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Abstract

We investigate the computational structure of a paradigmatic example of distributed social interaction: that of the open-
source Wikipedia community. We examine the statistical properties of its cooperative behavior, and perform model
selection to determine whether this aspect of the system can be described by a finite-state process, or whether reference to
an effectively unbounded resource allows for a more parsimonious description. We find strong evidence, in a majority of the
most-edited pages, in favor of a collective-state model, where the probability of a ‘‘revert’’ action declines as the square root
of the number of non-revert actions seen since the last revert. We provide evidence that the emergence of this social
counter is driven by collective interaction effects, rather than properties of individual users.
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Introduction

Social systems–particularly human social systems–process

information. From the price-setting functions of free-market

economies [1,2] to resource management in traditional commu-

nities [3], and from deliberations in large-scale democracies [4,5]

to the formation of opinions and spread of reputational

information in organizations [6] and social groups [7,8], it has

been recognized that such groups can perform functions analogous

to (and often better than) engineered systems. Such functional

roles are found in groups in addition to their contingent historical

aspects and, when described mathematically, may be compared

across cultures and times.

The computational phenomena implicit in social systems are

only now, with the advent of large, high-resolution data-sets,

coming under systematic, empirical study at large scales. While

such studies are well advanced in the case of both human [9,10]

and non-human [11,12] communication, these methods have not

been widely applied in the study of collective social behavior.

We study a particular phenomenon, that of cooperation in the

online, open source Wikipedia community, with the goal of

distinguishing between different classes of computational sophis-

tication. We focus on the distinction between finite and non-finite

models, where the latter have access to an effectively unbounded

resource, such as a counter, stack or queue [13].

A feature common to all such analyses is that a finite amount of

data by itself can never distinguish between two classes whose

distinctions are defined in terms of bounded vs. unbounded

resources. This is sometimes understood in terms of the

competence-performance distinction; see Refs. [9] and [14]. Our

argument for the emergence of non-finite computational proper-

ties thus relies on model selection, and the statistical inference of

asymptotic properties of a finite-state system. As part of this

argument we prove a result that we refer to as the probabilistic

pumping lemma: for any finite-state process, and any string w, of

sufficient length, produced by the process, the probability that a

word of length DwDn is found to be wn decays exponentially as n
becomes large.

The outline of our paper is as follows. We state, and prove, the

lemma described above, in the first section, and Appendix S1 in

File S1. We establish the main empirical result of this work in the

second section, where we examine the symbolic dynamics of

article editing in Wikipedia. In considering the top ten most-edited

articles in the encyclopædia, we find strong evidence in a majority

of cases for a violation of the probabilistic pumping lemma, and

thus computation over and above that of the finite-state.

We then discuss the possible origins of this effectively resource-

unbounded system in the third section. We conclude with the

implications of this finding for the complexity of social systems,

and compare our findings with recent work and explore the

analogy between formal grammars and social behavior.

The Probabilistic Pumping Lemma
In order to distinguish between finite and non-finite models, we

focus on the statistics of repeated behavioral patterns, or ‘‘words’’.

In this section, we show explicitly that probabilistic finite-state

process have an exponential cutoff in the asymptotic distribution of

repeated words.

Our discussion here relies on the properties of P(wk) or, in

words, ‘‘the probability of the word wk’’, or, more explicitly, ‘‘the

probability that a randomly drawn string of length DwDk will be

wk.’’ Measurement of P(wk) from data is non-trivial, and detailed

discussion of this appears in Appendix S3 in the File S1.
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Our proof establishes the existence of an exponential cutoff by

showing that the limiting ratio of P(wk) (the probability of

observing the word w repeated k times in a sample of length DwDk),

and P(wkz1), as k becomes large, approaches a constant strictly

between zero and one. We will be able to determine that limiting

constant in terms of the properties of the underlying system.

