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Abstract

Background: Estimates of the effectiveness of influenza vaccines in older adults may be biased because of difficulties
identifying and adjusting for confounders of the vaccine-outcome association. We estimated vaccine effectiveness for
prevention of serious influenza complications among older persons by using methods to account for underlying differences
in risk for these complications.

Methods: We conducted a retrospective cohort study among Ontario residents aged $65 years from September 1993
through September 2008. We linked weekly vaccination, hospitalization, and death records for 1.4 million community-
dwelling persons aged $65 years. Vaccine effectiveness was estimated by comparing ratios of outcome rates during weeks
of high versus low influenza activity (defined by viral surveillance data) among vaccinated and unvaccinated subjects by
using log-linear regression models that accounted for temperature and time trends with natural spline functions.
Effectiveness was estimated for three influenza-associated outcomes: all-cause deaths, deaths occurring within 30 days of
pneumonia/influenza hospitalizations, and pneumonia/influenza hospitalizations.

Results: During weeks when 5% of respiratory specimens tested positive for influenza A, vaccine effectiveness among
persons aged $65 years was 22% (95% confidence interval [CI], 26%–42%) for all influenza-associated deaths, 25% (95% CI,
13%–37%) for deaths occurring within 30 days after an influenza-associated pneumonia/influenza hospitalization, and 19%
(95% CI, 4%–31%) for influenza-associated pneumonia/influenza hospitalizations. Because small proportions of deaths,
deaths after pneumonia/influenza hospitalizations, and pneumonia/influenza hospitalizations were associated with
influenza virus circulation, we estimated that vaccination prevented 1.6%, 4.8%, and 4.1% of these outcomes, respectively.

Conclusions: By using confounding-reducing techniques with 15 years of provincial-level data including vaccination and
health outcomes, we estimated that influenza vaccination prevented ,4% of influenza-associated hospitalizations and
deaths occurring after hospitalizations among older adults in Ontario.
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Introduction

Influenza viruses are associated with substantial morbidity

annually, and persons aged $65 years are among those at highest

risk of serious outcomes following influenza infection [1–3]. Annual

influenza vaccination is recommended for older adults in Canada,

the United States, and many other developed countries [4,5].

However, the effectiveness of vaccination among older adults is a

subject of considerable debate. The only large randomized placebo-

controlled clinical trial of inactivated influenza vaccine in adults
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aged $60 years was conducted during a single season; efficacy was

58% for prevention of serologically-confirmed influenza in symp-

tomatic subjects [6,7]. All other large studies of influenza vaccine

effects among older persons have used observational data, typically

from retrospective cohort studies. For example, retrospective cohort

studies conducted with US health plan data reported that influenza

vaccine effectiveness (VE) in community-dwelling elderly persons

was 47% for preventing all-cause mortality and 27% for preventing

pneumonia/influenza hospitalizations [8,9].

Of course, the results from any observational study are

susceptible to bias [8–10]. It has been suggested that VE estimates

from cohort studies using electronic health records were suscep-

tible specifically to ‘‘healthy vaccinee’’ bias [10–12], and previous

work has shown that statistical adjustment for covariates available

in electronic health records, including ICD-9-CM-based diagnos-

tic codes, do not control for this bias [13]. However, there is no

alternative to using observational data for assessing vaccine effects

against serious outcomes of influenza infections, given the rarity of

these outcomes. Clearly, methods more advanced than those

commonly used in ‘‘standard’’ cohort studies are needed to control

for unmeasured confounders in vaccine studies conducted among

older adults.

Observational studies of vaccine effects are plagued not only by

the potential for confounding, but also by the non-specific nature

of the outcomes commonly used in these studies, such as

community-acquired pneumonia. A recent simulation study

demonstrated that if an influenza vaccine had a true VE against

influenza infection of 55%, attaining vaccine coverage of 38% in a

population would lead to a VE against pneumonia of just 7%

(95% confidence interval [CI] 0%–25%), given assumptions about

attack rates and risk of pneumonia following influenza infection

based on recent data [14]. Most VE studies conducted among

older persons have estimated effectiveness by comparing rates of

serious, but not influenza-specific, outcomes among vaccinated

and unvaccinated persons during weeks when influenza viruses

circulated, with adjustment for potential confounders. However,

even during the discrete influenza seasons found in temperate

regions, most of these outcomes (e.g., all ICD-9-CM-coded

pneumonia/influenza hospitalizations) are not associated with

influenza infections. For example, among adults hospitalized with

lower respiratory tract infections during winter seasons, only 4%–

20% have evidence of influenza infection [15–18]. Thus, use of a

more specific outcome than pneumonia, for example, could

improve the precision of influenza VE estimates, and perhaps

decrease the likelihood of confounding as well. It is well known

that influenza epidemics are associated with increases in pneu-

monia/influenza hospitalizations and deaths above expected,

smoothed seasonal baselines [3,15]. We propose that using these

‘excess’ or influenza-associated outcomes in observational cohort

studies of influenza VE, rather than all the outcomes occurring

while influenza is circulating, could lead to more precise and less-

biased VE estimates.

