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Abstract

Inferior temporal (IT) cortex as the final stage of the ventral visual pathway is involved in visual object recognition. In
our everyday life we need to recognize visual objects that are degraded by noise. Psychophysical studies have
shown that the accuracy and speed of the object recognition decreases as the amount of visual noise increases.
However, the neural representation of ambiguous visual objects and the underlying neural mechanisms of such
changes in the behavior are not known. Here, by recording the neuronal spiking activity of macaque monkeys’ IT we
explored the relationship between stimulus ambiguity and the IT neural activity. We found smaller amplitude, later
onset, earlier offset and shorter duration of the response as visual ambiguity increased. All of these modulations were
gradual and correlated with the level of stimulus ambiguity. We found that while category selectivity of IT neurons
decreased with noise, it was preserved for a large extent of visual ambiguity. This noise tolerance for category
selectivity in IT was lost at 60% noise level. Interestingly, while the response of the IT neurons to visual stimuli at
60% noise level was significantly larger than their baseline activity and full (100%) noise, it was not category selective
anymore. The latter finding shows a neural representation that signals the presence of visual stimulus without
signaling what it is. In general these findings, in the context of a drift diffusion model, explain the neural mechanisms
of perceptual accuracy and speed changes in the process of recognizing ambiguous objects.
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Introduction

Inferior temporal (IT) cortex, as the last stage in the ventral
visual pathway, contains neurons that selectively respond to
complex visual objects such as faces and bodies [1-4]. Activity
of the category selective neural clusters in IT has been shown
to be causally linked with perceptual decision making [5].

Visual objects in natural scenes appear in different sizes,
orientations, colors, contrast, views and positions. While the
level of the tolerance of IT neurons to such variations in the
visual stimuli has been extensively explored [3,4,6-12], the
effect of ‘ambiguity’ of the visual objects on IT neural
responses is not clear yet. In our everyday life there are many
situations that visual stimuli are degraded and stimulus visibility
is poor. Driving in heavy rain or snow is an example of a
situation where we need to recognize degraded visual objects
such as pedestrians through windshield covered with snow or
raindrops. Often, recognition of these ambiguous objects needs
to be done as fast and accurately as possible to take the
appropriate action. Psychophysical studies have shown that

the accuracy and speed of the object recognition decreases as
the stimulus ambiguity increases [5,13,14].

Our aim was to study the neural representation of ambiguous
visual objects and the underlying neural mechanisms of such
behavioral changes. We recorded the IT neural spiking
activities of two macaque monkeys while passively viewing
ambiguous body and object images. Stimuli were degraded by
various levels of noise. We have previously shown the
presence of neural clusters in IT that respond selectively to
human and animal bodies [2]. Here we analyzed the body
category selective units of IT to address four questions: 1)
What is the relationship between the level of stimulus ambiguity
and the response amplitude? 2) What is the effect of noise on
the temporal dynamic of the neural responses? 3) What is the
relationship between the category selectivity and various levels
of noise? 4) What is the neural mechanism of decreased
accuracy and speed in recognizing ambiguous stimuli? To
answer the last question we present our results in the context
of a drift diffusion model of decision making. Our findings shed
light on the neural representation of ambiguous objects and the
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neural mechanisms of decreased accuracy and speed of object
recognition in noisy conditions.

Methods

Subjects and Ethics Statement
Two male adult macaque monkeys were used in this study.

Before training, the monkeys were prepared with head
restraints and recording chambers implanted stereotaxically on
the dorsal surface of their skull. Implantation was performed
under aseptic conditions while monkeys were anesthetized with
sodium pentobarbital. All experimental procedures were in
accordance with the National Institutes of Health guide for the
care and use of laboratory animals. They were also approved
by the animal care and use committee of Institute for Research
in Fundamental Sciences (04-11-64122008). Some ethical
standards incorporated into our routine laboratory procedures
include housing the primates in a large space with sunshine,
providing them with a psychological enriched environment (TV
and toys), frequent contact with other animals (visual, auditory,
touch and grooming) and pharmacological amelioration of pain
associated with surgeries. The monkeys received food twice a
day including fresh fruits, nuts, vegetables and special biscuits.
None of the animals used in this study were sacrificed.

Stimuli
The stimuli were 7° x7° in size grayscale photographs of

body (including human, monkey and quadruped subcategories)
and object categories (including aircraft, car and chair
subcategories). There were 90 images in each category (30
images per subcategory, Figure S1). Body images had no
facial features. Each stimulus was presented in four different
noise levels. Each noise level was generated by assigning a
uniformly distributed grayscale value to a random selection of X
% of image pixels, where X was the absolute noise level and
had one of the values of 10, 30, 45 or 60. These 720 noisy
stimuli [(2 categories) x (90 stimuli in each category) x (4 noise
levels)] and 90 full noise images (100% noise) were randomly
presented to the monkeys without repetition. Figure 1A shows
two exemplar images in different noise levels. The noise
pattern was fixed for one stimulus but different among stimuli.
The stimuli were presented on a 19 inch CRT computer
monitor placed 57 cm in front of the monkey seated in a
primate chair.

