
sealed vials containing an equal volume of 1.2% degassed zinc
acetate solution, and stored at 4°C until all samples were
collected. To a 1.0 ml subsample, 62.5 µl of 7% sodium
hydroxide was added. Following a 15 min incubation at room
temperature, 187.5 µl of 0.1% N,N’-dimethyl-p-
phenylenediamine and 187.5 µl 10 mM iron (III) chloride were
added, stoppered immediately, and incubated for 20 minutes at
room temperature. The resulting suspension was spun down
and the absorbance of the supernatant was measured at 670
nm in comparison to standard solutions (0-.55mM sodium
sulfide, and uninoculated media controls). pH was determined
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using EMD colorphast pH strips (Fischer Scientific, Pittsburgh,
PA).

DNA extraction, amplification, and sequencing
DNA was extracted from each sample as described

elsewhere [33,34] with the following modifications. Samples
were subjected to two extractions in Matrix E bead tubes
containing 5% CTAB in 1 M NaCl and .25M phosphate buffer
(pH 8), phenol: chloroform: isopropyl alcohol (25:24:1), and 0.1
M ammonium aluminium sulfate, followed by separation with
24:1 chloroform: isoamyl alcohol. DNA was then precipitated
with 30% polyethylene glycol 6000 in 1.6 M NaCl, washed with
70% ethanol, and resuspended in 10 mM Tris, pH 8. Replicate
extractions were pooled and purified using MoBio PowerClean
DNA clean-up kit (MoBio, Carlsbad, Ca) and quantified using
Quant-iT PicoGreen assay (Invitrogen, Carlsbad, Ca).

Amplification of the V4 region of the 16S rRNA gene and
attachment of Illumina adaptors and bar codes for multiplexing
samples (reverse read only) was done in triplicate as described
elsewhere [35]. Briefly, genomic DNA was amplified with
universal forward 515F (5’- Illumina adapter- Forward primer
pad- Forward primer linker- GTGCCAGCMGCCGCGGTAA-3’)
and universal reverse 806R (5’- Illumina adapter- Golay bar
code- Reverse primer pad- Reverse primer linker-
GGACTACHVGGGTWTCTAAT-3’). Each PCR reaction
mixture contained 10 ng of genomic DNA, 2.5 µl 10X buffer, 2.0
µl MgCl2 (25 mM), 2.0 µl dNTP (2.5 mM each), 5.0 mM (each)
forward and reverse primers, 1.25 µl (25 µg) BSA (Roche,
Indianapolis, IN), 0.25 µl (1.25 U) Ex Taq (TaKaRa, Japan),
and molecular grade water to reach a volume of 25 µl. PCR
was performed with 3 min of initial denaturation at 94°C
followed by 30 cycles of the following program (denaturation,
94 °C for 45 sec; annealing, 50 °C for 30 sec; and extension,
72 °C for 45 sec) followed by a final extension at 72 °C for 7
min. PCR products were cleaned using Qiagen MinElute kit
(Qiagen, Valencia, Ca) as directed and quantified using the
Quant-iT PicoGreen assay (Invitrogen, Carlsbad, Ca). Equal
concentrations were pooled and sequenced using the Illumina
MiSeq platform at the Dana Farber Cancer Institute, Molecular
Biology Core Facilities (Cambridge, MA).

Sequence analysis
Sequences were demultiplexed and trimmed of bar codes

and primer sequences, then filtered for quality and reverse and
forward reads were assembled into contigs using FastQC [36].
Sequence processing was done in QIIME [37] using the
following workflow: Reads were aligned using default
parameters (PyNAST) [38], operational taxonomic units (otus)
were picked at the 97% similarity threshold using the
subsampled open-reference option, chimeric sequences were
identified using ChimeraSlayer [39] and removed, taxonomic
assignments were made against the most recent greengenes
database (October, 2012) [40]. Sequence data has been
submitted to the NCBI Sequence Read Archive (SRA),
Accession number: SRP028582.