Statement of lemma. For any probabilistic finite-state

process, any initial distribution over internal states, and any word

w, where (1) for all p there exists a kwp such that P(wk)w0 and

(2) the system does not deterministically repeat a single word, there

exists a positive real number e such that.

exp lim
k??

sup
1

k
log P(wk)

� �� �
~E, ð1Þ

as k becomes large, with 0vEv1, E strictly greater than zero and

strictly less than one. The limiting value, E, is the spectral radius of

Aij(w), the natural extension of the symbol transition matrix to

multi-letter words.

The complete proof is given in Appendix S1 in File S1. Tests of

the numerical convergence of this relation are presented in

Appendix S2 in File S1, where we study how small machines

(number of states of order ten) converge to the bound of Eq. 1 for a

uniform prior over spectral radius.

Informally, the lemma says that P(wk) is bounded above by an

exponential cutoff of the form Ek, 0vEv1. For most processes, the

relevant scale for the limit to obtain is k of order p, the number of

states in the underlying process.

Given this, and under the mild assumption that the system has

passed through its transient states to one of its aperiodic final

classes, the asymptotic probability P(wk) takes the form of a sum

of exponentials,

PnEXP(wk)~
Xn

i~1

Aie
k log bi , ð2Þ

where here n is the number of classes, and bi are all strictly

between zero and one. Eq. 2, which we refer to as the nEXP

model, forms the basis of our model comparisons, and the

evidence for non-finite-state computation, presented in the next

section.

Note that, for the special case of a purely deterministic (non-

probabilistic) machine, where each state has only one transition,

either (1) P(wk) will be zero for all k greater than some fixed value

or (2) the output string will just be repetitions of w; either violates

the conditions of the lemma. Deterministic machines can be

recognized by looking for exact repetitions; the more general case

that violates Eq. 2, aperiodicity, can be recognized by non-

monotonic behavior.

Note also that the absence of a violation of the probabilistic

pumping lemma is not evidence against non-finite-state compu-

tation. Even in the case of infinite data, it is easy to construct non-

finite-state processes that show exponential decay in all repeated

strings; an example can be constructed for a stochastic context-free

language that generates strings of matched, but arbitrarily nested,

parentheses: ‘‘…( )((( )) ( ))…’’.

The Case of Wikipedia
We now consider a real-world example of collective behavior in

a human social system. We are interested in the underlying

computational structure of the process, and in particular, the

question of whether the system might have access to an

unbounded resource. To that end, we compare an infinite-

resource model to the general finite-state case using model

selection.

1. Model Selection
A finite-state model, given a sufficient number of states, can

reproduce the statistics of an arbitrary process. In statistical study,

one must therefore ask when the data justify a simpler (if non-

finite) model with fewer parameters. This is known as model selection.

Model selection provides a principled and self-consistent way to

select between different descriptions of a process, and to determine

(among other things) when adding additional parameters to a

model is justified. Without model selection, it would be impossible

to establish the existence of a power-law (as opposed to a sum of

exponentials), a sine function (as opposed to a finite number of

terms in its Taylor series expansion), or a linear trend (as opposed

to a truncation of its Fourier decomposition).

Model selection is often done informally, based on the intuitive

appeal of one model over another. Here, we attempt a more

rigorous approach based on Bayesian methods. The Bayes factor,

which provides a self-consistent method for model selection, is now

in wide use in the biological [15,16] and physical sciences [17–21].

It is of particular use when the question concerns selection

between competing hypotheses, rather than (as happens in the

frequentist paradigm) the rejection of a null hypothesis [22].

For model selection, there are two relevant quantities. The first

is L, the log-likelihood of the posterior, or the log of the probability

of the data given the best choices of parameters for the model in

question,

L~log max~aa P(DD~ww,M), ð3Þ

where M is a particular model, ~ww is the vector of parameters

associated with M, and D is the data. Models of sufficient

generality can, with sufficiently many parameters, make L
arbitrarily large for a given data-set.

