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Abstract

The surface geometry of an organism represents the boundary of its three-dimensional (3D) form and can be used as a
proxy for the phenotype. A mathematical approach is presented that describes surface morphology using parametric 3D
equations with variables expressed as x, y, z in terms of parameters u, v. Partial differentiation of variables with respect to
parameters yields elements of the Jacobian representing tangent lines and planes of every point on the surface. Jacobian
elements provide a compact size-free summary of the entire surface, and can be used as variables in principal components
analysis to produce a morphospace. Mollusk and echinoid models are generated to demonstrate that whole organisms can
be represented in a common morphospace, regardless of differences in size, geometry, and taxonomic affinity. Models can
be used to simulate theoretical forms, novel morphologies, and patterns of phenotypic variation, and can also be
empirically-based by designing them with reference to actual forms using reverse engineering principles. Although this
study uses the Jacobian to summarize models, they can also be analyzed with 3D methods such as eigensurface, spherical
harmonics, wavelet analysis, and geometric morphometrics. This general approach should prove useful for exploring broad
questions regarding morphological evolution and variation.
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Introduction

The world is filled with organisms that display a broad diversity

of surface morphologies. From the rippled texture of a tropical

mollusk shell to the exquisitely delicate frustule of a diatom,

surfaces are everywhere. It is surprising that so few studies have

sought to rigorously describe the surface geometry of biological

forms. The fact that the surface of an organism represents the

boundaries of its three-dimensional (3D) morphology means that

surface geometry can be used as a proxy for the phenotype.

Studying surfaces may lead to a deeper understanding of the

function and evolution of biological structures. As organisms

evolve, so too may their surfaces, and studying the spatiotemporal

distribution of surface morphology may lead to a greater

understanding of evolutionary processes. Surfaces often change

during growth, and their study may provide a different way of

describing patterns of ontogeny.

While a great deal of effort has been devoted to the quantitative

measurement of organisms, most studies have resorted to the

measurement of distances between points or outlines. Often

measurements are made from two-dimensional (2D) projections of

3D objects. Advances in 3D scanning and imaging technologies

have generated great interest in the digitization of biological form,

and 3D data have been incorporated in studies using methods such

as eigensurface analysis [1,2], spherical harmonics [3], wavelet

analysis [4], and geometric morphometrics [5]. Some studies in

pattern recognition and computer visualization have described

methods that emphasize using point clouds in shape matching of

3D surfaces [6,7]; other studies are concerned with automating

shape matching in 3D space [8].

We present a new approach to characterize 3D surfaces that

differs in an important respect from existing methods. We begin

with a parameterized 3D surface model rather than an empiri-

cally-derived array of landmarks or a point cloud from an actual

specimen. Consequently, our approach permits the generation of

theoretical or abstracted morphologies and this, in itself, presents

some interesting opportunities for the study of biological form.

However, while model-based, our method is fully capable of

yielding empirical results, and we demonstrate how morpholog-

ically accurate models of real forms can be produced using reverse

engineering principles [9]. That is, we can create a model from the

empirical object, but numerical representation is extracted from

equations of the model rather than directly from the empirical

object itself. From our models, we calculate a matrix of values

summarizing the entire surface, the elements of which can be used

in conventional multivariate ordinations to generate surface

morphospaces.

Our broader objective is to develop a generalized approach that

can be used to study a wide variety of morphologies and

morphological evolution in a more mathematically rigorous and

flexible way. Our approach can be used alone or in conjunction

with other analytical methods for the study of forms, both

theoretical and empirical, and be applied to problems ranging

from large scale macroevolution to small scale intrapopulation

variation. Using examples from the Mollusca and Echinodermata,

we show how forms with different morphologies and taxonomic

affinities can be plotted meaningfully in a common morphospace.
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We also provide an example of how to study ontogenetic

trajectories, real or theoretical, including allometric and isometric

growth.

1.1. Mollusks and Echinoderms as Test Organisms
Both mollusks and echinoderms are taxonomically rich, well-

studied, and have a well-documented fossil record. These phyla

are suitable for studies of ecological and evolutionary patterns and

processes over long time spans. The external morphology of many

shelled mollusks has been the focus of numerous ecological and

evolutionary studies, and the distinct spiral geometry of many

forms has long attracted the interest of both mathematicians and

biologists [10–11], providing an ideal test case for our approach.

Others have analyzed echinoid form mathematically [12–13] and

we show how our approach can be used on this group as well.

The study of spiral form in mollusks was codified by Thompson

[14] early in the 20th century. However, the prominent spiral

geometry of many mollusks was studied even earlier by Moseley

[15–16], and his studies were the basis for Raup’s [17–20] classic

analyses of mollusk shells using a generating curve that moves

along a logarithmic spiral with a fixed reference frame. Raup’s

model stimulated a number of additional studies [21–23], and

several modifications were introduced, including the use of a

moving reference frame [24–26], multiple helico-spirals [27–28],

and the explicit inclusion of growth and morphogenesis [29–32].

For models with a generating curve, the shell surface is an

epiphenomenon that reflects the cumulative history of the position

of the generating curve as it moves along the spiral. These models,

although treating the surface as a byproduct of growth,

nevertheless succeed in simulating the broadest aspects of marginal

accretion. However, describing mathematical properties such as

the generating curve, type of spiral, and reference frame required

to produce a coiled surface is not the same as describing the

surface as an entity. Shell growth develops via marginal accretion,

but the resulting form is often what interacts with the environment

and can be the target of selective pressure. Thus, although we

might be able to reduce a shell mathematically to marginally

accreting spiral growth, morphological evolution involves the

whole shell, and there is a need for methods that describe the

surface phenotype as completely and directly as possible.

The objective of theoretical coiling models, in part, is to

produce a low dimension morphospace with axes that represent

particular parameters of the model. In contrast, our approach is to

generate 3D theoretical models of whole surfaces that are then

analyzed in an empirical n-dimensional space where the meaning

of the axes is determined a posteriori.

1.2. Background on 3D surface geometry
In general, geometric forms can be parameterized and

expressed in terms of particular basic trigonometric functions.

Such expressions indicate how basic geometric forms are closely

related, and any one of these forms can be a starting point to

produce whole 3D forms (Fig. 1). Rather than use helicospiral

curves as a starting geometry, as has been done in most previous

studies, we instead use a torus as the initial surface and modify it to

model a range of whole 3D surfaces. The general form of the

Figure 1. Basic geometric forms are depicted with their sets of parametric 3D equations. Transformations and reverse transformations are
given. All forms are expressed as combinations of sines and cosines and u,v[ 0,2p½ �.
doi:10.1371/journal.pone.0077551.g001
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organisms of interest ultimately determines which basic geometric

form is most appropriate, and our choice of the torus does not

preclude using other basic geometric forms as a starting point

(Fig. 1). As a regular surface, the torus is expressed as a

differentiable function. It can be represented by three parameter-

ized variables given as x(u, v) = (R + r cos v) cos u, y (u, v) = (R + r

cos v) sin u, z = r sin v, where R is the major (outer) radius of the

torus horizontally and r is the minor (inner) radius of the cross-

section of the torus; the parameters are u,v[ 0,2p½ � with u defining

the angle between R and the x-axis, and v defining the angle

between R and r [33].

For gastropod shells, an apical view (i.e., looking at a shell from

its top) is generally circular with an offset end, and that end – the

aperture – is a cross-section of a tube. The simplest closed-form

tube is a torus. The simplest cut is a circular cross-section or

meridian, and a cross-sectionally cut torus is used to expose one

end to make a coil which can be viewed as a whorl. Elliptical cuts

in the torus are produced via Villarceau [34] circles. One end of

the cut torus is fixed and the other end is freely suspended, and if

we pull downward on the free end, the curvature and torsion of

what is now a spiral whorl will change. A coil of n-whorls can be

produced by extending the length of the tube. The perpendicular

of each whorl is also the radius of the cut torus tube, and every

whorl has its own coiling axis. Different shapes and sizes of each

whorl can be achieved as a result of changes in the geodesic

properties (i.e., parallels and meridians) of the cut torus. Aperture

and whorl diameters can change at any stage in the coiling

process. As the whorls and apertures change in size, they will come

in contact with each other as a result of their expansion or

contraction. The cut torus may become a cylindrical or conical

spiral (Fig. 1, upper right). In general, the whole 3D form is made

by the interaction of all aspects of the geodesic properties of the

torus.