Some studies have sought to reduce the likelihood of bias by

comparing adjusted VE for non-specific outcomes during weeks

when influenza is circulating and weeks when it is not. For

example, a UK study observed VE against respiratory hospital-

izations of 21% (95% CI, 17%–26%) and against respiratory-

coded deaths of 12% (95% CI, 8%–16%) during weeks when

influenza circulated, but not in weeks when it did not [16]. Jackson

et al. conducted a case-control study estimating VE for preventing

community-acquired pneumonia. They reviewed individual med-

ical records to obtain information on possible confounders not

contained in traditional electronic health records (e.g., smoking

history, frailty, severity of lung and heart disease) and sought to

identify a set of covariates that resulted in a null VE during the

pre-influenza season period in their US health plan population,

and used the same covariates to estimate VE during the influenza

season [17]. The estimated VE in this study was 8% (95% CI,

210%–23%), very similar to the estimate of 7% (95% CI, 0%–

12%) found in the simulation study for VE against a non-specific

pneumonia, given a VE against influenza infection of 55% [14].

Other studies have used novel statistical approaches in an

attempt to calculate less-biased VE estimates. For example,

Armstrong et al. estimated VE by comparing mortality rate ratios

among vaccinated and unvaccinated subjects as influenza activity

increased, thus adjusting for baseline differences between these two

groups that affect mortality risk [18,19]. In that study, when

influenza virus circulation was at its peak, defined as at or above

the 90th percentile of laboratory detections for influenza, VE for

the prevention of influenza-associated deaths was 85% (95% CI,

13%–100%). As mortality is a rare outcome even in elderly

subjects and this method is data-intensive, the confidence limits

covered the entire meaningful range, even though the study

included ,25,000 subjects. Fireman et al. sought to reduce healthy

vaccinee bias by estimating influenza VE with another novel

method they described as a ‘‘case-centered logistic regression.’’

Their analysis was similar conceptually to a finely stratified case-

cohort study, with the expected odds of vaccination in the

underlying population stratified by age, sex, and day, and

compared with the actual odds of vaccination in cases in the

same strata [20]. Fireman estimated VE to be 4.6% (95% CI,

0.7%–8.3%) for preventing all deaths during influenza seasons.

Based on the authors’ calculations, this VE for prevention of all

deaths implied a VE of 47% against influenza-associated deaths.

This study used data from a single US managed heath care plan,

and thus the ability to generalize its findings to broader

populations is unknown.

In this study, we sought to provide robust and generalizable

estimates of influenza VE by using confounding-reducing methods

with the entire community-dwelling population of Ontario aged

$65 years during 15 influenza seasons. Our outcome measures

represent influenza-associated events, rather than all events

occurring during defined periods of influenza circulation.

Methods

Design, setting, and participants
We conducted a population-based retrospective cohort study

using Ontario data from 1993–1994 through 2007–2008. At each

season’s index date (the Sunday before 1 September), a study

population was established with Ontario residents aged $65 years

who were eligible to receive universal, publicly insured health care

services. These subjects had free access to hospital care, physician

services, and influenza vaccines. The study cohort was restricted to

non-institutionalized persons who had been in contact with the

health care system within 3 years of the index date, to exclude

individuals who may have moved, resided in the province rarely,

or died but had not yet been classified as deceased in provincial

records.

We linked administrative health datasets for each study subject

by using encrypted health card numbers as unique identifiers.

Only de-identified, aggregated data were used for data analyses.

Ethics Statement
Ethics approval was obtained from the Research Ethics Board

of Sunnybrook Health Sciences Centre, Toronto, Canada. This

study used routinely collected health information from the

province of Ontario that was aggregated into weekly counts.

Influenza VE among Persons Aged $65 Years
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The mortality, hospitalization and physician services data used

contained no personal identifiers. The use of aggregate data and

data without personal identifiers precluded the need to obtain

informed consent. Additionally, the Institute of Clinical Evaluative

Sciences (ICES) is named as a prescribed entity under section 45 of

the Personal Health Information Protection Act (Ontario Regulation

329/04, Section 18). Under this designation, ICES can receive

and use health information without consent for purposes of

analysis and compiling statistical information about the health care

system of Ontario.

Study population
The study included all community-dwelling individuals aged

$65 years in Ontario from 1993 through 2008 who met the

inclusion criteria (Table 1).