Among different methods of degrading the visual information
(such as phase-scrambling, morphing, etc.), we chose the
high-frequency "salt & pepper noise” for our study. Large
receptive fields of the IT cells and the low-pass filtering process
make these cells more robust to such a high-frequency noise,
compared to the smaller receptive fields of cells in lower visual
areas such as V1. Taking advantage of this property of the IT
cells and by using different noise levels, we studied the IT
neural responses in different levels of ambiguity.

Task
Monkeys were trained to perform a passive viewing task

(Figure 1B). Following 400 ms of fixation on a white fixation

point at the center of the screen, a randomly selected
sequence of images were presented to the monkey. Each
image was presented for 70 ms with a variable inter-stimulus
interval (650 to 950 ms). The monkey was rewarded with a
drop of apple juice every 1.5–2 seconds as long as its gaze
was fixated within a 2.4° x2.4° invisible fixation window at the
center of the screen. The eye position was measured by an
infra-red eye-tracking system. The sequence of images
stopped when the monkey broke the gaze fixation and the
fixation point reappeared after 1500 ms of blank interval.
Stimuli in the broken trials were presented again later.
Recording sessions in which monkeys successfully completed
at least half of the trials are included in the analysis. Median
number of trials per category was 360 (mean±sem: body
category=352±13, object category=353±13).

Figure 1.  Stimuli and task.  A. Exemplar body (monkey body)
and object (car) stimuli in different levels of noise. Numbers
below the images show percent of the noise for each column of
images.
B. Sequence of task events. Two macaque monkeys were
trained to perform a passive viewing task. The presentation of
the stimulus sequence started after the monkey maintained
fixation for 400 ms on a small white fixation point at the center
of the screen. Images from two different categories (body and
object) were presented randomly for 70 ms with a variable (650
to 950 ms) inter-stimulus interval (ISI). The monkeys’ task was
to keep their gaze fixed on the center of the screen. They were
rewarded every 1.5 to 2 seconds for maintaining the fixation.
doi: 10.1371/journal.pone.0076856.g001
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Recording
Craniotomy was performed to record from the inferior

temporal cortex of the monkeys. The recording positions were
defined by the stereotactic measurements and magnetic
resonance images (MRIs) acquired prior to surgery.
Subdivisions of the IT cortex were defined using the location of
cortical sulci as described by Tanaka and colleagues [15-17].
Recordings were made on an evenly spaced grid, with 1-mm
intervals between penetrations over a wide region of the lower
bank of superior temporal sulcus (STS) and TE cortical areas
(12 to 18 mm and 13 to 20 mm anterior to interauricular line in
monkey1 and monkey2, respectively). During each recording
session, a single tungsten electrode (FHC, 0.5 to 1 MΩ) was
inserted into the IT cortex. The electrode was advanced with an
Evarts-type manipulator (Narishige, Japan) from the dorsal
surface of the brain through a stainless steel guide tube
inserted into the brain down to 10-15 mm above the recording
sites. Neural activity of multi-units (MU) in the inferior temporal
cortex was recorded extracellularly, while monkeys were
performing the task. To separate the spiking activity from noise
we set a threshold in each recording session depending on the
signal quality and the amplitude of the spikes relative to the
baseline noise. Each recorded MU was the superimposed
activity of several neurons around the electrode tip. A total of
66 visually responsive MUs were recorded from two monkeys
(41 from monkey1 and 25 from monkey2). Visual
responsiveness was defined as significantly larger evoked
responses compared to the baseline activity occurring in at
least one of the noise levels in any of the sliding 50-ms
windows from 100 to 300 ms after the stimulus onset (t-test,
alpha= 0.01). The baseline activity was measured during -50 to
0 ms relative to the stimulus onset. We explored the MU
activity (MUA) because of several reasons:

First, several studies have shown that SUs and MUs in
different cortical areas such as V1 and V4 behave in a similar
fashion [18-20]. In V1, the response onset latency and the
timing of the modulations in the response caused by the
context or attention have been shown to be similar in MUAs
and SUAs during a figure-ground task [19]. . We also know that
MUs are even more informative than SUs for movement
prediction in the motor cortex [21]. This large amount of
information retained in the superimposed activity of multiple
neurons suggests that the response properties of adjacent
neurons are consistent and neighboring cells process similar
information [19,21].

Second, Previous studies have shown that cells with similar
selectivity are clustered in columns in the IT cortex [22-24]. It
has also been shown that the object selectivity of a given cell in
an active optical imaging spot is similar to that of the averaged
cellular activity within the spot [25]. Therefore, recorded MUs in
the IT cortex consist of a group of homogenous SUs with
similar response properties, rather than reflecting the activity of
heterogeneous single cells with larger response amplitudes.
Considering the similarity of the response properties of nearby
neurons it could be advantageous to collect the activity of a
pool of neurons to increase the signal/noise ratio.