Results

Patterns of changes in metabolites
Despite variation in the pH response between the three

horses, in all of the starch and starch/lactate enrichments, the
pH dropped to below 6 by hour 12, and reached levels between
4 and 5 by hour 18 (Figure 1). These values paralleled the
peak in lactate levels for these cultures over the same time
course (Figure 2). The control and lactate enriched treatment
groups showed an initial increase in lactate followed by a rapid
decline as the lactate was used up. In the starch enriched
cultures, lactate levels peaked by hour 18, exceeding 100 mM
in cultures enriched with both starch and lactate. Where lactate
levels dropped over time, there was a corresponding increase
in acetate, propionate, and butyrate.

The three horse cultures differed dramatically in the ability to
attenuate accumulated lactate. The lactate was reduced to
below detectable limits in the control and lactate enriched
treatment groups of all three horse cultures, however the peak
was higher for horse 3 cultures and took longer to drop. In the
starch and starch/lactate enrichments the differences were
more dramatic. Lactate persisted at maximum levels in horse 3
cultures over the full time course while dropping for horse 1
and 2 cultures by hour 36.

Headspace gases (hydrogen and methane) and hydrogen
sulfide levels measured at 12 hour intervals did not show
consistent differences between treatment and control
conditions due to variation between horses especially for the
starch and starch/lactate cultures (Figure S1 and Figure S2).

Sequence metrics
As shown in Table 1, there were over 6 million sequences

and 41,000 OTUs in the dataset following quality filtering and
initial OTU picking in QIIME [37]. Chimera removal using
Chimera Slayer [39] left more than 2.5 million sequences and
32,000 OTUs for further analysis. Average read length was 254
bp.

Rarefaction curves of the number of sequences per sample
by observed species (Figure S3) indicated a leveling off in
terms of new species at the minimum sequence depth of 9685.
Since 83% of the samples had over twice this depth, and
Good’s coverage at the depth of the smallest library (9685) was
89% (Table S1), we are confident that our sequencing efforts
have captured most of the diversity in these samples.

Relative abundance at the phylum level
Taxonomic assignments at the phylum level (Figure 3)

showed that the Firmicutes were the most abundant group by
time 48 in all cultures regardless of enrichment conditions, with
a corresponding decline in all other major groups, namely the
Verrucomicrobia, Spirochaetes, Proteobacteria, and
Bacteroidetes, however at this taxonomic level, clear
differences between horse and treatment groups were not
apparent.

Lactate Utilizers from the Horse Gut Microbiome
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Relative abundance at the family level for Firmicutes
Differences between horse cultures and treatment conditions

were evident at the family level, specifically for the most
abundant phyla, the Firmicutes. The Veillonellaceae, a family
with known lactate utilizing species [41,42], increased in
abundance in all cultures in the control and lactate treatment
groups. In the starch and starch/lactate enrichments there were
dramatic differences between horse 3 cultures and those of
horse 1 and 2 (Figure 4). By time 48, the Veillonellaceae
dropped to less than 5% in horse 3 cultures, while in horse 1
and 2 cultures this group was the highest in abundance,
making up more than 70% of the total sequences (Figure 4).
The most abundant family for the starch and starch/lactate
horse 3 cultures at time 48 were the Lactobacillaceae, making
up greater than 40% of the total sequences at this time point.
The Streptococcaceae reached a peak in abundance by 24
hours in the starch and starch/ lactate conditions for all horse
cultures, after which the abundance dropped. In horse 1 and 3
cultures this decrease was accompanied by an increase in the

Lactobacillaceae, however in horse 2 the abundance of
Lactobacillaceae remained relatively low even as the
Streptococcaceae declined over time.