Influenza vaccination status
Vaccination status was ascertained from influenza-specific and

generic vaccination codes for physician billing claims submitted to

the Ontario Health Insurance Plan, a universal insurance plan

which covers all residents of Ontario. This database contains

claims for outpatient visits from approximately 98% of Ontario

physicians [21]. Because influenza-specific vaccination codes were

introduced in 1998, and their use gradually increased after

introduction, we also used generic vaccination codes billed during

weeks when the total number of these claims exceeded a summer

baseline rate (typically between late September and late Decem-

ber). Although these generic vaccination claims included those for

other vaccines, based on previous analyses and our study data,

,96% represented influenza vaccines (Figure S1) [22]. Compared

with self-reported influenza vaccination, the combination of

influenza-specific and generic vaccination codes had sensitivity

of 75%, specificity of 90%, positive predictive value of 96%, and

negative predictive value of 54% among adults aged $65 years

[23]. Cohort members were classified as unvaccinated at each

season’s index date; we defined an individual as ‘‘immunized’’ two

weeks after the billing claim service date to account for the delay

from vaccination to development of specific humoral immunity to

vaccine strains [24].

Outcomes
Ontario’s Registered Persons Database has key demographic

information about each person who has ever received an Ontario

health card [25]. It was used to ascertain vital status and date of

death, if deceased, for individuals in the cohort. Specific cause of

death information was not available for this analysis, so we used as

outcomes all-cause mortality and mortality within 30 days of a

pneumonia/influenza hospitalization (see below) to provide a

more specific outcome for deaths in which pneumonia/influenza

likely played a role (hereafter referred to as ‘30-day pneumonia/

influenza death’) [26].

Hospitalizations for pneumonia/influenza (ICD-9-CM codes

480-487; ICD-10-CM codes J10-J18) were ascertained from the

Canadian Institute of Health Information’s Discharge Abstract

Database; this database contains detailed information on diagno-

ses and procedures for admissions to all acute-care hospitals in

Canada [27]. We included hospitalizations for which any of the

listed codes were found in the discharge abstract.

To confirm the specificity of the VE estimates for pneumonia/

influenza hospitalizations, we also examined hospitalizations for

urinary tract infections (ICD-9-CM codes 590, 595, 599.0; ICD-

10-CM codes N10, N12, N13.6, N15.1, N30, N39.0) as a ‘negative

control’ outcome for which influenza vaccination is not expected

to have an effect [28].

Influenza surveillance
We obtained weekly influenza viral surveillance data from a

provincial network of sentinel laboratories that submit weekly

reports of numbers of tests performed (using predominantly viral

culture or direct antigen detection methods) and numbers of

positive tests for influenza A and B to the Public Health Agency of

Canada. For each virus, we used the weekly percentage of tests

positive as our measure of viral circulation.

Temperature
Rates of serious illness and mortality are associated with

fluctuations in temperature [29], as is influenza activity in

temperate regions. Thus, we sought consistently collected temper-

ature data to adjust for seasonal temperature variations. Daily

measures of mean, maximum, and minimum temperature at the

weather station located at Lester B. Pearson International airport

in Toronto were obtained from the Ontario Climate Centre.

Seventy-five percent of Ontario’s population resides within 150

kilometers of this station [30]. Because we sought to adjust for

weekly associations between temperature and mortality — rather

than estimate potentially causal daily associations between

temperature and mortality — we concluded that data from this

station was sufficient to control for the possible confounding effects

of temperature trends in Ontario on VE.

Vaccine effectiveness calculation
We used Poisson models to regress weekly outcomes against the

weekly proportion of influenza tests that were positive for influenza

A or B. Similar methods have been used in time-series analyses of

air pollution and mortality [31]. Our statistical approach was

similar to the methods described by Armstrong, et al [18] for

estimating VE against influenza-associated events by using log-

linear generalized linear models. VE was modeled as the ratio in

outcome rates during periods of varying influenza activity among

vaccinated and unvaccinated cohort members. Because the

vaccinated population was compared with the vaccinated popu-

lation at previous time points, and likewise for the unvaccinated

population, this approach adjusted implicitly for baseline health

status indicators like mobility, frailty, and dementia.

Vaccine effectiveness was represented as: VE = (RR(u) 2

RR(v))/(RR(u) 2 1) = 1 2 (1 2 RR(v))/(1 2 RR(u)) where RR

was the incidence of an outcome during an influenza period

divided by the incidence outside an influenza period among the

vaccinated (v) and unvaccinated (u) groups [19]. The estimator for

VE can be expressed by using terms from a generalized linear

model as VE = (1 2 exp(bx*v x))/(1 2 exp(2bx x)) where bx was the

estimated regression coefficient for the influenza circulation

variable (i.e., the proportion of specimens testing positive for

influenza A or B), and bx*v was the estimated regression coefficient

for the influenza circulation multiplied by vaccination status

variable (i.e., the interaction term between vaccination status and

influenza circulation). Note that our estimate of VE is actually a

continuous function that depends on the level of influenza

circulation. We present results for hypothetical weeks when 5%

or 10% of tests submitted were positive for influenza viruses, and

defined these weeks as those with moderate and high levels of

influenza circulation, respectively.