Third, MU recordings have some technical advantages over
SU recordings. They do not require spike isolation and are

more stable over time [19,26]. A concern about SU recordings
is that the neurons with large action potentials are more easily
and reliably isolated as a SU, creating a bias towards large
neurons [19]. Furthermore, reliable isolation of SUs during a
recording session is not always possible.

Forth, the goal of our study was to examine the modulations
of different response properties of the IT cells by stimulus
ambiguity. We added different levels of visual noise to our
images to explore a full range of visual ambiguity. We predicted
a significant decrease in the evoked response of IT cells
especially in high noise levels. So in our study in order to
obtain a more reliable signal to noise ratio we focused on MUA.
We believe that especially for exploring the pattern of
modulation of different response properties in time (such as
response onset latency, offset latency and duration, and also
SI modulation in time), the higher reliability of MUA is a clear
advantage in this study.

However, the advantages of analyzing MUA do not imply that
they are necessarily used by the brain. The MUA could be
considered as a tool to better understand the brain physiology
[21], just like LFPs [27] or functional MRI [28].

Data Analysis
Based on the similarity of the results in monkey1 and

monkey2, data from two monkeys were combined in all of the
analyses.

Analysis of the Amplitude of the Evoked Response
The window used for the analysis of the evoked response

was 100 ms to 300 ms after stimulus onset, unless otherwise
mentioned. Changing this time to other windows (e.g. 70 to 300
ms after stimulus onset) did not change any of the main results.

Analysis of the Selectivity Index (SI)
The degree of category selectivity of each unit for body

versus object images was measured by:

SI= μ Β −μ Ο
μ Β +μ Ο ×100

μ(B) and μ(O) were the mean evoked response of each unit
to body and object images in 10% noise level, respectively.
This index could vary from -100 (absolute object category
selectivity) to 100 (absolute body category selectivity). Units
with SI values larger than zero were considered as ‘body-
selective’. With this definition there were 48 body-selective
units in our data set (Figure 2D). The SI values of our units
could not be directly compared to the selective responses of
face cells reported in other studies which used different
stimulus sets. This is mainly due to the presence of 10% noise
in the most visible image and the complexity of the images
used as object stimuli in our study as well as the different
response properties of body selective cells compared to face
selective cells.

We also defined category selectivity as responses to body
images with %10 noise being significantly larger than object
images with 10% noise (t-test, alpha= 0.05, window: 100 to 300
ms after the stimulus onset). All of the reported results were
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Figure 2.  Response amplitude in different noise levels.  A. The response of an exemplar unit (U10) to body images in different
noise levels (black: 10%, red: 30%, green: 45%, blue: 60% and magenta: 100%). Here and in all other plots of temporal pattern of
the events, responses of units were measured in 1-ms bins and smoothed by convolving with a 30-ms Gaussian kernel. The gray
box represents the period of evoked activity used for the further analysis.
B. Mean response of the exemplar unit in A (U10) to body images with different levels of ambiguity, during 100 to 300 ms after
stimulus onset. Error bars denote s.e.m. across different trials. Stars show the p-values of the t-test between pairs of noise levels (*:
P<0.05; **: P<0.01; ***: P<0.001; ****: P<0.0001; *****: P<0.00001). Inset r and P show the correlation coefficient and its p-value for
the Pearson correlation analysis between responses and noise levels.
C. The response of the exemplar unit (U10) to object images. Conventions as in A.
D. Distribution of the body selectivity index (see Methods) for all of the recorded units. Red data point shows the exemplar unit
(U10).
E. Averaged response of all units to body images with different levels of noise. For normalization, peak response of each unit was
measured before smoothing. Then smoothed responses of each unit in different noise levels were normalized to the peak response
of that unit. Finally, normalized responses of different units in each noise level were averaged. Shaded area shows s.e.m. across
different units. Conventions as in A.
F. Mean normalized response of all units to body images in different levels of noise, during 100 to 300 ms after stimulus onset. Error
bars here and in other figures denote s.e.m. across different units. Conventions as in B.
doi: 10.1371/journal.pone.0076856.g002
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similar if we did the analysis on the 21 category selective units
selected by this definition.