Distribution of abundant OTUs
Identification of specific taxa that were most abundant by

hour 48 (Figure 5 and Table 2) suggested community
differences between horse cultures of specific interest in light of
differences in lactate utilization and attentuation. There was a
striking difference in OTU abundance and distribution between
horse 3 cultures and those of horse 1 and 2 in all treatment
conditions at hour 48. While the most abundant sequence
(between 50-60% relative abundance, with 98% identity to
Veillonella montpellierensis) under control and lactate
conditions for horse 3 was also found in horse 1 and 2 cultures,
it reached a lower abundance in both. While horse 3 control
and lactate enriched cultures were able to attenuate lactate, it
persisted in high concentrations in starch and starch/lactate

Figure 1.  pH of cultures over time by horse.  pH of cultures from each horse and culture condition measured at 6 hour intervals.
doi: 10.1371/journal.pone.0077599.g001
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enrichments in which no member of the Veillonellaceae was
highly abundant.

A different OTU, related to Megasphaera elsdenii (100%
identity) was the most abundant OTU in horse 1 and 2 cultures,
especially in the starch and starch and lactate enrichments,

reaching relative abundances of over 70%. While this OTU was
present in single numbers at Time 0 in all three horse samples,
and persisted in horse 3 in low numbers under all culture
conditions (Figure 6), it never reached abundances of greater
than 0.40% at any condition or time point.

Figure 2.  Short chain fatty acid metabolites over time by horse.  Concentration (mM) of acetate, butyrate, lactate, and
propionate measured by high performance liquid chromatography from each horse and culture condition at times 0, 6, 18, 36, and
48 hours.
doi: 10.1371/journal.pone.0077599.g002

Table 1. Sequence metrics.

 Before Chimera Check After Chimera Check
Total number of sequences 6,043,194 2,576,535
Sequences per sample (mean) 125,900 53,678
Sequences per sample (min) 51,890 9,685
Number of OTUs 41,055 32,563

Total number of sequences, sequences per sample, and OTUs before and after chimera detection using Chimera Slayer.
doi: 10.1371/journal.pone.0077599.t001
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The most abundant OTU in horse 3 starch and starch and
lactate cultures was related to Lactobacillus equi (100%
sequence identity) and represented 97.7% of the
Lactobacillaceae sequences across the dataset. This OTU was
present in all three horse cultures, reaching abundances of
20% and greater in horse 1 in starch and starch and lactate
enrichments at time 36, but then falling to 10% or less by time
48 (Figure 7).

Instead of being dominated by one or two abundant OTUs,
the distribution of the Streptococcaceae taxa was more
dispersed, with the two most abundant OTUs (related to
Streptococcus equi and Streptococcus infantarius with 100%
and 99% sequence identities respectively) together accounting
for less than 50% of the sequences in this group (Figure 8).

Discussion

Our in vitro system captures elements observed in vivo
The accumulation of lactate has long been recognized as an

early event in the microbial response to carbohydrate overload
leading to colic and laminitis in horses [5,10]. In the in vitro
system described herein, we were able to simulate many key
aspects of starch induced conditions that have been reported
elsewhere for in vivo experiments. The extent and timing of pH
changes (Figure 1) and fluctuations of SCFA levels (Figure 2),
especially with respect to lactate, acetate, and propionate are
similar to those reported for in vivo starch induction studies
[5,23].

No study thus far has tracked microbial changes over the
time course of starch induction in horses using 16S rRNA deep
sequencing as described here, however, the changes that we
observed in community composition are similar to what has

Figure 3.  Distribution of sequences by phyla.  Relative abundance of sequences for each operational taxonomic unit found at or
greater than 1% at each time point for each culture condition and horse sample by phyla.
doi: 10.1371/journal.pone.0077599.g003
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been reported in equine and ruminant culture and probe based
studies [7,14,43,44]. Specifically, in the first 24 hours following
enrichment, we noted an increase in Firmicutes, especially
members of the Streptococcaceae, coinciding with a decrease
in fibrolytic groups (Ruminococcaceae and Lachnospiraceae),
followed by an increase in the Lactobacillaceae as the
abundance of Streptococcaceae falls.