The torus has geodesic properties on its surface [35]. Lines of

curvature on a torus are meridians (lines that create cross-

sectional, or poroidal circles) and parallels (lines of latitude with

boundaries as outer circles, or toroidals) [36]. Parallels and

meridians in x, y, z are orthogonal, and all meridians are of

constant diameter, while all parallels are of variable diameter. All

meridians and parallels, except for the maximum sized parallel,

are geodesics. Tangent vectors of meridians and parallels are

principal curvatures [36].

Curvature is the rate of change of tangents given as first

derivatives that are perpendicular to each other on the surface

[36–37]. The first derivatives are lines of curvature on a surface

that are curves with tangential points along a principal curvature

[38]. For a torus, the principal curvatures are k1~{cosa=Rz

rcosa and k2~{1=r of some angle a with major and minor radii

R and r, respectively [35]. Torsion can be defined as a point along

a curve that can move in different directions and be determined

along any of the n-space curves of a given surface. Torsion depends

on the rate at which a curve is turning along its arc length. On a

surface, torsion is definable only for curves with kw0.

1.2.1. Moving reference frames. At each point on the

surface of a torus, an orthonormal frame consisting of three vectors

can be defined. A moving reference frame with respect to velocity

and acceleration of that frame occurs at each point along any

curve on the surface where the frame is differentiable, and the

result is a complete description of change in curvature and torsion.

A moving reference frame on the whole torus can be a Darboux

frame [39] which is a generalization of a Serret-Frenet [40–41]

frame.

A Serret-Frenet frame consists of the unit tangent vector,t, the

principal unit normal, n, and unit binormal, b at a point, p, along

a curve. These vectors comprise an orthonormal frame, {t, n, b}

[37]. In general, b is a multiple of n, and torsion is a factor in b
and n, while curvature is a factor in t and n [38]. A Serret-Frenet

frame parameterized by arc length, s, with velocity vector, w, is

t sð Þ~ d wð Þ
ds

, n sð Þ~
dt=ds
dt=ds

��� ��� , b sð Þ~t|n with first derivatives

dt

ds
~kn,

dn

ds
~{ktztb, and

db

ds
~{tn. For curvature with

respect to s, k~ t0k k~ dt

ds

����
����and for torsion, t~{b0:n. If k=0,

n~
1

k

dt

ds
and t~

1

k
; n and t are perpendicular [37,42].

A Darboux frame with respect to s has the vectors t sð Þ~ dw

ds
,

u(s) = u(w), andv(s)~u(s)|t(s), where w is the velocity vector,

t(s) is the unit tangent vector as it is in a Serret-Frenet frame, u is

the unit normal vector, and v is tangent normal vector (Fig. 2).

Essentially, a Darboux frame is an orthonormal frame where the

unit tangent and tangent normal vectors are two principal

directions and are linearly independent; u and v are in tangent

planes that are perpendicular to t [43]. Since a Darboux frame is a

moving reference frame
dt

ds
~kguzknv,

du

ds
~{kgtztgv,

dv

ds
~{knt{tgu, where kg is the geodesic curvature, and tg is

the geodesic torsion [36].

A Darboux frame exists at any non-umbilic point on a surface.

An umbilic point occurs on a surface where the principal

curvatures are equal and every tangent direction is a principal

direction [39]; i.e., curvature is the same in any direction. Since a

torus has no umbilics, and lines of curvature are parallels and

meridians [43], Darboux frames exist on all points on a torus.

Moreover, with parallels and meridians as principal curves, u and v

are parameters defining angles of the principal curves in terms of

the major and minor radii of a torus, respectively [36].

From a Darboux vector field for a unit velocity vector [37], the

relationship between Serret-Frenet and Darboux frames is

determined by t0~D|t, n0~D|n, b0~D|b, where the

Darboux vector field is D~ttzkbwith kas curvature, tas torsion,

and vectors {t, n, b} are a Serret-Frenet frame. For a unit velocity

vector with kw0 [37],
dt

ds
~knn{kgb,

dn

ds
~{kntztgb,

db

ds
~kgt{tgn, so that the relationship between Serret-Frenet

and Darboux frames is evident in terms of curvature and torsion.

1.2.2. Parametric 3D equations. Parametric 3D equations

can be used to construct bounded surfaces [44–47] such as tori. At

each point on the surface of a torus, two parameters, u and v, and a

tangent vector define a Darboux frame (Fig. 2). The torus is a

smooth manifold and differentiable everywhere, and parametric

3D equations in x, y, and z are differentiable with respect to

parameters u and v. The derivatives of the vectors of a Darboux

frame indicate the behavior of a curve locally on a surface. By

modifying the parametric 3D equations for a torus, we construct

various models of mollusks and echinoids.

First partial derivatives are tangent lines and planes of the whole

surface. Numerically, tangent lines and planes at every point on

the surface (Fig. 3) are solutions to Jacobian determinants that can

also be the elements of the Jacobian matrices (i.e., Jacobians).

These elements represent degrees of stretching from variables x, y,

z to parameters u, v and represent angular attributes with respect

to radii of models constructed. Solutions to the Jacobians are used

as variables in principal components analysis (PCA) to create a

3D Surface Morphological Analysis
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morphospace. Euclidean distances can be found as the change in

tangents of a curve between two points, and because tangents are

slopes of the curve, a morphological surface space can be constructed

based on the Jacobians. The Jacobians are a mathematical

summary of the entire surface and present a powerful new way of

comparing phenotypes.

Methods

2.1. Parametric 3D Equations
All systems of parametric 3D equations are derived from the

generalized set that is

x~

((Rzr cos v�)½+function�)(½function�|cosu�)
+

|

 !( )
½function�

ð2:1:1Þ

y~

((Rzr cos v�)½+function�)(½function�|sinu�)
+

|

 !( )
½function�

ð2:1:2Þ

z~

(½function�(+r sinv�))
+

|

 !( )
½function�

+

|

 !( )
½function�

ð2:1:3Þ

where emboldened, italicized terms and operators represent a

torus, asterisked variables can have coefficients, and multiple

operators are possible with respect to other functions. The label,

[function], can be a value multiplied by 1=2p, an exponential with

respect to u,v[ 0,2p½ �, a sine, cosine, hyperbolic tangent, hyperbolic

secant, or some combination. Some of the models are depicted in

Figure 4. Parametric 3D equations used to construct gastropod

shells (with the exception of limpets) are identified with the term

‘‘System’’ and model number.

Specimen pictures [48,49] (e.g., Fig. 4M, N) used for

comparison to gastropod shell models and measurements of Rmax

and rmax are listed in Table 1. Measurements were made from

pictures [48,49] and verified using specimens from the University

of Michigan Museum of Zoology (UMMZ) (Tables 1 and 2).

Scientific names are accepted in the World Register of Marine

Species (WoRMS; www.marinespecies.org) and Integrated Taxo-

nomic Information System (IT IS; www.itis.gov) databases. Rmax

and rmax are measured, and the nearest integer values are reduced

to the lowest possible ratio.