The second quantity, , is the Bayesian evidence for the model,

or, the log-likelihood of the data averaged over all possible

parameter values,

~log

ð
P(DD~ww,M)P(~wwDM)d~ww ð4Þ

It is the Bayesian evidence that allows us, in a consistent

fashion, to select between models; the reader is referred to Ref.

[23]. Meanwhile, the log-likelihood L is useful as a diagnostic to

see which features of the data are relevant.

The Bayesian evidence requires use of a prior, P(~wwDM); careful

specification of the prior is necessary to avoid unfairly penalizing

one model over another. In both models we consider, parameters

may specify (1) an overall normalization, (2) relative amplitudes of

different components, or (3) timescales of decay. We place uniform

priors on normalization and decay timescales (within reasonable

bounds), and model the priors for relative amplitudes as uniform

on the simplex.

To compute , we use a standard approximation (Ref. [23]; see

Appendix S4 in the Supporting Information File). This quantity

can be directly interpreted as the log-probability in favor of a

model, given the data; thus D , the difference between for two

models, corresponds to the log probability in favor of one model

versus the other.
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2. Article Timeseries Data
We consider the ‘‘edit history’’ of encyclopædia articles, taken

individually. These histories amount to a time-series of editor

behaviors: the time-stamped changes to the page made by

individuals (either anonymous, or pseudonymous).

Coarse-graining of these histories is necessary: the number of

possible edits that editors can make is essentially unbounded and

any edit may change, add, or delete arbitrary amounts of text from

the article. A well-known distinction, however, exists between edits

that alter the text in a novel fashion and those that ‘‘roll back’’ the

text to a previous state. The latter kind of edit, called a ‘‘revert’’ is

used when an editor disagrees with an edit made by someone else

and, instead of altering the text further, undoes the work of his or

her opponent; as we describe below, revert edits are strongly

correlated in time with conflict, and are themselves considered

anti-social actions in the context of normal editing.

We thus coarse-grain the history of edits made on an article into

two classes, R (‘‘revert’’) and C (‘‘cooperate’’: any non-revert edit).

An example of this process is shown in Table 1, while the details of

our processing of the raw data are given in Appendix S3 in the

Supporting Information File.

A feature of Wikipedia relevant to this binary classification of

edits into revert and non-revert is the presence of so-called

‘‘vandalism’’–improper and non-constructive modifications or

blanking of the page. Since they usually do not take the form of

reversion, these would be classed as C. More detailed descriptions

(‘‘prosocial non-revert ’’ vs. ‘‘antisocial non-revert’’) and similarly

for the revert case, where pro-social reverts repair vandalism, are

certainly possible, and, from the point of view of a detailed

understanding, desirable.

At a coarse-grained level, however, revert edits are a natural

class to consider in a study of online conflict [24–26]. As noted by

Ref. [27], who studied reversion as a measure of conflict across

multiple Wikipedia-like systems, reversions capture implicit cases

of task conflict, which are strongly associated with the broader

phenomenon of relationship conflict [28]. Within the Wikipedia

community itself, reverts are considered signs of conflict [29], as

can be seen in widely accepted social norms such as the ‘‘three

revert rule’’ that encourage editors to find ways of resolving

conflicts, rather than undoing each other’s edits [30].

We focus on the most-edited pages, since these provide the

greatest amount of data and allow for the most detailed

distinctions to be made between pages. While there are large

numbers of much less-edited pages, we believe that more

sophisticated statistical methods would be required to aggregate

this data in such as way as to make statistical study at this level

possible.

3. Two Models
We consider two conceptually distinct models.

The first model is finite; in particular, we consider a finite-state

model class of sufficient generality–the probabilistic finite-state

machine–that it contains every other model on the finite side of the

finite-infinite divide of the computational hierarchy. We consider

the probability of seeing an unbroken run of k cooperative events,

Ck, given that we have just seen a revert, R. By the probabilistic

pumping lemma, it has the asymptotic form.