Regression models
We regressed each of the outcomes each week against

respiratory specimens that tested positive for influenza. The ratios

in outcome rates during periods of varying influenza activity in

vaccinated and unvaccinated individuals were then compared.

Influenza VE among Persons Aged $65 Years
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Outcome rates were estimated using log-linear regression models.

Because the data were found to be overdispersed, we used a quasi-

poisson error distribution. An offset term was included to account

for the appropriate population denominator for each of the

outcome variables. The model can be stated as y,Quasi-

poisson(m, h); m = N exp (XXb+e) where y is the outcome, log(N) is

the offset, XXb is the linear predictor, and the error term e is

distributed to allow for overdispersion h. The offset used in our

models was the logarithm of the number of person-days of

observation in a particular stratum for a given week. All analyses

were performed at the weekly level.

Our modeling strategy was as follows. First, a ‘baseline’ model

was constructed that consisted of nothing but an intercept and the

offset term, i.e.

Outcome = Intercept + log(Exposure)

and each of our outcomes was modeled separately. Additional

terms were added via forward selection to our baseline model

using analysis of deviance. Upon inclusion into the model, terms

could be subsequently dropped via backwards elimination.

Alternating forward and reverse selection steps were performed

until either no more potential variables were available or no

statistically significant (p,0.05) additions could be made.

Potential variables for inclusion into models included: vaccine

status (vaccinated/unvaccinated), influenza A circulation, influen-

za B circulation, sex (male, female), age group (ages 65–74 years or

$75 years), week of the year (i.e., 1…52), week of the study period

(i.e., 1…783), weekly mean temperature, and a dichotomous

variable to account for introduction of Ontario’s Universal

Influenza Immunization Program (UIIP) on 1 September 2000.

After UIIP began, the entire population of Ontario aged $6

months, regardless of age or underlying medical condition,

became eligible to receive free seasonal influenza vaccination.

Main effects of any variable had to be present before interaction

effects could enter the model. Only interactions with vaccine status

were considered. For example, a vaccine status and age group

interaction could be included in the model once the main effects of

vaccine status and age group had been included. Inclusion of any

vaccine status and time variables in our model indicated the

presence of time-varying biases of vaccination status and allowed

us to control for these effects appropriately. Vaccine effectiveness

was calculated only if a vaccine status and influenza circulation

interaction effect was included in a regression model.

Natural cubic spline functions were used to model the

association of three covariates on influenza-associated events:

week of the year, week of the study, and weekly mean temperature.

Natural splines are cubic functions ‘‘tied’’ together at n ‘‘knots’’

and have n +1 degrees of freedom (i.e., if d.f. = 1 then there are no

knots, and the spline is simply a cubic function). Splines for these

three variables with 1 d.f. to 6 d.f. were evaluated for possible

inclusion into our models. Once a spline for a given variable

entered a statistical model, no other spline for that variable could

enter the model. In other words, if a spline for mean temperature

with 2 d.f. was used based on analysis of deviance, then splines for

mean temperature with 1, 3, 4, 5, and 6 d.f. were not considered.

If the spline with 2 d.f. was subsequently dropped, then any of the

spline representations of temperature could be evaluated for

inclusion again. The use of natural splines for mean temperature

and week of the year allowed the model to control for the strong

seasonality of our outcomes in a more logical and flexible manner

than the sine/cosine harmomic variables often used in studies

seeking to identify influenza-associated outcomes [1–3,32]. Sim-

ilarly, using a natural spline to represent calendar week in models

was more flexible in capturing long-term time trends in outcomes

than simple polynomials.

A list of the predictors included in the final models (Table S1)

and an enumeration of those predictors from the model of each

outcome (Table S2) are provided in the Supplemental Materials.

Because of autocorrelation present in our time-series, we applied

Newey-West estimators to the parameter variance-covariance

matrix to correct for the observed autocorrelation and thereby

provide consistent estimates of the regression parameters [33].

Estimates of cases averted and numbers needed to
vaccinate

We estimated the absolute number of outcomes averted by

influenza vaccination in Ontario by using the predicted number of

cases ( ŷ ) in the vaccinated group and the vaccine effect on the

estimate of excess cases while influenza virus circulation varied

(bx*v). By setting the effect of vaccination to zero (bx*v = 0), we

estimated the number of cases (y9) that would have occurred in the

vaccinated population if vaccine had no effect or if it was never

delivered. The number of cases averted was defined as (y9 – ŷ ). We

calculated the proportion of outcomes prevented in the vaccinated

group (i.e., the proportion averted among vaccinees) by dividing

the number of cases averted by the total number of cases in the

vaccinated group during weeks of influenza virus circulation with

the number of cases averted added back into the denominator.