2.2. Jacobians
The following example using a set of parametric 3D equations

for a ring torus illustrates how the surface is represented by a

Jacobian. Let the equations for a ring torus be x = (1+ cos v) cos u,

y = (1+ cos v) sin u, z = sin v, where R = r = 1 and u,v[ 0,2p½ �.
From Jacobian determinants of the mapping x = f (u, v ), y = g (u,

v ), z = h (u, v ), the Jacobian (i.e., Jacobian matrix) evaluated at u

= v = 0 is

Lx

Lu
Ly

Lu
Lz

Lu

Lx

Lv
Ly

Lv
Lz

Lv

2
666664

3
777775~

({cos v sin u){sin u

cos v cos uzcos u

cos u

({sin v sin u)zcos u

{sin v sin u

0

2
4

3
5~

0

2

1

1

0

0

2
4

3
5: 2.1.4

2.2.1. Relationship between parametric 3D equations and

Jacobians. A surface is implicitly defined as x = f (u, v), y = g(u, v),

z = h(u, v) with differentials that form tangents [50]. The derivative

of a parametric function is a velocity vector since tangents to a curve

are the speeds at which a point on the curve moves.

Partial derivatives for x, y, and z with respect to u and v via the

general chain rule [50] are

Figure 2. The torus as a model depicted with a Darboux frame.
A, A torus in x, y, z space with parameters u and v, R is the radius of a
whorl and r is the radius of the aperture; B, A torus with u and v
indicated with respect to major and minor radii, respectively; C, A torus
with a Darboux frame consisting of a unit tangent vector (t), a unit
normal vector (u), and a tangent normal vector (v).
doi:10.1371/journal.pone.0077551.g002

Figure 3. Tangent lines and planes representing Jacobians on a
shell model with a gridded surface. A Darboux frame is shown as a
trihedron of orthonormal vectors at points on the surface.
doi:10.1371/journal.pone.0077551.g003

(2.1.4)
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Lx

Lu

� �
v

~
Lx

Lv

Lv

Lu
and

Lx

Lv

� �
u

~
Lx

Lu

Lu

Lv
for differential

dx~
Lx

Lu
duz

Lx

Lv
dv,

Ly

Lu

� �
v

~
Ly

Lv

Lv

Lu
and

Ly

Lv

� �
u

~
Ly

Lu

Lu

Lv
for dif-

ferential dy~
Ly

Lu
duz

Ly

Lv
dv,

Lz

Lu

� �
v

~
Lz

Lv

Lv

Lu
and

Lz

Lv

� �
u

~

Lz

Lu

Lu

Lv
for differential dz~

Lz

Lu
duz

Lz

Lv
dv.

Define three implicit functions [49,51] of the surface as F(x, y, z)

= F[f (u, v), g(u, v), h(u, v)],

G(x, y, z) = G[f (u, v), g(u, v), h(u, v)], and H(x, y, z) = H[f(u, v),

g(u, v), h(u, v)] that describe the relation among x, y, z with respect

to u and v. The differentials for F, G, and H in terms of x, y, z are

d F x,y,zð Þ½ �~ LF

Lx
dxz

LF

Ly
dyz

LF

Lz
dz, d G x,y,zð Þ½ �~ LG

Lx
dxz

LG

Ly
dyz

LG

Lz
dz, d H x,y,zð Þ½ �~ LH

Lx
dxz

LH

Ly
dyz

LH

Lz
dz, respec-

tively, where dx, dy, and dz in terms of u and v can be substituted

into each equation in this set of linear equations, and F, G, H are

tangent planes that define the intersecting surfaces of a model.

Let F(u,v) = f [x(u, v), y(u, v), z(u, v)], G(u,v) = g[x(u, v), y(u, v),

z(u, v)], and H(u,v) = h[x(u, v), y(u, v), z(u, v)] be defined as implicit

functions. The differentials for F, G, and H in terms of u and v are

d F u,vð Þ½ �~ L F uð Þ½ �
Lu

duz
L F vð Þ½ �

Lv
dv, d G u,vð Þ½ �~ L G uð Þ½ �

Lu
duz

L G vð Þ½ �
Lv

dv, d H u,vð Þ½ �~ L H uð Þ½ �
Lu

duz
L H vð Þ½ �

Lv
dv. The relation

between x, y, z and u, v with respect to differentials for F is

d F x,y,zð Þ½ �~d F u,vð Þ½ �. For d F x,y,zð Þ½ �~ LF

Lx
dxz

LF

Ly
dyz

LF

Lz
dz, and substituting equations for dx, dy, dz in terms of u and

v gives

d F x,y,zð Þ½ �~

L F u,vð Þ½ �
Lx

Lx

Lu
duz

Lx

Lv
dv

� �
z

L F u,vð Þ½ �
Ly

Ly

Lu
duz

Ly

Lv
dv

� �

z
L F u,vð Þ½ �

Lz

Lz

Lu
duz

Lz

Lv
dv

� �
:

Figure 4. Illustrations of mollusk shell models created from parametric 3D equations. A, System 1 gastropod shell 1; B, System 1
gastropod shell 2; C, cone shell; D, System 1 gastropod shell 3; E, System 2 gastropod shell; F, bubble shell; G, ammonite; H, oyster; I, scallop; J, limpet;
K, scaphopod; L, clam. Pictures of gastropod shells and their models: M, Melampus coffeus; N, Scaphella junonia; O, Turritella sp.
doi:10.1371/journal.pone.0077551.g004
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By gathering terms and using the chain rule,

d F x,y,zð Þ½ �~ L F uð Þ½ �
Lx

Lx

Lu
z

L F uð Þ½ �
Ly

Ly

Lu
z

L F uð Þ½ �
Lz

Lz

Lu

� �
du

z
L F vð Þ½ �

Lx

Lx

Lv
z

L F vð Þ½ �
Ly

Ly

Lv
z

L F vð Þ½ �
Lz

Lz

Lv

� �
dv,

there fore, d F x,y,zð Þ½ �~d F u,vð Þ½ �. For G and H, the same

treatment will yield d G x,y,zð Þ½ �~d G u,vð Þ½ � and d H x,y,zð Þ½ �~
d H u,vð Þ½ �, respectively. The total differential indicates the relation

among x, y, z with respect to u and v for intersecting tangent planes

in terms of F, G, and H. In general, three dimensions (x, y, z) are

mapped into two dimensions (u, v), and any coordinate system can

be used [50,52].

Intersecting tangent planes represent the surface of a model. In

vector notation, the normal planes of the models are

+F~
LF

Lx
iz

LF

Ly
jz

LF

Lz
k, +G~

LG

Lx
iz

LG

Ly
jz

LG

Lz
k, +H~

LH

Lx
iz

LH

Ly
jz

LH

Lz
k, where +F , +G, and +H are gradients of

F, G, and H, respectively.

A surface is a system of linear functions in dx, dy, dz with respect

to differentials of implicit functions F, G, H. The Jacobian

determinants give the best linear approximations [49] to the

differentiable functions dx, dy, dz, and they are the generalized

gradients in terms of F, G, H. Now, we can solve Jacobian

determinants of implicit functions, F, G, H with respect to

differentials dx, dy, dz in terms of functions f, g, h with respect to

differentials du, dv that represent the surfaces of models as tangent

planes and tangent lines in a form that is amenable to simpler

calculation.

Implicit equations for F, G, H where variables defined as x, y, z,

u, v are F x,y,z,u,vð Þ~f u,vð Þ{x~0, G x,y,z,u,vð Þ~g u,vð Þ{
y~0, H x,y,z,u,vð Þ~h u,vð Þ{z~0,and the differentials are

FxdxzFydyzFzdzzFuduzFvdv~0, GxdxzGydyzGzdzz

GuduzGvdv~0, HxdxzHydyzHzdzzHuduzHvdv~0. For

differentials du and dv with respect to f, g, h, the vector

Lf

Lu
iz

Lg

Lu
jz

Lh

Lu
k

� �
|

Lf

Lv
iz

Lg

Lv
jz

Lh

Lv
k

� �

:
L g,hð Þ
L u,vð Þ iz

L h,fð Þ
L u,vð Þ jz

L f ,gð Þ
L u,vð Þ k

is normal to a point, p, on the surface of the model [50].