Analysis of Onset Latency, Offset Latency and Duration
of the Evoked Response

In order to measure the onset, offset and duration of the
evoked response, the activity of each unit was smoothed by
convolving it with a 30-ms Gaussian kernel in every noise level.
Smoothing was done to prevent measuring random jitters in the
response as onset or offset. For each unit and noise level, the
firing rate during baseline activity was compared to different
windows of evoked activity (paired t-test, one-tailed, alpha=
0.01). The firing rate of single trials during -50 to 0 ms relative
to the stimulus onset was defined as the baseline activity and
the firing rates of single trials in sliding 50-ms windows, during
50 to 400 ms after the stimulus onset, was defined as the
evoked response. The onset of the evoked response was
defined as the first 50-ms window of the evoked response with
values significantly larger than the baseline. The time interval
between the start of this window and the stimulus onset was
considered as the evoked response onset latency. The end of
the evoked response was defined as the first window after the
response onset with values not significantly larger than the
baseline. The time interval between the start of this window
and the stimulus onset was considered as the evoked
response offset latency. Duration of the response was
measured as offset of the response minus its onset, in each
unit and noise level.

Reliable measurement of the onset and offset was not
possible in several units at noisier conditions due to the smaller
amplitude of the evoked response. Onset and offset latency of
the response in all of the noise levels could be measured in 25
and 21 of the units, respectively. Thereby the duration of the
response was calculated in 21 units. The fewer number of
measurable offsets compared to the onsets is related to four
MUs not returning to the baseline activity until 400 ms after the
stimulus onset. Furthermore, the observed difference could be
related to the low response variability at the beginning of the
evoked response [29]. Therefore, there is a higher chance of
obtaining statistical significance when measuring response
onset compared to offset.

Analysis of Classification
A linear ‘support vector machine’ was used to assess the

neural performance. In each noise level, the evoked response
of each unit to body and object images was used as an input to
the classifier. In each round of classification, we randomly
selected the 75% of trials of every unit in each noise level for
training the classifier. The classification performance of the cell
population was tested on the remaining 25% of trials. This
procedure was repeated for 1000 rounds to evaluate the
statistical difference in performance between conditions.

Results

We investigated the effect of visual ambiguity on the IT
neural responses by recording the spiking activities of 66
multiple units (MU) from the IT cortex of two macaque monkeys

while they passively viewed noisy visual stimuli with various
degrees of noise (10%, 30%, 45%, 60% and 100%) (Figure 1).

Amplitude of the Evoked Response
To explore the effect of different levels of stimulus ambiguity

on the neural response of the IT cortex, we first looked at the
responses of each unit to body and object images at different
levels of noise. Figure 2A shows the mean response of one
exemplar unit (U10) to body images at different noise levels. As
more noisy images were presented a gradual decline in the
amplitude of the responses of this unit was observed. To better
quantify this modulation, we measured the evoked firing rate of
this unit during 100 to 300 ms after stimulus onset in each
single trial (Figure 2B). Consistent with the peristimulus time
histogram (PSTH) in Figure 2A, the response amplitude
declined as the stimulus ambiguity increased (Pearson
correlation, r= -0.55, P< 0.00001). Also its response to object
images at different noise levels was smaller compared to body
images (Figure 2C). We defined a selectivity index (SI) to
measure this difference more directly, (see Methods). For this
exemplar unit the value of SI in the lowest level of noise (10%)
was 18.2 which confirmed its body selectivity. The IT cortex, as
the last unimodal stage in the ventral visual pathway, has units
selective to complex objects like faces and bodies [1-4,30-38].
Body selectivity in the IT cortex is reported at the level of single
cell [2] and cortical patches [30,31,35,37]. We measured SI in
the 66 units to document the presence of body selectivity in the
activity of several neighboring cells recorded as a unit in our
study. Figure 2D shows the distribution of body selectivity index
in the recorded units. We identified 48 body selective units (32
from monkey1 and 16 from monkey 2) and further analyzed
their spiking activities.

The averaged responses of all 48 body selective units to
their preferred category (body) at different levels of noise are
shown in Figure 2E. There was a decline in the response
amplitude as the stimulus ambiguity increased. We noted a
clear distinction of the responses to body images in different
degrees of noise at the population level which indicated a
similarity in the sensitivity of these units to the degradation of
their preferred category. To quantify the gradual decrease in
the response of units to more noisy images we measured the
average of normalized responses of the units during 100 to 300
ms after stimulus onset at each noise level (Figure 2F).
Consistent with the data from the exemplar unit (Figure 2B)
and also the PSTH in Figure 2E, the response amplitude
declined linearly as stimulus ambiguity increased (Pearson
correlation; both monkeys: r= -0.57, P< 0.00001; monkey1: r=
-0.57, P< 0.00001; monkey2: r= -0.58, P< 0.00001).