This proportion can be interpreted as an estimate of VE against all

occurrences of these outcomes during periods of influenza virus

circulation. Furthermore, for each outcome we calculated the

number needed to vaccinate (NNV) to prevent one outcome by

dividing the mean annual number of influenza vaccines admin-

istered by the mean annual number of cases averted per season.

All analyses were conducted using R software (R Development

Core Team, R Foundation for Statistical Computing, Vienna,

Austria. http://www.R-project.org.).

Results

During the 15 study seasons, an annual average of 48,402 all-

cause deaths, 4,552 30-day pneumonia/influenza deaths, and

22,839 pneumonia/influenza hospitalizations occurred among

community-dwelling adults aged $65 years in Ontario (Table 1;

outcomes stratified by age group in Table S3). During this period,

334,797 influenza tests were performed, with 26,753 positive for

influenza A viruses and 6,774 positive for influenza B viruses (8%

and 2% positive, respectively). Influenza viruses were detected

during 479 weeks (61% of study weeks). Greater than or equal to

5% or $10% of tests were positive for influenza during 218 weeks

(28%) and 132 weeks (17%), respectively. During each 52-week

period, $5% and $10% of tests were positive for influenza during

a median of 14 and 10 weeks, respectively. Each of the outcomes

Figure 1. Weekly trends of influenza viral surveillance outcome rates among individuals aged $65 years. In the top three panels,
weekly outcome rates are indicated by red symbols for unvaccinated individuals and blue symbols for vaccinated individuals; the size of the symbol
reflects the number of individuals in a category. The panels show all-cause mortality, 30-day pneumonia/influenza mortality, and pneumonia/
influenza hospitalization from top to bottom, respectively. In the bottom panel, weekly percentages of specimens testing positive for either influenza
A or B are represented by gray and black bars (respectively). The sum of the black bar and gray bar shows the total percent positive for the week (i.e.,
the data for influenza A and B are not overlaid).
doi:10.1371/journal.pone.0076318.g001
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demonstrated weekly seasonality, with spikes coinciding with

periods of influenza activity among both vaccinated and unvac-

cinated individuals (Figure 1).

In the statistical models for each of the outcomes we examined,

the presence of a vaccine status and influenza circulation

interaction variable (determined by using analysis of deviance)

indicated evidence of an effect of vaccination on influenza-

associated events. When we used hospitalizations for UTIs as a

negative-control outcome, no vaccine status or influenza circula-

tion interactions entered the model, demonstrating that influenza

vaccination had no effect on the observed rate of UTI admissions.

For each of our three outcomes of interest, a vaccine status and

influenza A circulation interaction variable was included in the

models, indicating an effect of vaccination. No vaccine status and

influenza B interaction was found for pneumonia/influenza

hospitalization or 30-day pneumonia/influenza deaths, indicating

no evidence for a vaccine effect for influenza B-related outcomes.

For influenza-associated all-cause deaths, the main effect of

influenza B was negative (Table S2), suggesting that increasing

circulation of influenza B was associated with lower outcome rates

in the study population. Thus, it was not logical to estimate VE for

prevention of influenza B-associated all-cause deaths.

During weeks when 5% of respiratory specimens tested positive

for influenza A (weeks with moderate influenza activity), VE

against influenza-associated all-cause deaths, 30-day pneumonia/

influenza deaths, and pneumonia/influenza hospitalizations was

22% (95% CI, 26%–42%), 25% (95% CI, 13%–37%), and 19%

(95% CI, 4%–31%), respectively (Table 2). VE was similar during

weeks when 10% of specimens tested positive for influenza, a

threshold often used to define peak weeks of activity. A plot of

estimated VE by values of the proportion of specimens testing

positive for influenza A from 0.01% to 25% is provided in the

online supplement (Figure S2).

A limited proportion of each outcome represented excess events

occurring during weeks of influenza A circulation: a mean of 6.0%

of all-cause deaths, 15.1% of 30-day pneumonia/influenza deaths,

and 16.6% of pneumonia/influenza hospitalizations (Figure 2).

These proportions varied considerably by season, as would be

expected, given the considerable season-to-season differences in

influenza circulation and relative intensity.

We estimated the annual numbers of each of the three outcomes

potentially averted by vaccination with VE point estimates and

predicted outcomes with or without a vaccine program (Table 3).

During weeks when influenza was circulating, we estimated that

influenza vaccination prevented 1.6% of all-cause deaths, 4.8% of

30-day pneumonia/influenza deaths, and 4.1% pneumonia/

influenza hospitalizations among vaccinated individuals. Based

on weekly vaccine coverage data, these results suggested that an

average of 139 deaths (with a minimum of 43 in 1993/1994 and a

maximum of 227 in 2004/2005) and 235 hospitalizations (with a

minimum and maximum of 65 and 433 occurring in 2000/2001

and 2003/2004, respectively) were averted annually in Ontario by

the influenza vaccination program. The numbers of elderly

individuals needed to vaccinate to prevent one outcome were

5,124, 14,105, and 3,039 for all-cause deaths, 30-day pneumonia/

influenza deaths, and pneumonia/influenza hospitalizations,

respectively.