From Cramer’s Rule [50,52], solutions to the partial derivatives

with respect to F, G, H are

Lx

Lu

� �
v

~{

L F ,G,Hð Þ
L u,y,zð Þ

L F ,G,Hð Þ
L x,y,zð Þ

and
Lx

Lv

� �
u

~{

L F ,G,Hð Þ
L v,y,zð Þ

L F ,G,Hð Þ
L x,y,zð Þ

Ly

Lu

� �
v

~{

L F ,G,Hð Þ
L x,u,zð Þ

L F ,G,Hð Þ
L x,y,zð Þ

and
Ly

Lv

� �
u

~{

L F ,G,Hð Þ
L x,v,zð Þ

L F ,G,Hð Þ
L x,y,zð Þ

Lz

Lu

� �
v

~{

L F ,G,Hð Þ
L x,y,uð Þ

L F ,G,Hð Þ
L x,y,zð Þ

and
Lz

Lv

� �
u

~{

L F ,G,Hð Þ
L x,y,vð Þ

L F ,G,Hð Þ
L x,y,zð Þ

.

The partial derivatives are expressed in terms of the Jacobian

determinants with
L F ,G,Hð Þ
L x,y,zð Þ =0. Each partial derivative of x, y, z

with respect to u, v is an element of the Jacobian matrix used to

represent the surface of a model.

Results

3.1. Solutions to the Generalized System of Parametric 3D
Equations

Analytically, parametric 3D equations allow for flexibility in

producing a wide range of 3D forms. In our examples, the

protocol has been to make generalized 3D models of planispiral

and conispiral gastropods, bivalves (unwound forms), and rounded

Table 1. Measurement of maximum whorl and aperture radii (Rmax and rmax) of gastropod shells.

Mollusk shell example Actual measurement (cm) Actual proportion Integer proportion

Rmax rmax Rmax rmax Rmax rmax

Scaphander lignarius 1 1.5 1 1.5 1 2

Sinum perspectivum 1.6 1.6 1 1 1 1

Melampus coffeus 0.7 0.85 1 1.214 1 1

Oliva sayana 0.8 1.35 1 1.687 1 2

Longchaeus candidus 0.55 0.45 1.222 1 1 1

Lithopoma phoebium 1.8 0.75 2.4 1 2 1

Scalenostoma subulatum 0.55 0.4 1.375 1 1 1

Architectonica nobilis 1.45 0.4 3.625 1 4 1

Heliacus variegatus 0.8 0.3 2.667 1 3 1

Calliostoma bairdi 1.2 0.45 2.7 1 3 1

Janthina globosa 1.35 1.25 1.08 1 1 1

Vitrinella oldroydi 0.7 0.25 2.8 1 3 1

Scaphella junonia 0.9 1.55 1 1.722 1 2

Buccinum glaciale 1.4 1.05 1.333 1 1 1

doi:10.1371/journal.pone.0077551.t001
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echinoids. The parametric 3D equations that describe surface

models explicitly include the values for maximum whorl and

aperture radii (Rmax and rmax, respectively) for mollusk shells and

maximum radii (Rmax and rmax are approximately equal) for

echinoids. Following the generalized set of parametric 3D

equations (Section 2.1.), generalized models may be produced

based on Rmax and rmax obtained from pictures of actual shells or

specimens. These generalized forms serve as morphological

‘‘blanks’’ that, when subjected to refinements via further

measurements and reverse engineering, can be quite realistic

and dimensionally accurate. Refinements entail experimenting

with coefficient values and iteratively comparing the resulting

model with measurements made from real shells until an

acceptable degree of similarity has been obtained.

In all cases,u,v[ 0,2p½ �. For gastropod morphologies, three

systems of equations are developed, one of which is for limpets.

The first gastropod shell generating system (System 1) (e.g.,

Figs. 4A, B, C, D, F) is

x~(Rzr cos v)(au cos ju) ð3:1:1Þ

y~(Rzr cos v )(�au sin ju) ð3:1:2Þ

z~{c(bzr sin v )(au)(k sin v )z(m cos v sin u)�
(l sin u)

(l cos cu)

� 	
ð3:1:3Þ

where coefficients are 1:1ƒaƒ1:3, 3ƒbƒ16, 1ƒcƒ2,

2ƒjƒ12, 0ƒkƒ3, 0ƒlƒ3, {3ƒmƒ3, 1ƒRƒ2, and

1ƒrƒ2. Special cases highlighted in our study include normally

coiled turritellids (e.g., Fig. 4O) and spirals as

x~(Rzr cos v)(au cos ju) ð3:1:4Þ

y~(Rzr cos v)(�au sin ju) ð3:1:5Þ

z~{c(bzr sin v)(au)(k sin v) ð3:1:6Þ

Vermicularia as

x~(Rzr cos v)(au cos ju) ð3:1:7Þ

y~(Rzr cos v)(�au sin ju) ð3:1:8Þ

z~{c(bzr sin v)(au)(k sin v)� 2:2 un�5 sin u{cos 0:2 u ð3:1:9Þ

where coefficients are defined by those in System 1 equations with

the exceptions of 2ƒcƒ2:5and 0:2ƒrƒ1:4, and an additional

coefficient is 2ƒnƒ2:2for Vermicularia. For Rmax = rmax = 1, high

values of b, and 8ƒjƒ12, normally coiled turritellid shells result.

Vermicularia start out as a normal turritellid shell, but negative

values of b and a squared term in the z-direction produce the

unwound bottom half of the shells. Spirals require that rmaxap-

proaches but is not equal to zero, making a ‘‘curve’’ with the

smallest possible cross-section.

Table 2. Material examined from the University of Michigan Museum of Zoology (UMMZ).

Name of Taxon; UMMZ Number; Locality and Collector Information.

Scaphander lignarius (Linnaeus, 1758); UMMZ 9423; England.

Sinum perspectivum (Say 1831); UMMZ 19526; Bahamas.

Melampus coffeus (Linnaeus, 1758); UMMZ 236294; Bird Key, NR., St. Petersburg, Pinellas Co., Florida; coll.: J.B. Clark.

Oliva sayana Ravenel, 1834; UMMZ 251580; Big Gaspilla Island, Florida; coll: Carl Fellons, 3/62.

Longchaeus candidus (Mörch, 1875); UMMZ 165937; Grassy Key, Florida Keys; coll.: B.R. Bales.

Lithopoma phoebium (Röding, 1798); UMMZ 198132; McGinty’s Ocean Ridge, Florida; coll: M.M. Solem.

Scalenostoma subulatum (Broderip, 1832); UMMZ 19940; Mauritius.

Architectonica nobilis Röding, 1798; UMMZ 250913; Florida, Gulf of Mexico; dredged.

Heliacus variegatus (Gmelin, 1791); UMMZ 250920; Hawaii.

Calliostoma bairdi Verrill & Smith, 1880; UMMZ 250829; Florida.

Janthina globosa Swainson, 1822; UMMZ 18272; Japan.

Vitrinella oldroydi Bartsch, 1907; UMMZ 174914; Monterey, Pacific Grove, California; coll: Chase 1941.

Scaphella junonia (Lamarck, 1804); UMMZ 251654; 20 fms., off Cameron, Louisiana.

Buccinum glaciale Linnaeus, 1761; UMMZ 17166; Greenland.

doi:10.1371/journal.pone.0077551.t002

3D Surface Morphological Analysis

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e77551



The second gastropod shell generating system (System 2) (e.g.,

Fig. 4E) is

x~ (Rzr cos v)zcos u½ �(u cos u) ð3:1:10Þ

y~ (Rzr cos v)zsin u½ �(u sinu ) ð3:1:11Þ

z~(2uzr sin v)z2u ð3:1:12Þ

where 1:5ƒRƒ2 and r~1.