PnEXP(Ck DR)~
Xn

i~1

Aie
{bik, ð5Þ

where Ai and bi are free parameters that specify the amplitude and

decay rate (timescale) of the ith independent component, and n
specifies the number of components.

The second model we refer to as the collective state model. In this

model, the probability of an additional cooperative event, C, has a

functional dependence on the number of cooperative events seen

preceding. It is easiest to formulate as the probability of an

unbroken run of length k,

PCS(Ck DR)~A P
k

i~1
1{

p

ia

� �
: ð6Þ

In words, the collective state model allows for increasing

‘‘returns to scale’’: as the number of cooperative events increases,

the probability of a non-cooperative event declines as a power-law

with index a.

Underlying mechanisms have a natural description in the

collective state model. In particular, the probability of seeing a non-

cooperative action, conditional on already having seen k{1
cooperative actions just previously,

1{PCS(CDCk{1R)~1{
PCS(Ck DR)

PCS(Ck{1DR)
~

p

ka
: ð7Þ

scales as a power-law with index a. For example, if a is close to

unity, then, the collective state model says that the probability of a

non-cooperative action declines linearly with the amount of

cooperation seen previously. The particular values of a found in

the data thus have a direct interpretation in terms of potential

underlying mechanisms.

As is clear from Eq. 6, the collective state model violates the

probabilistic pumping lemma. It is thus, formally, non-finite.

Intuitively, the state space of this model is an effectively

unbounded counter that increments with each cooperative event,

and resets with each revert.

Table 1. A day of edits on the George_W._Bush page,
starting at midnight UTC, 21 March 2006.

time (UTC) user SHA1 (partial) code

02:08 Sarah 4abc4aef1ea5 C

05:02 Alexh25 1e3a2a4656d8 C

05:04 Mhking 4abc4aef1ea5 R

11:39 Trezatium 3b03700b0d9c C

12:15 Brazilfantoo 94a5c05ba10e C

12:31 Brandon39 3b03700b0d9c R

23:28 Titoxd 109986b8f390 C

23:31 Titoxd 334a315944ce C

23:38 Titoxd 739c15e5bc6a C

23:40 Titoxd 3063a0289680 C

23:42 Titoxd 7aafc8f3f762 C

As can be seen by comparing SHA1 hashes of the page content, user Mhking
reverted an edit by user Alexh25 to the previous version by user Sarah. Later in
the day, user Brandon39 reverted user Brazilfantoo. In between, one can see
‘‘cooperative’’ stretches involving both single and multiple users. This sequence
of events is coarse-grained into the substring ‘‘CCRCCRCCCCC.’’ The full string
of (in this case) 45,220 action symbols forms the basis of the finite-state analysis.
As with all data used in this study, this sequence is publicly available, in this case
at http://en.wikipedia.org/w/index.php?title = George_W._Bush&offset = 2006032
18&action = history [last accessed 15 August 2013].
doi:10.1371/journal.pone.0075818.t001
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Results

Fig. 1 shows the distribution of consecutive C edits for the most

edited article in the Wikipedia ‘‘main space’’ (i.e., that set of pages

supposed to constitute the encyclopædic content): that referring to

George W. Bush, the 43rd President of the United States. We refer

the reader to Appendix S3 in File S1, where we show that counts

of the number of strings of the form RCkR, written N(RCkR), is

the preferred data to estimate from.

Even at a glance it is clear that a single exponential–which

would appear as a straight line on a log-linear plot–is insufficient to

describe the decay of P(RCkR) as a function of k. However, visual

inspection alone is insufficient to determine whether to prefer a

sum of exponentials (Eq. 2) to an explicitly non-finite-state process,

and we present in Table 2 the log evidence ratio, D , in favor of

the collective state model. This table shows that strong evidence

against the nEXP model, and in favor of the collective state model,

can be found in a majority of cases of the top-ten most-edited

articles on the encyclopædia.