Linear models for all outcomes included interaction terms for

the week of the year with vaccination status and mean temperature

with vaccination status (Table S2). These terms controlled for

time-varying biases within a season. Examination of the partial

effects plots (not shown) for these factors show that substantial

(upward) bias in VE would be found using traditional models

during both the earlier part of the influenza season or for colder

periods of the season (i.e. the pre- and post-influenza time periods).

Thus our model, and specifically the aforementioned interaction

terms, removed biases that resulted from observations taken

during various periods of the year that have been observed in

other vaccine effectiveness studies, such as that by Jackson et al.

[10].

Discussion

In this large population-based study, we applied a ‘ratio-of-

ratios’ modeling approach to reduce the influence of difficult-to-

measure individual-level confounders on the association between

vaccination and three outcomes among older community-dwelling

Ontario residents. The unmeasured confounders of greatest

concern include physical frailty and dementia, which are

incompletely captured in administrative health records and death

certificates, but are likely associated with high mortality risks and

low vaccination rates. During weeks of moderate-to-high influenza

activity, influenza vaccination was associated with a (non-

significant) 22% reduction in influenza-associated deaths (i.e.

those deaths in the vaccinated population that would exceed an

expected value in the absence of influenza circulation). Excess

deaths occurring within 30 days of a pneumonia/influenza

hospitalization, and excess pneumonia/influenza hospitalizations

were significantly reduced, by 25% and 19%, respectively. As

expected, no benefit from influenza vaccination was observed for

UTI hospitalizations. Despite demonstrating a moderate level of

VE for the three primary outcomes, the predicted mean annual

numbers of events prevented in Ontario were small (139 all-cause

deaths, 51 deaths in the 30 days following a pneumonia/influenza

hospitalization, and 235 pneumonia/influenza hospitalizations)

because the proportions of these deaths and hospitalizations that

were associated with influenza activity were small. It is important

to highlight that the protective effects of large-scale vaccination

campaigns might be greater than these estimates because of

indirect protective effects of such campaigns (i.e., herd-immunity)

[34,35]. However, the quantification of indirect effects is extremely

difficult for diseases that cannot be definitely diagnosed without

Table 2. Estimates of vaccine effectiveness (VE) for the prevention of influenza A-associated outcomes in community-dwelling
Ontario residents aged $65 years (95% confidence interval [CI]) during weeks when 5% or 10% of respiratory specimens tested
positive for influenza viruses.

Excess influenza-associated outcome 5% Circulation VE (95% CI) 10% Circulation VE (95% CI)

All-cause deaths 22% (26, 42) 23% (25, 42)

30-day pneumonia/influenza deaths 25% (13, 37) 26% (13, 38)

Pneumonia/influenza hospitalizations 19% (4, 31) 20% (6, 33)

doi:10.1371/journal.pone.0076318.t002
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specific laboratory testing, including influenza infections [36].

Thus, we have focused on the direct and more conservative

benefits of influenza vaccination in this study.

We estimated the effectiveness of influenza vaccination for

prevention of outcomes that: 1) occurred during weeks when

specific laboratory testing for influenza revealed that influenza

viruses were circulating at pre-specified levels in Ontario; and 2)

were above a seasonally adjusted baseline of counts for each

outcome. These outcomes are in contrast to those used in many

other cohort studies, in which all events occurring during periods

of any influenza virus circulation were used as outcomes measures.

The importance of this difference is easily demonstrated: because

only 6.0% of all deaths among Ontarians aged $65 years

occurred during weeks when influenza circulated were above a

seasonal baseline (and thus were categorized as influenza-

associated), a VE of 22% for this outcome represented a 1.6%

reduction in deaths among vaccinated individuals. This 1.6%

reduction can be interpreted as a population-based estimate of

vaccine effects on all deaths occurring during periods of influenza

virus circulation. A meta-analysis of cohort studies calculated a VE

of 47% for the prevention of all-cause mortality among

community dwelling elderly during influenza seasons [8]. Studies

by Jackson et al. and Mangtani et al., demonstrated the bias

inherent in cohort analyses by detecting putative vaccine benefits

for non-specific outcomes when influenza activity is nil [10,16].

Thus, we confirm with data from the most populous province in

Canada that VE estimates not accounting for individual-level

baseline risks for mortality are unrealistically optimistic. Because

greater proportions of 30-day pneumonia/influenza deaths and

pneumonia/influenza hospitalizations were attributed to influen-

za, greater percentages of these more specific events were averted

by influenza vaccination, and thus the VE estimates of 25% and

19%, respectively, against these outcomes are likely more robust.