A system of equations for limpets (e.g., Fig. 4J) is

x~(Rzr cos v)(6ub cos 0:15 u)�ju ð3:1:13Þ

y~(Rz rcos v)(6ub sin 0:15 u)zku ð3:1:14Þ

z~ju( rsin v) ð3:1:15Þ

where 0:8ƒbƒ1, 3ƒjƒ4, 1ƒkƒ1:1, R~0:5 and r~1.

Figure 5. A, PCA ordination of modeled and actual mollusk shells as well as echinoid models and spiral curves in morphospace; ? =
modeled clams; N = modeled scallops. Insets depicted are n = Vermicularia (upper left), ? = spirals (middle left), ? = isometric
turritellid series (lower center), e = echinoids (upper right). Models in each inset match symbol order in the ordination from left to
right; B, PC2 vs. PC1; C, PC3 vs. PC1.
doi:10.1371/journal.pone.0077551.g005
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For Systems 1 and 2, values for coefficients and Rmax and rmax

vary within narrow ranges. Coefficients a and c each partially

affect overall shell width and height with respect to the x-, y-, z-

directions. Coefficients b and j each partially affect overall height

with respect to number of whorls in the z-direction. Coefficients k,

l, and m affect overall shape of the shell in terms of changes in

whorl radius with respect to the z-direction.

Specific values for Rmax and rmax and coefficients are necessary to

produce specific shells. When k = 0.7, l = m = 3, c = 1, Rmax = 1.5,

and rmax = 2, a theoretical cone shell is created. For l = 1 or 2 with

respect to a sine function, k sin v = 1, m = 0, Rmax = 1, and rmax = 2,

theoretical bubble shells are represented.

Systems of parametric 3D equations were developed for

exemplar forms of bivalves, cephalopods, and scaphopods. For

bivalves, three systems are based on the following: for clams (e.g.,

Fig. 4L),

x~(Rzr cos 2v)(au cos 0:3u)zb cos u ð3:1:16Þ

y~(Rzr cos 2v)(au sin 0:3u)zb sin u ð3:1:17Þ

z~ju(r sin 2v)zbu ð3:1:18Þ

where 0:4ƒaƒ0:5, 0:1ƒbƒ0:2, 0:4ƒjƒ2, R = r = 1; for

oysters (e.g., Fig. 4H),

x~(Rzr cos 2v)(cu cos 0:2u) ð3:1:19Þ

y~(Rzr cos 2v)(cu sin 0:2u) ð3:1:20Þ

z~ju(r sin 2v){ cos 2u sinuð Þ{0:5u cos 2vð Þ cos 5u sin 7uð Þð3:1:21Þ

where 4ƒcƒ5 and R = r = 1; for scallops (e.g., Fig. 4I),

x~(Rzr cos 2v)(u cos mu)za tan hv ð3:1:22Þ

y~(Rzr cos 2v)(u sin mu) ð3:1:23Þ

z~a
u

2p


 �
(r sin 2v)z

2 cos u2l sech uq

2 sech u2 l sech uq

( )
{0:2 sin u2 cos u3ð3:1:24Þ

where 0:4ƒaƒ0:85, 1:7ƒlƒ2, 0:11ƒmƒ0:15, 8ƒqƒ10, R~1:2,

and 1ƒrƒ1:1.

For bivalves, coefficient a controls the presence and shape of the

auricles for scallops with respect to the x- and y-directions.

Coefficient b defines the position of the umbo in clams with respect

to the z-direction. Coefficient c is important for oysters in terms of

length and shape (degree of concavity or roundness) of the shell

with respect to the x- and y-directions, while for clams, length is

controlled by coefficient j with respect to the z-direction. Shape for

Figure 6. PCA of basic geometric forms and select mollusks to
heuristically explore the properties of surface morphospaces
based on Jacobians.
doi:10.1371/journal.pone.0077551.g006

Figure 7. Ammonite shell models with R and r held constant,
showing the result of combinations of coefficient l (degree of
coiling) in the x- and y-directions and coefficient q (degree of
pleating) in the z-direction. Coefficient q is related to change in
aperture (r and v), and coefficient l is related to change in whorls (R and
u).
doi:10.1371/journal.pone.0077551.g007
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scallops is influenced by coefficient l in the z-direction and

coefficient m in the x- and y- directions in terms of width and

degree of flatness, respectively.

For cephalopods (e.g., Fig. 4G) a system of parametric 3D

equations for ammonites is

x~(Rzr cos v)(cos lu)
3u

2p

� �
ð3:1:25Þ

y~(Rzr cos v)(sin lu)
3u

2p

� �
ð3:1:26Þ

z~3u(r sin v)z2u cos qu sin qu cos 2v ð3:1:27Þ

where 2ƒlƒ4, 20ƒqƒ40, R~1:5, and r = 1. In the x- and y-

directions, degree of coiling is controlled by coefficient l. The

degree of folding or pleating is defined by coefficient q with respect

to the z-direction.

The system of equations representing scaphopods (Fig. 4K) is

x~ Rzr cos vð Þ�u½ �(au cos 0:2u)�kv ð3:1:28Þ

y~ Rzr cosvð Þzu½ �(au sin 0:2u)zkv ð3:1:29Þ

z~au(r sinv) ð3:1:30Þ

where 0:1ƒaƒ0:5, 1ƒkƒ2, 1ƒRƒ6, and 0:5ƒrƒ1. Coeffi-

cient a controls length and degree of bending with respect to the x-,

y-, z-directions, while coefficient k influences the overall width with

respect to the x- and y- directions.

Aside from changes in coefficient values, changes in R and r,

when considered in tandem, reveal the extent that each variable –

x, y, z – influences changes in modeled shell morphologies. If R

changes and r is held constant, modeled shells will widen (coiled

gastropods), change in symmetry (limpets), lengthen and become

rounder (bivalves), become narrower (ammonites), or become

flatter and narrower (scaphopods) with respect to x and y. If R is

held constant and r changes, modeled shells will become wider,

rounder and elongated (coiled gastropods), flatter and elongated

(limpets), wider (clams, oysters and scaphopods), wider and

rounder (scallops), or wider and have whorls that merge

(ammonites) with respect to the z-direction.

Modeled counterparts to actual specimens were constructed to

show the efficacy of using Rmax and rmax in representing these taxa.

Along with these values, a small range of specific values for

coefficients is used. For example, when k = 1, l = m = 0, Rmax =

1.5, and rmax = 2, the result is a volute (e.g., Fig. 4N). For l = 2,

k = 1, or 2 with respect to a cosine function, m = 0, Rmax = 1, and

rmax = 2, an olive shell is created. When l = 1.5, m = 2.3, Rmax =

0.7, and rmax = 2.4, a Melampus is made (e.g., Fig. 4M). To make a

sundial shell, Rmax = 1.3, and rmax = 1, l sin u = l cos cu = 0 with

a = b = 2.

Finally, as a contrast to mollusk shells, a system of parametric

3D equations for echinoids was devised. Just as was done with

mollusks, we start with a torus and only use sine, cosine, hyperbolic

secant and hyperbolic tangent functions to produce the desired

forms. The result is the system of equations given as

x~ (Rzr cos v)z0:1 cos 10u½ �(cos 2u) ð3:1:31Þ

y~ (Rzr cos v)z0:1 sin 10u½ �(sin2u) ð3:1:32Þ

z~(� 1�r sin v)� 0:2 sin au cos bv sin5u sinbv ð3:1:33Þ

where 5ƒaƒ10, 40ƒbƒ60, R~1, and r = 2. Negative terms are

used in the z-direction with the last term being a polynomial in

sines and cosines, and the hole in the starting torus almost

disappears so that the resultant form is approximately spheroid to

ellipsoid (see inset-Fig. 5).