Table 2 also presents the collective state index a. We find that,

in cases where the data favor the collective state model, this index

is between 0:42 and 0:64; the average value in the top-ten is 0:55.

Eq. 7 allows us to interpret this index in terms of the rate at which

non-cooperative actions become less likely.

Our results thus show that the probability of a cooperative run

being terminated by a revert action declines roughly as the square-root of

the number of cooperative events seen in that run. Whatever the

underlying nature of the unbounded resources governing the time-

series, they must at least be able to maintain a counter,

incremented with each C symbol seen, and reset with each R.

Origins of Memory in the Collective State
In this section, we conduct additional analyses to determine

properties of the system that might give clues to the nature of the

underlying process.

The results of the previous section provide strong statistical

evidence (odds ratios greater than 103) for preferring a non-finite

model to an explicit enumeration of timescales. The cases in

Table 2 for which this is not the case are themselves of interest.

These articles are of a very different nature: ‘‘death lists,’’

collections of single sentences listing the dates of deaths of

noteworthy individuals.

That these cases are better described by the sum-of-exponentials

model suggests that the article content is relevant to the emergence

of non-finite-state computation. This can be either because the

user bases that particular content-types attract make it easier for

the resultant system to produce non-finite-state behavior. Or,

conversely, it could be that the article content itself leads to non-

finite-state editing patterns.

It could be the case that the cumulative effects associated with

the functional form of Eq. 6 come from non-interacting users who

independently and separately come into contact with an article.

The interactions between individuals, on this picture, are

unimportant; the content of the page (or a single user’s own

memory) serves as an effectively unbounded resource that allows

violation of the exponential cutoffs required by the finite-state case.

For example, upon interacting with the page cooperatively, the

user might alter it in such a way as to make the probability of a

second cooperative edit (by the same user) more likely, and so on.

Such a process could potentially lead to behaviors of the same

Figure 1. Top. Distribution of consecutive C (‘‘cooperative’’) events in
the edit history of the most-edited article on the English-language
Wikipedia, George_W._Bush. Solid histogram: actual data. Red/solid
line: maximum-likelihood fit for the three-parameter collective state
(CS) model of Eq. 6, preferred over the sum of exponential model (nEXP)
of Eq. 2. The blue/dashed and green/dotted lines show the one and two
component finite-state approximations to the Collective State model.
The finite state model approximates the collective state model in this
data at four components (eight parameters), at which point it is
strongly disfavored as non-parsimonious by Bayesian model selection.
Bottom. Contributions to DL (log-likelihood relative to collective state)
for the one, two, and three component fits (blue/dashed, green/dotted
and yellow/solid, respectively).
doi:10.1371/journal.pone.0075818.g001

Table 2. log-Evidence ( ) ratios, for the collective state
versus the finite-state case, for the ten most-edited pages on
Wikipedia.

sig. page name
history
length

collective
state index

CS vs. nEXP a

,1028 George_W._Bush 45,220 18.5 0.57660.005

,1026 Islam 18,054 14.9 0.59260.007

,1025 United_States 31,919 12.3 0.54560.006

Global_warming 19,541 12.1 0.60260.008

,1024 Wikipedia 31,927 11.3 0.63860.006

Michael_Jackson 26,977 10.4 0.57260.007

,1023 2006_Lebanon_War 19,656 9.1 0.4960.01

Deaths_in_2009 20,902 7.7 0.4260.01

.104 Deaths_in_2007 18,215 211.5 –

.107 Deaths_in_2008 19,072 217.5 –

In cases where the collective state model is strongly favored (large, positive ),
we show the best-fit value of the a parameter (see Eq. 6). Eight pages show

strong (p-value ƒ10{3) evidence for the collective state (CS) model of Eq. 6
over and above that for the sum of exponentials (nEXP). The strongest evidence
in favor of finite-state computation is found for two of the three ‘‘death list’’
pages, which collate otherwise unrelated information from other parts of the
encyclopedia. Appendix S4 in the File S1 gives details on the use and
computation of for model selection.
doi:10.1371/journal.pone.0075818.t002
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nature as those accounted for by the CS model, without having

anything to do with any interpersonal or group-level interaction.