Despite a sample size of three horses, we were able to
observe between-horse differences in the ability to attenuate
accumulated lactate as has been described in previous studies
[5,23].

Certainly the microbial dynamics reported here may not
reflect the actual community compositions of the caecum and
large intestine of horses who recover or resist conditions of
lactic acidosis, however the elucidation of endogenous lactate
utilizers that thrive under conditions of low pH following starch
enrichment in our in vitro model may provide insight into
microbial mechanisms of resistance and/or recovery.

Lactate producing bacteria proliferate following starch
induction

While we observed the pattern of increase in Streptococcus
species during the first 24 hours of starch induction followed by
an increase in Lactobacilli species noted in other studies [7,23]
we expected the Streptococcus lutetiensis group (formerly
Streptococcus bovis [25]) to be more highly represented in the
starch and starch/lactate cultures, as it has been identified as
the major lactate producer in in vivo starch induction studies
[7,24,29]. Our data indicates a high abundance of the family
Streptococcaceae in the starch and starch/lactate cultures, but
fails to resolve subtle differences between species. We
recognize that basing taxonomic assignments on a single
region (V4) of the16S gene is inherently limited [45,46] for all
bacterial groups since 500-700 bases are recommended for
species resolution [47], and suspect that taxa within the
Streptococcus lutetiensis group may be especially difficult to
distinguish due to their close phylogenetic relationships [25,48].

Figure 4.  Distribution of Firmicute sequences by family.  Relative abundance of Firmicutes sequences found at or greater than
1% by family at each time point for each culture condition and horse sample.
doi: 10.1371/journal.pone.0077599.g004
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Figure 5.  Distribution of most abundant OTUs at time 48.  Relative abundance of OTUs found at greater than 5% in each
culture condition by horse. OTUs are identified by best BLAST match, and percent sequence similarity is given.
doi: 10.1371/journal.pone.0077599.g005

Table 2. Best BLAST hits for most abundant OTUs at Time 48.

Best BLAST hit Percent similarity NCBI Accession Number
Parabacteroides distasonis ATCC 8503 85% NR_074376.1
Streptococcus equi subsp. zooepidemicus MGCS10565 100% NR_102812.1
Desulfovibrio piger ATCC 29098 99% NR_041778.1
Clostridium paraputrificum ATCC 25780 99% NR_026135.1
Mitsuokella jalaludinii M9 100% NR_028840.1
Megasphaera elsdenii DSM 20460 100% NR_102980.1
Anaerosporobacter mobilis IMSNU 40011 94% NR_042953.1
Selenomonas bovis strain WG 98% NR_044111.1
Veillonella montpellierensis ADV 281.99 98% NR_028839.1
Lactobacillus equi YIT 0455 100% NR_028623.1
Selenomonas ruminantium subsp. lactilytica TAM6421 98% NR_075026.1
Veillonella caviae PV1 99% NR_025762.1

Best BLAST it from the 16S rRNA Reference Sequence Database, Percent similarity and NCBI accession numbers for the reference sequence
doi: 10.1371/journal.pone.0077599.t002
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Sequencing with longer reads would clarify the species
composition of this family in our starch and starch/lactate
enrichments.

Members of the Veillonellaceae are the most abundant
lactate utilizing bacteria

While studies have pointed to Streptococcus lutetiensis and
Lactobacillus sp as major lactic acid producers [7,28,29],
relatively little attention has been paid to bacteria in the horse
gut that actively utilize lactic acid. Studies of lactic acidosis in
ruminants [43,44,49] have identified specific genera, namely
Megasphaera, Veillonella, Selenomonas, Propionibacterium,
and Anaerovibrio as key lactate utilizers. In fact, strains of
Megasphaera elsdenii have been shown to be effective in
preventing lactic acidosis in cattle and are under development
as probiotic therapies [50–52].