3.2. Jacobians and Interpretation of Mollusk and Echinoid
Forms

The majority of the forms modeled are mollusk shells. In the

Jacobians, the first column of elements is associated with whorl

attributes. In the x-direction, small changes in whorl radii are

generally associated with a high positive value for the first element,

and in the y-direction, tightness of coiling is associated with a high

negative value for the second element. In the z-direction, forms

with a higher spire tend to have larger negative values for the third

element and low spired to planispiral forms tend to have large

positive values. The second column of the Jacobians is associated

with aperture attributes. The highest positive values in the x-

direction are associated with forms that have relatively large

apertures. The highest negative values in the y- and z-directions

are associated with irregular and elongated apertures, respectively.

For echinoids, the Jacobians are mostly defined by a large positive

value for the second element of the first column and a low negative

value in the third element in the second column of values. These

values reflect the roundness of echinoid forms.

3.3. Interpretation of Mollusk and Echinoid Surface
Morphospace

The numerical solutions of the Jacobians were used as variables

in a principal components analysis (PCA) to produce a morpho-

space (Fig. 5A– 3D PCA; Fig. 5B– PC2 vs. PC1; Fig. 5C– PC3 vs.

PC1). Our use of Jacobians ordinated in an empirical morpho-

space differs from purely theoretical approaches in which the

morphological axes are based directly on the underlying mathe-

matical model. The empirical spaces generated with our method

contain a combination of purely theoretical shells and empirically

based forms. Whether using empirical or theoretical axes in

morphospace construction, the representation of variation among
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whole 3D surfaces in our morphospace is depicted with

independent axes.

From PCA, eigenvalues for the first six PCs are 2.042, 1.183,

1.037, 0.820, 0.566, and 0.352, and the percent variance

explained is 34.029, 19.722, 17.275, 13.664, 9.435, and 5.874,

respectively. The percent cumulative variance is 53.751 for the

first two PCs, 71.027 for the first three PCs, 84.691 for the first

four PCs, and 94.126 for the first five PCs.

The highest correlations of Jacobian elements with PCs are:

PC1 with
Ly

Lu
(0.844); PC2 with

Lx

Lu
(0.840); PC3 with

Ly

Lv
(0.896);

PC 4 with
Lz

Lv
(0.647); PCs 5 and 6 have correlations that are

,0.50. On PC1, the next highest correlation occurs with
Lz

Lu
(0.693) and

Lz

Lv
(0.694), while for PC2, the next highest

correlation is associated with
Lz

Lu
(20.608) as well.

For modeled mollusk shells, partial derivatives in the z-direction

reflect changes in aperture radii as each whorl radius changes.

Partial derivatives with respect to u (whorls) in the x and y-

directions have more influence on overall modeled shell morphol-

ogies than partial derivatives with respect to v (apertures). Jacobian

elements,
Ly

Lu
,

Lz

Lu
, and

Lz

Lv
, that are highly correlated to PC1,

indicate tightness of coiling and relative aperture elongation.

Whorl and aperture dimensions relative to each other are

indicated by high correlation of Jacobian elements
Lx

Lu
, and

Lz

Lu

with PC2. PC3 is highly correlated with Jacobian element
Ly

Lv
,

which indicates aperture shape.

In general, the morphospace for modeled mollusk shells can be

divided roughly in terms of the relationship between maximum

whorl (Rmax) and aperture radii (rmax). Small changes in whorl radii

of high spired shells with small rounded to elongated apertures are

represented by Rmaxƒrmax (Table 1). Large changes in whorl radii

of low spired shells with irregularly rounded to elliptical apertures

are represented by Rmaxwrmax (Table 1). In the morphospace,

high-spired mollusk models (i.e., those with spirals that are

stretched in space) group together extending into gradients as do

planispiral to lower spired mollusk forms (i.e., those with spirals in

or nearly in the plane). Unwound and low-spired mollusk models

produce gradients that converge near the rounded echinoid forms.

The insets (middle left and lower center) in Figure 5 illustrate

ontogenetic trajectories for simulated turitellid models. Isometric

accretionary growth is depicted by a linear trajectory of a

turritellid having from five to twelve whorls. The modeled

Vermicularia have the same trajectory as a normally coiled turritellid

until growth becomes allometric, and the whorls begin to separate

[53]. Theoretical spiral elements also illustrate a separate

‘‘ontogenetic’’ trajectory (Fig. 5) and show how the method can

be used to study basic spiral geometry.

The normally coiled turritellid series represents an ontogenetic

trajectory illustrating isometric growth, with changes in number of

whorls while the overall proportions of each whorl remain the

same. The contrast between a normal turritellid and the

Vermicularia illustrates allometry. The normal turritellid trajectory

is a sequence of whorls numbering five (closest to the PC2 axis) to

twelve, paralleling PC3 (Fig. 5). Modeled Vermicularia with nine

whorls exhibit different degrees of uncoiling and occur at a slight

angle from the normal turritellid with nine whorls (Fig. 5). In close

proximity a parallel trajectory of spiral curves (with infinitesimal

diameters) are plotted with five and nine coils, respectively, and

occur below the turritellid sequence.

Each PC is correlated with Jacobian elements related to whorl

or aperture characteristics for mollusk shells or spheroidal-

ellipsoidal features when considering echinoids. For mollusk shells,

PC1 was highly correlated with elements related to the tightness of

coiling and relative elongation of the aperture. PC2 was most

highly correlated with elements related to relative whorl and

aperture dimensions. PC3 had a high correlation with elements

related to aperture shape. For echinoids, PC1 defined degree of

elongation, while PC2 defined breadth, and PC3 defined overall

shape.

Jacobian elements with respect to u (PCs 1 and 2) for normal

turritellids, Vermicularia, and spiral curves represent coiling

attributes. In particular,
Ly

Lu
(PC1) indicates degree of coiling (i.e.,

number of coils), and
Lz

Lu
(PC1) indicates tightness of coiling. For

Lx

Lu
(PC2), height of spire is indicated. In addition, changes in

Lz

Lv
(PC1) indicate degree of change in aperture size from a normal

turritellid or a Vermicularia form to the infinitesimal diameter of a

spiral curve. As with modeled mollusk shells in general,

Rmaxƒrmax.

Modeled echinoid morphologies are spheroidal and ellipsoidal

forms that occupy morphospace near PC2 (Fig. 5). Each element

of the Jacobian recovers test shape as a closed form. The Jacobian

element
Ly

Lu
is the predominant influence (PC1) with

Lz

Lv
a

secondary influence (PC1 and PC4) as changes in the z-direction

overtake changes in the y-direction with respect to a spheroidal or

ellipsoidal shape. For echinoids, Rmaxvrmax.

For models where tangent lines and planes fall into the same

plane, an interesting result emerged. The two ammonites that

differ very slightly morphologically had identical Jacobians and

plot in the same location in morphospace (Fig. 5; to allow for

visibility, the ammonite models are jittered). One model exhibits a

shift in a repeated sine wave (i.e., pleating) parallel to and shifted in

the direction of v with respect to the other model (Figs. 4G and 5),

producing indistinguishable Jacobians. In the second model, a shift

in pleats parallel to and in the direction of u, produced Jacobians

that were different but close in value. For the first case, a post-

processing step related to Jacobians can be used numerically to

produce morphological differences. More information and rec-

ommendations are given below.

3.4. Heuristic Tests of the Meaning of Surface
Morphospace

The use of PCA in our method means that the axes of the

resulting morphospace are independent. However, each axis

represents both parameters u and v, and interpretation of the axes

requires consideration of each parameter changing relative to the

other, potentially making axis interpretation more complicated.