Our results can be compared directly with those from a few

other studies that explicitly sought to adjust for unmeasured

confounding, including healthy vaccinee effects. Using medical

chart review to collect data on covariates not traditionally

available in administrative data, Jackson et al. estimated a VE of

8% (95% CI, 210%–23%) against community-acquired pneu-

monia during influenza seasons [17], consistent with our estimate

of 19% VE (CI 4%–31%) and a 4.1% reduction of all pneumonia/

influenza hospitalizations occurring during periods of influenza

virus circulation among vaccinated individuals. The Armstrong et

al. study estimate of VE for influenza-associated all-cause mortality

was 85% during 1996–2000. The cohort size of ,25,000 in that

study meant that its 95% CI of 13%–100% covered essentially the

entire possible range of vaccine benefits; thus their CI does include

our point estimate [18,19]. Fireman et al. estimated that influenza

vaccination was associated with a 47% reduction (95% CI not

provided) in influenza-associated (as opposed to all) deaths

between 1996 and 2005 in a single U.S. managed care plan

[20]. The same group also reported a 28% reduction (95% CI not

provided) in influenza-associated pneumonia/influenza hospital-

izations [37], which is similar to our VE estimate for pneumonia/

influenza hospitalizations. Another recent study used an instru-

mental variable approach to estimate influenza VE. The use of an

instrumental variable to adjust for unmeasured confounding is

common in econometric analyses of observational data [38,39]. In

that Ontario study conducted during the 2000-2009 influenza

seasons, VE among adults aged $65 years was 6% (95% CI, 0%–

16%) for all-cause deaths and 14% (95% CI, 8%–21%) for a

composite outcome of a pneumonia/influenza hospitalization or

death [40]; these results are comparable to our results on the

Figure 2. Proportion of outcomes that were influenza A-associated per season and overall. Percentage of all-cause mortality, 30-day
pneumonia/influenza mortality, and pneumonia/influenza hospitalizations that were estimated to be influenza-associated during periods of influenza
A circulation are indicated in the green, blue, and red columns, respectively.
doi:10.1371/journal.pone.0076318.g002
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Table 3. Predicted number of cases averted by influenza vaccination, by study outcome.

Outcome Season
No. weeks with
influenza A detected

Cases among the vaccinated during
weeks with influenza A detected

Cases averted by
vaccination

% averted among
vaccineesa

All-cause deaths

1993/1994 17 3636 43 1.2%

1994/1995 25 5032 61 1.2%

1995/1996 27 4126 77 1.8%

1996/1997 28 5252 79 1.5%

1997/1998 24 7359 202 2.7%

1998/1999 39 9870 144 1.4%

1999/2000 33 10519 207 1.9%

2000/2001 26 7795 46 0.6%

2001/2002 33 9116 182 2.0%

2002/2003 36 12518 117 0.9%

2003/2004 36 9183 197 2.1%

2004/2005 41 12204 227 1.8%

2005/2006 35 11867 136 1.1%

2006/2007 35 11087 218 1.9%

2007/2008 44 13311 156 1.2%

Mean 32 8858 139 1.6%

30-day pneumonia/influenza deaths

1993/1994 17 398 16 3.9%

1994/1995 25 526 20 3.7%

1995/1996 27 406 25 5.8%

1996/1997 28 656 30 4.4%

1997/1998 24 934 78 7.7%

1998/1999 39 1215 47 3.7%

1999/2000 33 1368 86 5.9%

2000/2001 26 837 14 1.6%

2001/2002 33 972 60 5.8%

2002/2003 36 1385 43 3.0%

2003/2004 36 1159 89 7.1%

2004/2005 41 1387 81 5.5%

2005/2006 35 1210 42 3.4%

2006/2007 35 1277 78 5.8%

2007/2008 44 1447 51 3.4%

Mean 32 1012 51 4.8%

Pneumonia/influenza hospitalizations

1993/1994 17 2227 70 3.0%

1994/1995 25 2920 89 3.0%

1995/1996 27 2092 108 4.9%

1996/1997 28 3494 142 3.9%

1997/1998 24 5140 357 6.5%

1998/1999 39 6427 210 3.2%

1999/2000 33 7525 397 5.0%

2000/2001 26 4632 65 1.4%

2001/2002 33 5532 281 4.8%

2002/2003 36 7105 202 2.8%

2003/2004 36 6454 433 6.3%

2004/2005 41 8275 381 4.4%

2005/2006 35 6695 196 2.8%

2006/2007 35 6874 360 5.0%
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reduction in deaths due to all-cause deaths or pneumonia/

influenza hospitalization. The instrumental variable method

depends on finding a covariate closely associated with vaccination,

but unrelated to outcome; it is often difficult to find a good

instrument. Hence, an advantage of the regression methods we

used is that they are more broadly applicable and likely more

generalizable for use in other populations.