Temporal Dynamic of the Evoked Response
So far, our results showed a gradual decline in the response

amplitude of the population of the body selective units as a
function of noise. The amplitude of the evoked response is a
common coding mechanism in different cortical areas [39,40].
Onset of the evoked response is another potential mechanism
for visual stimuli coding in the IT cortex [41]. We previously
demonstrated that the onset latency of the evoked response is
shorter for specific categories (faces) compared to the others
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[41]. We predicted that the onset latency as a neural coding
tool could also be affected by the level of stimulus ambiguity.
Observation of the temporal pattern of responses to images in
different noise levels in Figure 2 is consistent with this idea. In
Figure 2A the onset and offset of the response of the body
selective unit to its preferred category was found to be different
among noise levels. To better quantify this effect, we measured
the onset, offset and duration of the response of this unit (U10)
to body images in different levels of stimulus ambiguity (see
Methods). The evoked response of this unit started later and
decayed earlier as stimulus ambiguity increased (Figure 3A).
As a result of these modulations, the duration of the response
was shorter for more ambiguous images (Figure 3A).

Based on these findings and also the temporal pattern of the
population response in Figure 2E, we expected to see similar
results in other body selective units. Figure 3B shows the onset
of the response of body units to body images with different
levels of ambiguity. Response onset was earlier for less noisy
images (Figure 3B; Pearson correlation; both monkeys: r=

0.31, P= 0.0004; monkey1: r= 0.31, P= 0.0046; monkey2: r=
0.34, P= 0.03; see also Figure 3C). We found a larger
variability of the onset latency among body units at 100% noise
level indicating possible increased within unit variability of the
onset latency in this condition.

We then tested the correlation between the response
amplitude and response onset latency across all noise levels
(r= -0.38, P<0.00001). We also measured the onset latency of
the response to object images in different noise levels
(Pearson correlation, r= 0.22, P= 0.02). Similar to the body
images, we found a significant negative correlation between
the response amplitude and the onset latency (r= -0.46,
P<0.00001). One concern with respect to this finding might be
that the shorter onset latency in less noisy conditions was
simply the result of a larger response amplitude in these
conditions [17]. We addressed this issue using two-way
ANOVA in which image categories and noise levels were the
two factors to compare the onset latency of the responses to
body and object images at different noise levels. The results

Figure 3.  Response onset latency, offset latency and duration in different noise levels.  A. Onset latency, offset latency and
duration of the response of the exemplar unit (U10) to body images in different levels of ambiguity. When full noise images were
presented there was no increase in the response of this unit relative to the baseline activity (Figure 2A). Therefore, onset, offset and
duration were not measurable in this noise level and are not shown in this figure.
B. Onset latency of the response of the units (n=25) to body images with different levels of noise.
C. P-values of the comparison of onset latency values in different pairs of noise levels (t-test, paired).
D. Offset latency of the response of the units (n=21) to body images with different levels of noise.
E. P-values of the comparison of offset latency values in different pairs of noise levels (t-test, paired). Conventions as in C.
F. Duration of the response of the units (n=21) to body images with different levels of noise.
G. P-values of the comparison of response duration values in different pairs of noise levels (t-test, paired). Conventions as in C.
doi: 10.1371/journal.pone.0076856.g003
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showed that the onset latency was different across noise levels
(P= 0.006), while it remained unchanged between two
categories (P= 0.24). We also compared the amplitude of the
response to body and object images at different noise levels
using two-way ANOVA. We found that the response amplitude
was significantly different both across noise levels (P<
0.00001) and between categories (P< 0.00001, larger response
amplitude for bodies). Collectively these results suggest that
while the amplitude of the response to bodies was larger than
the response to objects at different levels of noise, the onset of
the responses were not different at any given level of noise.
Therefore, if the observed difference in the response onset
latency across noises (Figure 3B) was simply the result of the
difference in the response amplitude, it should have been also
different between body and object images at each noise level.
This analysis confirms that the modulations in the onset latency
could not be explained by the differences in the response
amplitude.

We also measured the offset latency and duration of the
response which both decreased as more ambiguous stimuli
were presented (offset: Figure 3D; Pearson correlation; both
monkeys: r= -0.43, P= 0.00004; monkey1: r= -0.45, P= 0.0001;
monkey2: r= -0.47, P= 0.0095; see also Figure 3E) (duration:
Figure 3F; Pearson correlation; both monkeys: r= -0.55, P<
0.00001; monkey1: r= -0.57, P< 0.00001; monkey2: r= -0.57,
P= 0.0011; see also Figure 3G). These findings suggest that
the increased duration of the evoked response to more visible
images is the result of an earlier rise and a later fall in the
response.

Selectivity of the Evoked Response
Exploring the noise-related modulation of the responses to

the preferred category helps to understand the cortical sensory
processing. However, for a better understanding of the effect of
noise on object recognition it is essential to compare noise-
related modulations of the responses to the preferred versus
non-preferred category (category selectivity). The responses of
the body selective units to the non-preferred category (object
images) are shown in Figure 4A. These responses were
smaller than the responses to body images (Figure 2E) and
declined as the noise level increased (Figure 4B; Pearson
correlation; both monkeys: r= -0.42, P< 0.00001; monkey1: r=
-0.43, P< 0.00001; monkey2: r= -0.42, P= 0.0001).