To better understand the meaning of the axes and the properties

of surface morphospaces based on Jacobians, 3D models of

familiar basic geometric forms were created and their surfaces

ordinated using PCA (Fig. 6). In addition, a limited number of

bivalve and gastropod models, including slight variations, were

generated to determine how these forms plot relative to one

another. For basic geometric forms we used a torus, cylinder, cone,

dome, sphere, and two ellipsoids in which the lengths of the major

axis differ. For bivalves we generated models showing variation in

the shape of the outline as well as some differences in the way the
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umbones coil. Gastropods with forms ranging from planispiral to

conispiral and varying in whorl number were also included. With

the exception of ellipsoids, we have not conducted controlled

heuristic experiments in which one aspect of morphology is varied

and all others held constant (but, see turritellid ontogenetic

trajectory in Figure 5, where only whorl number is varied). Rather,

our heuristic tests are intended simply to determine if ordination

based on Jacobians succeeds in capturing the major differences in

surface geometry among a smaller number of basic forms. The

morphospaces generated using PCA are empirical, and therefore,

not directly comparable. However, there are similarities in the

models used in this heuristic test and the mollusk-echinoid

morphospace shown earlier (Fig. 5). The tests should, therefore,

be useful for interpretation of each space and for evaluating the

method more generally.

The resulting PCA (Fig. 6) very effectively ordinates forms based

on differences in their surface geometry. Domed, conical,

heliconical, toroidal/planar, and spherical/ellipsoidal forms all

plot in different regions of the morphospace, and the relative

positions of different morphologies reflect the degree of similarity

in surface geometry. The dome plots relatively close to the cone

and can be viewed as a rounded cone. Although bivalves are

rapidly expanding helicones, their overall shape is similar to a

dome, and their position near the dome in the morphospace

confirms this. Among the coiled forms, there is a general

progression from planispiral to more conispiral forms along

PC2. Slight variations in the tightness of coiling and increases in

the number of whorls within a morphology are captured and form

morphoclines along PC1. The torus can be viewed as a planar

uncut coil and is nearest the planispiral gastropods. Spheroidal

and ellipsoidal forms occur as a morphocline reflecting elongation

in the major axis and are roughly equidistant from coiled and

uncoiled forms. The cylinder is an uncoiled tube that is located

furthest from all other forms.

As was the case for the ordination of mollusks and echinoids,

partial derivatives
Ly

Lu
,
Lx

Lv
, and

Lz

Lv
represent number of coils, whorl

overlap (i.e., partial aperture shape), and aperture size but, because

these are empirical spaces, the correlations with PC1 are slightly

different (0.962, 20.679, and 0.899, respectively). Similarly, partial

derivatives
Lx

Lu
,

Lz

Lu
, and

Ly

Lv
represent height of form, tightness of

coiling (or lack thereof) and aperture shape (and to some degree,

size) and are correlated with PC2 (20.669, 0.727, and 0.598,

respectively). In contrast to other methods that have been used to

model and plot shells, the partial derivatives used here include the

number of coils/whorls (from undefined in rounded forms to zero in

bivalves to some number for gastropods) and potentially allow for

the parsing of other morphological attributes as well.

The results of these simple heuristic tests validate our earlier

interpretations of the mollusk-echinoid space and demonstrate that

this approach can be useful for analyzing a broad range of surface

geometries. Many organisms and structures have overall forms

that approximate some of the basic geometries used here and our

analysis suggests that this method will effectively permit the

ordination of a broad range of biological surfaces as well.

Discussion

The great diversity of surface morphology that exists makes the

study of surfaces a natural extension of the study of phenotypic

form. Methods for capturing and manipulating 3D objects are

becoming more accessible, and there is growing interest in

approaches that make fuller use of 3D data, including the study

of surfaces. For many questions, surface morphology is arguably a

more complete description of the phenotype compared to methods

that rely solely on points, distances between points, or outlines.

Our general approach in which the entire surface is modeled and

parameterized, summarized numerically with the Jacobian, and

ordinated using conventional PCA presents a potentially powerful

complement to existing methods for studying morphology more

generally and biological surfaces explicitly.

Measurements obtained from actual specimens, pictures in

monographs, digital images, or point cloud data can be used when

making models. Accuracy and fine morphological differences can

be obtained by testing variables, parameters and coefficients of

parametric 3D equations in an ordered fashion to determine the

effect that one change has on the form being produced. For

example, one could change the value of one coefficient while

holding all other coefficients constant to determine the effect.

Extremely detailed models that may capture individual level

variability are possible.

Jacobian solutions capture the behavior locally at each point on

the surface. A property of Jacobians is size invariance, thus two

identical forms that differ in size only will have identical Jacobians

and occupy the same location in morphospace. Specimens with

very different shapes and sizes can be jointly analyzed, but because

3D parametric models and their Jacobians exclude size, the

resulting ordination will also be size-free and reflect differences in

surface form only. Rotation and reflection are also important

properties of Jacobians. Rotation is modeled as a switch in

parameters in the x-, y-, or z- direction. Reflection (or change in

symmetry) is modeled as a change in sign in the x-, y-, and/or z-

direction. Because of the properties of size, rotation, and reflection

associated with Jacobians, detecting large intragroup and/or

intergroup variation is possible.

The Jacobian is capable of capturing morphological variation

provided that tangent lines and planes differ among models. For

3D models starting with a torus, the degree to which Jacobians

have similar numerical solutions and similar morphologies is

affected by similarity in measured Rmax and rmax if measurement is

in approximately the same plane (i.e., u and v are approximately in

the same plane). If measurement between Rmax and rmax is farther

apart, Jacobian solutions will be different, describing more

disparate morphologies. In cases where 3D surfaces approach

2D planar figures, the Jacobian may not recover such differences

numerically, or the differences may be quite small, despite the fact

that positional shifts may have significance biologically. If the 3D

model is reduced to 2D (i.e., changes in the z-direction are not

measurable), the Jacobian determinant will be zero (i.e., the

tangent lines and planes are equal to zero) and the surface is a

plane. At this point, a 2D method (e.g., outline analysis) could be

used.

In general, the Jacobian is best suited for curved surfaces. We

recommend visually inspecting the models and the Jacobians (or

the ordination) to ensure that perceived variation is captured.

Alternatively, one could simulate relevant morphological differ-

ences and test if the Jacobian is sensitive to these. If a difference is

not recordable in the Jacobian, then post-processing by using a

Hessian matrix (Hessian) or some of the elements of a Hessian may

be calculated and used in morphospace construction.

4.1. Parametric 3D Equations, Partial Differentiation, and
Jacobians

In our analyses exemplifying the utility of the methods we

describe, we use homogeneous equations to find numerical

solutions to Jacobians. Boundary conditions on all sets of

parametric 3D equations are u,v[ 0,2p½ �. When constructing
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ammonites, we made incremental changes in one or two

coefficients in sets of parametric 3D equations with the intent of

producing very similar models. In general, small changes in

coefficient and/or radii values can produce large changes in

surface morphology from parametric 3D equations, and these

differences are definable with respect to partial differential

equations. However, if systems of equations used are almost

identical to one another, the partial differential equations will have

solutions, but those solutions are not necessarily or sufficiently

smooth; therefore, Jacobians for very slightly different forms within

a given set of parametric 3D equations might have (near-) identical

solutions. That is, the tangent lines and planes of very similar

surfaces may have solutions to Jacobians that are the same. We use

sets of parametric 3D equations that are almost identical in the

case of ammonite shells. For example, a difference in the spacing

of the pleats (coefficient q) – a shift of a sine or cosine – can slightly

affect the tightness of coiling (coefficient l) (Fig. 7). Using the same

set of parametric 3D equations with very slight changes, the model

differences just described occur only by slight stretching of the

same basic form in one direction, or addition or subtraction of

whorls overlapping in the same plane. In addition, there is a shift

with respect to v from one model to the other. This is like a phase

shift for the same tangent lines and planes. The result is the same

solutions to the Jacobians occur for both models (Figs. 4G and 5)

used in the morphospace.