This study has a number of strengths. We studied influenza

vaccine effectiveness during 15 influenza seasons, representing

,21 million person-years of observation. We included tempera-

ture in our analyses, a variable that both affects winter mortality

among older persons and is associated with influenza circulation,

in temperate regions [31,41], which may have improved the

precision of our VE estimates. By further developing methods

pioneered by Armstrong et al., and using three outcomes of varying

specificity, we estimated the effectiveness of influenza vaccination

in preventing serious influenza-associated events in individuals

aged $65 years to a greater level of precision than previously. We

also carefully specified whether a specific VE estimate applied to

all events occurring during an influenza season, or to excess events

occurring during periods of a specific level of influenza activity

(e.g., when 5% of specimens submitted for influenza testing were

positive). Finally, our analyses use a generalized linear model

framework, and therefore are easy to implement using standard

statistical analysis software packages.

Our study also has a number of limitations. First, although most

Ontario residents aged $65 years receive influenza vaccination in

physician offices, some are vaccinated in settings where billing

claims are not submitted (e.g., clinics organized by public health

departments). Billing claims were found to be 75% sensitive and

90% specific compared with self-report of influenza vaccination in

one study [23]. Misclassification resulting from use of billing data

would bias our results towards the null as the unvaccinated group’s

risk would be falsely lowered because of the inclusion of

misclassified vaccinated individuals. Second, cause-specific mor-

tality data were not available. We used excess mortality within the

30 days following a pneumonia/influenza hospitalization to

provide an outcome more specific for influenza than all-cause

deaths. Third, measures of influenza virus circulation are a key

data element in our analyses and the influenza surveillance data

we used were potentially susceptible to ascertainment and testing

biases over time. However, there were no major changes in data

collection or laboratory methods during the study, and the weekly

proportion of tests positive for influenza is a robust measure of

viral activity [32]. Fourth, because only a small number (2%) of

influenza tests were positive for influenza B viruses, we could not

provide a specific estimate of VE for influenza B-associated events,

so VE estimates could be made only for influenza A-related

outcomes. Finally, in common with all population-based retro-

spective cohort studies, we did not have data on laboratory-

confirmed influenza infections from a per-protocol prospective

testing scheme. It is unlikely that such data will ever be collected

on a community- or province-wide scale because of the obvious

logistical and resource requirements.

Based on our results and those from other studies, influenza

vaccines that are more effective in preventing serious complica-

tions of influenza infections are clearly needed, particularly for

older persons. Several strategies offering potentially more effective

vaccines are being pursued. For example, a high-dose inactivated

vaccine was licensed recently in the United States based on

superior immunogenicity data [42]. It will be important to assess

whether new influenza vaccines prevent more serious albeit rare

complications of influenza infections than the decades-old

standard inactivated vaccines. Large observational studies using

bias-reducing methods likely represent the only possible option to

study the relative effectiveness of new versus standard influenza

vaccines for the serious outcomes of greatest interest, including

mortality. In addition, the methods we used may also be suitable

for evaluating other large-scale public health interventions in

populations in which unmeasured individual-level characteristics

like frailty and dementia, for example, may be important

confounders.

Supporting Information

Figure S1 Weekly physician billing claims submitted
with influenza-specific and generic vaccination codes.
Physician billing claims for generic vaccination codes are

represented by gray bars and influenza-specific vaccination codes

are represented by black bars. The bars are stacked. Prior to the

introduction of influenza-specific codes in 1998, physicians used

generic codes when billing for influenza vaccination, which are

evident as substantial spikes above a fixed baseline. There was a

gradual increase in the use of the influenza-specific codes, and a

corresponding gradual reduction in the use of the generic codes.

We estimated that only 4% of the combined influenza-specific and

generic vaccination claims during weeks of the annual influenza

vaccination campaigns are not for influenza vaccination.

(TIFF)

Figure S2 Change in vaccine effectiveness as a function
of circulating influenza levels. Vaccine effectiveness is a

continuous function dependent on the level of influenza circulation

within the population. Black lines represent the expected VE at

any level of circulation and the dashed red lines indicate the upper

and lower 95% confidence bands. Note that VE changes relatively

little across circulation values and in a linear manner.

(TIFF)

Table S1 Variables potentially included in the log-
linear regression model.
(DOCX)

Table S2 Enumeration of all predictors included in the
final log-linear regression models for each outcome.
(DOCX)

Table 3. Cont.

Outcome Season
No. weeks with
influenza A detected

Cases among the vaccinated during
weeks with influenza A detected

Cases averted by
vaccination

% averted among
vaccineesa

2007/2008 44 7824 237 2.9%

Mean 32 5548 235 4.1%

aPercent averted among vaccinees is calculated as (cases averted / [total cases in the vaccinated population during weeks of influenza virus circulation + cases averted])
* 100
doi:10.1371/journal.pone.0076318.t003
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Table S3 Number of individuals, vaccinations and
outcomes for each study year, stratified by age group
(65–74 years and $75 years).

(DOCX)
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