To explore how the difference of the response to body and
object images changes as a function of noise, we plotted the
mean response to these images in different noise levels during
100 to 300 ms after stimulus onset (Figure 4C). As the noise
level increased the difference of the response amplitude of the
units to body and object images diminished. At 10% noise level
the response amplitude to body image was significantly greater
in comparison with the response to the object image. There
was no statistically significant difference in response amplitude
to body compared to object images at 60% noise level (t-tests,
paired, one-tailed, 10%: P< 0.00001, 30%: P< 0.00001, 45%:
P= 0.002, 60%: P= 0.46). Measuring SI at different noise levels
in the exemplar unit (U10) showed a gradual decrease in SI as
stimulus ambiguity increased (90%: 18.15, 70%: 12.87, 55%:
3.95, 40%: 0.08). Measuring SI in all units confirmed the same

observation: SI of the body selective units decreased as
stimulus ambiguity increased (Figure 5A, Pearson correlation;
both monkeys: r= -0.45, P< 0.00001; monkey1: r= -0.46, P<
0.00001; monkey2: r= -0.42, P= 0.0006). The difference of the
response amplitude to preferred and non-preferred categories
decreased to the point of no difference at 60% noise level.
Therefore, at this noise level SI was not significantly different
from zero (t-tests, paired, P= 0.5) meaning that the threshold of
noise tolerance for category selectivity of IT units was 60%.
Note that the evoked response to both body and object images
at 60% noise was significantly larger than both the baseline
activity (baseline window: -50 to 0 ms relative to the stimulus
onset; t-tests, paired, bodies: P<0.00001, objects: P<0.00001)
and the response to full noise images (t-tests, paired, bodies:
P<0.00001, objects: P<0.00001). This suggests a neural signal
that indicates the presence of a stimulus but not its category;
as there was not any significant difference between responses
to body and object categories.

To see how responses of the population of MUs in IT could
represent stimulus category in noisy conditions, we trained a
classifier to categorize body versus object stimuli (Figure 5B).
Classification performance decreased as the noise increased
(Pearson correlation, r= -0.9, P< 0.00001). The observed
chance level performance of the classifier for the stimuli with
60% noise level is a further indication that, in passive viewing
condition and at high noise levels, IT units convey information
about stimulus presence without signaling the stimulus
category.

To explore the SI temporal dynamics we measured SI in
sliding 50-ms windows at various noise levels. Figure 5C
shows the results for the exemplar unit. SI in less ambiguous
stimuli increased earlier and decayed later. Temporal dynamic
of SI in all units, at different noise levels showed a similar
pattern (Figure 5D). At 60% signal SI fluctuated around zero
during the evoked response which is consistent with the lack of
selectivity in Figure 5A for this noise level.

We measured body cells’ cumulative SI which is the
differential response to body versus object images developing
in time. It was calculated separately for low (10% and 30%,
blue line) and high (45% and 60%, red line) noise images
during 100 to 300 ms after the stimulus onset (Figure 6A). The
enhancement of SI started later and showed a shallower slope
in the noisier condition.

Discussion

To understand the neural representation of visual object
ambiguity we recorded the activity of the units in IT cortex while
monkeys were passively viewing body and object images with
different levels of noise.

We posed four questions in the introduction to be addressed
in this experiment:

1) What is the relationship between the level of stimulus
ambiguity and response amplitude? We found a gradual
decrease in the IT neural response to both preferred (body)
and non-preferred (object) categories as ambiguity increased.
Our results are consistent with previous findings showing a
decrease in the IT neural responses when images are
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Figure 4.  Response to body vs. object images in different noise levels.  A. Averaged response of all units to object images
with different levels of noise. Normalization was done as described in Figure 2E. The gray box represents the period of evoked
activity used for the further analysis.
B. Mean response of all units to object images in different levels of noise, during 100 to 300 ms after stimulus onset. Conventions as
in Figure 2B.
C. Response of all body selective units (n=48) to body and object images in different noise levels during 100 to 300 ms after
stimulus onset. Each data point shows the mean response of one unit. The red data point shows the exemplar unit (U10). Full noise
(100%) is not shown in this figure because there is no category information in full noise images. The inset p-values show the results
of paired t-ttest between responses to body and object images.
doi: 10.1371/journal.pone.0076856.g004

Representation of Ambiguous Objects in IT

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e76856



Figure 5.  Category discriminability in different noise levels.  A. SI of the all units in different noise levels, measured during 100
to 300 ms after stimulus onset. Stars show p-values of t-tests between pairs of noise levels (**: P<0.005).
B. The performance of a classification trained to categorize body versus object stimuli. Stars show p-values of t-tests between pairs
of noise levels (*****: P<0.00001).
C. Temporal dynamic of SI of the exemplar unit (U10). SI was measured in different noise levels in sliding 50-ms windows. Data
points are plotted at the middle of each bin. The gray box represents the window used for the analysis in A.
D. Temporal dynamic of SI of all body selective units in different noise levels. The gray box represents the window used for the
analysis in B. Conventions as in C.
doi: 10.1371/journal.pone.0076856.g005
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scrambled [42], morphed [40] or partially occluded [43]. fMRI
studies have also shown a decrease in the response to
scrambled images compared to natural images in the IT cortex
of macaque monkeys [44] and Lateral Occipital Complex (LOC)
of humans [45,46].