With tangent lines and planes being the same in the z-direction

with the x- and y- directions remaining the same, slight

modifications of parametric 3D equations in the z-direction will

produce different solutions to Jacobians for surface models that are

nearly identical. In the case of the ammonites (Figs. 4G and 5),

change from one model to the next can be used with respect to v,

so this parameter is added to the z-direction in one of the models.

That is, a new set of parametric 3D equations is created. The new

model that results is the same as the previous one since the model

adds a value of v that affects all of the z-direction. For one of the

ammonite models, the addition is v = 21.

Alternatively, imposing the additional constraint of post-

processing by calculating Hessian or partial Hessian matrices

can be used to produce differences among forms, regardless of the

behavior of the Jacobians for all models considered. For example,

we did calculations for some of the elements of Hessians for some

of the ammonite forms depicted in Figure 7. The elements of

Hessians are second partial derivatives, including iterated and

mixed partial derivatives. Jacobians have elements that are first

partial derivatives. The same number of Hessian elements is

calculated for each of the forms. Solutions to the Hessians

produced different values for comparable elements in contrast to

their corresponding Jacobian elements. Six Hessian elements were

calculated, and differences were evident in second partial

derivatives
L2y

Lu2
and

L2z

Lu2
for the ammonites.

Jacobians represent a linearization near critical points, and

Hessians (or partial Hessians) represent critical points or extrema

on surfaces, and therefore are descriptors of surface features (local

maxima and minima). Hessian determinants represent local

curvature at critical points of a surface. However, calculating

entire Hessians for each form is not a trivial task. As stated above,

post-processing by calculating enough elements of a Hessian can

be used to detect differences in forms. Hessian solutions could be

used as input in a PCA to devise a morphospace in addition to or

instead of using Jacobian solutions. Alternatively, solutions to

partial Hessians along with solutions to Jacobians can be used as

the data to represent models in morphospace analysis.

Whether creating a new set of parametric 3D equations for a

model or using solutions to Hessians (or partial Hessians), almost

identical forms will plot very close to each other in morphospace.

Differences in surface morphology for forms constructed with

nearly identical parametric 3D equations may require a post-

processing step. Since parametric 3D equations are not invariant,

the behavior of the equations from form to form in a more

comprehensive way has yet to be tested. Jacobians can be

characterized generally as transformation matrices that are used in

the linearization of non-linear systems such as the models we

constructed using parametric 3D equations. Further testing is

necessary and is beyond the purposes and scope of this current

study. However, such testing may be necessary for additional

analyses such as measuring disparity.

In the future it will be important to explore further how

different geometries and surface features are summarized by the

Jacobian. In addition, more analysis is needed on the mathemat-

ical properties of parametric 3D equations and Jacobians,

including testing with regard to boundary conditions, evaluating

homogeneous equations at degree n, linearization of a non-linear

system, evaluating critical points and stability of the Jacobian.

These would each be separate studies and are beyond the scope of

this paper.

4.2. The Utility of Surface Morphospaces
We have demonstrated that parametric 3D models can be

meaningfully ordinated using Jacobians, and forms with similar

overall surface geometry in terms of tangent lines and planes plot

close together in morphospace. The approach presented should be

applicable to a broad range of questions where documenting and

analyzing scale-invariant patterns of surface form is important.

This could include questions related to morphological disparity,

functional morphology, ontogeny, and morphological evolution

more broadly. In principle, these questions could be explored at a

range of taxonomic levels. As our simulations of turritellid

ontogeny demonstrate (Fig. 5), even patterns of change at the

level of individuals can be studied. The analysis of surfaces

potentially provides a richer, more complete assessment of

morphology because more of the phenotype may be incorporated

when compared to methods based on curves, points, or other one

or two dimensional representations of form.

The ability to include disparate forms in a common morpho-

space is of particular interest and should present new directions for

research that have not been pursued before due to methodological

limitations [54]. Many existing techniques require some degree of

uniformity or similarity in form before analysis can proceed.

Applying log spiral models, for example, requires that the

phenotypes display spiral geometry; geometric morphometric

methods require a common framework of homologous points that

precludes the analysis of very different phenotypes. Our method,

however, simply requires that the objects have bounded 3D

surfaces that are amenable to modeling using parametric 3D

equations.

The method shows promise for the study of patterns of

ontogeny, but even here it is important to recognize what is being

captured in the morphospace. The normally coiled turritellid

ontogenetic trajectory (Fig. 5), for example, shows substantial

changes as growth proceeds. This may seem counterintuitive as

the growth is isometric, and there is no change in the underlying

spiral geometry. However, from the perspective of change in

surface form this pattern makes perfect sense as each growth stage

includes the addition of an entire whorl of new shell surface.

Compared to a typical bivalve, which does not add whorls during

growth, a snail will display much more change in surface geometry
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during ontogeny. As an aside, it is worth noting that ontogenetic

patterns could have been portrayed with each whorl (or growth

increment) plotted separately rather than plotting the cumulative

morphology. As patterns are scale-invariant, all increments that

differ in size only (i.e., isometry) would plot at a single point in

space, both for bivalves and gastropods.

While many biologists may be accustomed to studying surfaces

or surface features, few have experience describing entire surfaces

mathematically and intuiting what surface differences mean. The

applicability of our method to a particular question will require a

careful consideration of the appropriateness of surface data and

the significance of differences in surface geometry (Fig. 6). When

analyzing morphological patterns at higher taxonomic levels (e.g.,

[55]), for example, it may be important to determine if surface

morphology is an effective proxy for higher taxa and that distances

in morphospace are correlated with taxonomic/phylogenetic rank.

The richness of information embedded in the elements of the

Jacobian means that a surface morphospace is, in some ways,

more complicated. We hope that this new method will promote

the study of biological surfaces and stimulate thoughtful discussion

of the concept and use of a morphospace [56]. We expect that

comparing phenotypes in terms of their overall surface form in a

mathematically rigorous framework will enrich the study of

morphology in general, and as the method is applied, new ways

in which to treat the data acquired will emerge.

Conclusions

Parametric 3D equations can be used to accurately model

certain biological surfaces. As shown in Figure 1, our approach

can be applied to a variety of basic geometric forms and used to

model any bounded surface. Although we use mollusks and

echinoids as examples, the same approach can be applied to a

wide diversity of organismal forms. Our results clearly demon-

strate the utility of the Jacobian in describing and analyzing

surface morphology. The ability to summarize a broad range of

surfaces with a six-element matrix without any loss of resolution or

need for preprocessing is a potential advantage over other

methods. However, we have also identified some potential

limitations. As with any study, it is important to ensure that the

method is appropriate for the question being addressed. The

flexibility and mathematical rigor of our approach makes it usable

alone or in conjunction with other 3D surface analytical methods

to address a broad range of questions. Models constructed could

be exported as point clouds and analyzed using methods such as

eigensurface [1–2], spherical harmonics [3] wavelet analysis [4], or

geometric morphometrics [5]. The models should permit the

analysis of theoretical and empirical data in a common framework

using any one of these 3D techniques.

The ability to quantify entire surfaces and construct multivariate

surface spaces should generate new questions regarding morpho-

logical evolution. Patterns of phenotypic variation, changes in

developmental trajectories, simulations of morphospace occupa-

tion, including unrealized forms or hypothetical patterns of

ontogeny and evolution, can all be studied in the context of

surface morphology. Although we emphasize whole surfaces,

homologous or otherwise comparable parts can be treated as

bounded substructures. The appearance of new parts on the

surface does not preclude analysis, and in a sense, our method can

be viewed as ‘‘homology-free [57].’’ Experiments involving the

addition or removal of evolutionary novelties could be conducted

to determine influences on morphological patterns. Our approach

offers another avenue to study morphological variation, and more

broadly, the potential to study evolutionary and non-evolutionary

patterns and processes in new and fruitful ways.
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