Using deep sequencing of the 16S rRNA gene of fecal
communities challenged with starch, lactate, or both in an in
vitro model of starch induction, we report here changes in the
abundance of specific microbes associated with the reduction
of lactic acid. As we observed at time 0 in this study, 16S rRNA
surveys of the equine gut microbiome have shown that under
normal conditions, the Veillonellaceae (known lactate utilizers)
comprise 1% or less of the total bacterial abundance [17–19].
One probe-based in vivo study did not see a difference in the
abundance of Veillonellaceae in response to dietary change
despite an increase in lactate levels [24]. It is unclear why the
Veillonellaceae in that study did not increase in abundance as
lactate accumulated, or which specific taxa were present in
those horses.

In our study we observed that one particular taxa closely
related to Megasphaera elsdenii was highly abundant in all
starch and starch/lactate cultures in which lactate accumulated
and was attenuated. This taxa was present in very low

Figure 6.  Change in most abundant Veillonellaceae OTUs over time.  Relative abundance of most abundant Veillonellaceae
OTUs over time in each culture condition by horse. OTUs are identified by best BLAST match, and percent sequence similarity is
given.
doi: 10.1371/journal.pone.0077599.g006
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abundance in cultures in which lactate persisted. It is unclear
why this taxa fails to proliferate in any of the horse 3 cultures
while reaching such high abundances under all conditions in
horse 1 and 2 cultures. A second OTU related to Veillonella
montpellierensis was highly abundant in control and lactate
enrichments specifically in horse 2 and 3 cultures, but did not
thrive in the starch or starch/lactate enrichments, suggesting
that other factors such as pH or competitive interactions exert
selective pressure under starch and starch/lactate enrichment
conditions.

While our data indicates a relationship between the presence
of the Megasphaera elsdenii OTU and the reduction of lactate,
conclusive evidence that this taxa is responsible for reducing
lactate levels will require further study. It is possible that other
community members with lactate utilizing capabilities are
playing active roles as well.

Understanding the factors stimulating or preventing the
proliferation of lactate utilizers in the horse gut microbiome

could provide valuable information about why some horses are
more sensitive to starch induction, and the microbial basis
behind mechanisms of resistance.

Conclusions

A robust in vitro model for starch induced laminitis in horses
as described here could provide a convenient and cost
effective means to understand the microbial dynamics
underlying colic and laminitis, and test hypotheses for ways to
prevent or interrupt the progress of these equine diseases.
Specific taxa in the family Veillonellaceae were highly abundant
in starch enriched cultures that were able to attenuate lactate.
These could provide useful insights into mechanisms of
recovery or resistance, and could be valuable, individually or in
consortia, as probiotics to prevent starch induced colic and
laminitis.

Figure 7.  Change in single, abundant Lactobacillaceae OTU over time.  Relative abundance of the single, dominant
Lactobacillus OTU over time for each culture condition by horse.
doi: 10.1371/journal.pone.0077599.g007
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Supporting Information

Figure S1.  Hydrogen sulfide concentrations over time by
horse. Concentration (mM) of hydrogen sulfide measured by
the Cline (methylene blue) assay from each horse and culture
condition at 12 hour intervals.
(TIF)

Figure S2.  Headspace gas concentrations over time by
horse. Concentration (mM) of hydrogen and methane gases
measured by gas chromatography from each horse and culture
condition at times 9, 20, 32, and 45 hours.
(TIF)

Figure S3.  Rarefaction curves by horse. Observed species
by number of sequences per sample for each horse dataset
generated using a sampling depth of 9685 (the minimum

number of sequences per sample and default parameters in
QIIME.)
(TIF)

Table S1.  Alpha diversity estimates for each sample.
Chao1, observed species, Shannon Index and Good’s
coverage for each horse dataset generated using default
parameters in QIIME.
(XLSX)
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