Similar to the changes in other properties of the image (size,
orientation, color, viewing angle and position) IT units showed
some tolerance to increased image ambiguity. The decrease in
the response was gradual and even at 60% noise, preferred
and non-preferred categories evoked responses which were
larger than both their baseline activities and full noise.

Here we have tested the effect of noise on the neural
response of IT units at a purely sensory level in a passive
viewing task. The neural responses in the context of a

discrimination task which is considered more demanding could
have been different from the passive task in one of the
following ways: First, consistent with a “response gain model”
[47,48] the firing rate can be multiplied by a constant gain
factor, resulting in greater enhancement of responses for the
less noisy stimuli. Therefore, we could see a larger difference
in the response amplitude between the high and low noise
conditions. Second, in the discrimination task a constant
amount of activity might be added to every response in
different levels of noise. This is consistent with the “offset
model” [49]. In this model the difference in the response
amplitude between the high and low noise conditions would
remain unchanged. Third, higher levels of task engagement in
a discrimination task could make neurons more sensitive to the

Figure 6.  Schematic model.  A. Body cells’ cumulative SI in more and less noisy conditions. Cumulative SI was measured
separately for less (10% and 30%, blue line) and more (45% and 60%, red line) noisy images in non-overlapping 50-ms windows
during 100 to 300 ms after the stimulus onset. Dashed lines (a and b) represent hypothetical lines representing possible decision
boundaries.
B. Drift diffusion model and evidence accumulation for visible and ambiguous stimuli. Decision variable (DV) is the cumulative sum
of the evidence. The bounds represent the decision boundaries for different choices. Slower drift rate in ambiguous condition is the
result of lower response amplitude, shorter response duration and smaller response selectivity in this condition.
doi: 10.1371/journal.pone.0076856.g006
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noisier stimuli with less visual information. Thus, similar to the
“contrast gain model” [50-52], task demand and visual signal
act interchangeably. Therefore, we could see a smaller
difference in the response amplitude between the high and low
noise conditions. These possibilities remain to be tested by
comparing the neural responses to ambiguous stimuli in a
passive viewing and a body/object discrimination task.

2) What is the effect of noise on the temporal dynamic of the
neural responses? Our results showed the occurrence of a
later response onset, earlier response offset and shorter
response duration as the level of ambiguity increased. Here, for
the first time, we demonstrate the effect of stimulus ambiguity
on the temporal pattern of responses in visual cortex. It is
important to note that the evoked response amplitude by itself
does not give such information about the temporal pattern of
the response. Responses with different amplitudes might have
similar onset, offset or duration and vice versa. In one of our
previous works we have presented the PSTH of an exemplar
face selective cell in the IT cortex with shorter onset latency,
larger amplitude and shorter duration of the response to human
faces compared to animal faces [41]. In the same study we
have shown that in the population of IT cells while the response
amplitude for human faces and animal faces are similar, the
response onset latency for human faces in significantly shorter
than animal faces.

It has been shown that the IT neurons respond to illusory
contours [53-55]. Illusory-border defined shapes induce longer
response onset latencies compared to their counterpart real
images. The longer response latency for illusory contours
compared to real contours suggests the possibility of analyzing
the visual information within IT columns [4] or top-down
feedback for processing of subjective contours [56,57]. It is
likely that longer response onset in noisier conditions in our
task is related to similar processing mechanisms to retrieve the
lost information in the images.

3) What is the relationship between the category selectivity
and various levels of noise? Our results regarding the response
amplitude showed that the neural response in full noise (100%
noise) was larger than baseline activity. Although there is no
meaningful visual information in fully noisy images, they could
evoke IT units. This suggests that while amplitude of spiking
activity is an important measure in the neural coding, it is not
enough for understanding the neural basis of object
representation in IT.

Category selectivity is one of the intriguing properties of IT
units. Some studies have shown that category information is
represented in the neural activity of IT cortex [2,42,58-60].
Previous work from our laboratory has demonstrated the
causal link between category selective units in IT and visual
categorization performance [5]. The same study has shown
that IT units with larger category selectivity contribute more to
the behavior. We examined how this critical property of IT units
is affected by noise and found that category selectivity
gradually decreased as the noise level increased. This result is
consistent with previous findings in area MT of dorsal visual
pathway [39]. We found that category selectivity was lost in
60% noise which means that the threshold of noise tolerance
for IT category selectivity was 60% in our task. At this noise

level, the preferred and non-preferred categories evoked
similar responses which were larger than both their baseline
activities and full noise. These findings suggest that
discrimination requires a larger signal to noise level than
detection. Such a condition occurs when we see a noisy visual
stimulus and we know there is something out there but we do
not know what it is [61-63]. We have to note that while
individual MU responses examined in our study may fail to
convey category information at high noise levels (60%) a larger
population of neurons could still signal category information at
such a noisy condition since the neural sparsity might
potentially decline as stimulus noise increase [64]. However,
our finding that, in passive viewing condition, the classifier
performed near chance level for the stimuli with 60% noise
suggests that the neural system may indicate the presence of
visual object without signaling what the object is.

4) What is the neural mechanism of decreased accuracy and
speed in recognizing more ambiguous stimuli? Psychophysical
studies have found that the accuracy and speed of object
recognition and the amount of visual noise are inversely
correlated. Here, by explaining our findings in the context of
drift diffusion model (DDM), we introduce the underlying
mechanisms of these behavioral findings. The DDM has
received increased attention over the past few years for
providing a better description of accuracy and reaction time of
making a decision compared to alternative models [65-68]. In
this model the decision variable (DV) is a cumulative sum of
the evidence. When DV reaches one of the stop bounds the
decision is made (Figure 6A).

Previous studies have shown that lesions of the temporal
lobe cause deficits in the object recognition performance [69].
We also know that electrical stimulation of the temporal lobe
induces the imagery recall in humans [70]. We have reported
that microstimulation of the category selective neural clusters in
IT modulates the object categorization performance [5]. The
same study showed that IT clusters with larger category
selectivity contribute more to the behavior. The selectivity of IT
neurons to complex objects such as bodies and the effects of
lesions and microstimulation of the IT cortex on the object
recognition performance indicate a crucial role for this area in
perceptual categorization. It has also been shown that the
choice signal is present in the IT neural responses in the
context of depth discrimination [71] and visual search tasks
[72]. These studies suggest that IT neural activity can be a
manifestation of the decision variable evolving in this area.

Based on DDM model, the speed of making a decision
depends on the start point of the accumulator and the drift rate.
The start point corresponds to the neural baseline activity [73].
Our task was not block designed for different levels of
ambiguity. Hence, the monkey had no clue what stimulus
would be presented in the upcoming trial, which makes the pre-
stimulus condition exactly the same for all of the trials. Drift rate
or the slope of the DV trajectory moving toward the decision
boundaries depends on the rate of evidence accumulation. In
our results the response onset latency was longer in noisier
conditions. Therefore, evidence accumulation and the drift
started later in these conditions. Furthermore, the response
amplitude and selectivity were smaller which provided less
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information at any given time. This could result in a slower drift
rate in noisy conditions. Due to the later start of the drift and
the slower drift rate, it takes longer for the DV to reach the
decision boundary in noisier condition. Figure 6B represents a
schematic illustration of this mechanism which explains longer
reaction times observed in behavioral studies. Cumulative SI
presented in Figure 6A could be an indicator of the DV
accumulation across time. In the noisier conditions, later onset
of the drift and also the slower drift rate was associated with a
slower accumulation of the DV compared to the less noisy
conditions.

Slow accumulation of the DV makes it reach the boundary
later (e.g. line ‘a’ in Figure 6B) or do not reach the boundary at
the time of decision making (e.g. line ‘b’ in Figure 6B). The
accuracy of making a choice depends on how close DV is to
the decision boundary at the time of making a choice. Later
onset, smaller amplitude, decreased selectivity and shorter
duration of response in noisier conditions decrease the
available evidence for formation of DV. Therefore, at any given
time the accumulated evidence for noisier conditions is farther
from the decision boundary which makes the choices less
accurate. In such a condition the trade-off between accuracy
and speed might help the subject to accumulate more evidence
in a longer time to make a more accurate decision.

Conclusions

By measuring the neural response of the IT cortex we found
that an increase in the level of ambiguity of visual objects
gradually decreases the amplitude and selectivity of the

response. In terms of temporal dynamic of the response,
stimulus ambiguity gradually increases the onset latency and
decreases the offset latency and duration of the evoked
response. We explained the possible mechanisms underlying
of the changes in the accuracy and speed of object recognition
by a drift diffusion model of decision making. We believe that
our findings are important for a better understanding of the
neural basis of object recognition in ambiguous conditions and
also the mechanisms of behavioral changes in such situations.

Supporting Information

Figure S1.  Image set. The stimuli were grayscale
photographs of bodies (humans, monkeys and quadrupeds)
and objects (aircraft, car and chair). There were 30 images per
subcategory (90 images in each category). Each stimulus was
presented in four different noise levels (10, 30, 45 and 60
percent).
(TIF)
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