Fig. 2 examines this question in detail for the George_W._Bush

case. We now augment the time-series with an additional symbol,

N, representing a change of user (for example, for the data shown

in Table 1, the new series would be CNCNRNCNCNRNCC

CCC), and count strings of consecutive Cs bracketed either by R

or N; in other words, a change of user is considered to interrupt

the run of Cs. We find the CS model preferred at the 10{3 level

over nEXP; interestingly, the particular functional form of the CS

model is the simpler, limiting case.

Plimit-CS(wk)~A P
k

i~2
1{

1

ia

� �
: ð8Þ

This non-exponential form is not necessarily evidence for non-

finite computation in any particular individual; the distribution

found for the collection could be understood as the superposition

of finite-state machines drawn from a distribution representing the

spread of the properties of individuals.

The distinct functional form of the distribution at the individual

level suggests that some aspect of interpersonal interaction plays a

role in the non-finite nature of the full process. Whether this is

driven by how groups are more able to take advantage of the

effectively unbounded resource of the page itself (a ‘‘large

scratchpad’’ model), or because some system memory is encoded

in the interactions between the users themselves (an ‘‘interaction

combinatorics’’ model) is an open question.

An obvious visual difference between Figs. 1 and 2 is the

elimination of the long tail; it so turns out that long cooperative

runs are multi-user events. While it is not the case that long

cooperative events necessarily imply the collective state (CS) over

the nEXP model (they can be found as well in the ‘‘death list’’

pages, where they are fit by a single long timescale exponential

component), it is certainly true that the exponential decays implied

by the probabilistic pumping lemma require increasingly unlikely

fine-tunings of amplitude and decay constants to fit long periods of

cooperative behavior.

In the particular case of the George W. Bush page associated

with the analysis in this section, the preference for a collective state

model in both the individual and the collective case suggests we

postulate not one, but at least two distinct counters: one that

increments with each C, and is reset with each R, and a second

one that increments with each C, and is reset with each R or N.

Conclusions

This work has examined cooperative behavior in a large-scale

social system. We have examined competing models for the

processes we observe, and found strong statistical evidence in favor

of a collective state model. Despite the non-finite nature of the

underlying process, the collective state model is more parsimoni-

ous than competing finite-state models that approximate it. At the

most coarse-grained level of analysis, this model requires at least

one ‘‘counter’’ that alters the structure of the system over time.

The results comparing collective and individual editing prop-

erties further suggest that distinct mechanisms for the violation of

the finite-state case are associated with, on the one hand, the

cognitive properties of individuals taken separately, and on the

other, the fundamentally social phenomenon of Wikipedia as a

whole. Distinct counters appear to be running in parallel.

The underlying mechanisms responsible for the emergence of

these counters is an open question. They may be fundamentally

connected to reputation or memory effects [31–33]; alternatively,

full accounts may require attention to the emergence of social norms

[34,35]. Our results here suggest ways to modify and extend ‘‘tit-for-

tat’’ models of behavior in social systems [36] by means of counters

that track more fine-grained aspects of system state. In addition to

these social context effects, the task itself may play a crucial role: the

content of the page itself may itself shift the behavior of editors.

This paper has relied on the use of formal languages. First

applied to the case of human language [9], they have now been

extended to describe human social interaction (see, e.g., Ref. [37]

on ‘‘shaking hands’’), animal communication [12,38], animal

behavior [39] and pattern recognition more generally (Ref. [10]

and references therein). This joins the empirical study of cognitive

phenomena to a long tradition in the theory of complexity [40].

When the state of a group is taken to be the sum of the states of

the individuals that compose it, coarse-grainings of the system state

will in general lead to effective theories [41] whose basic units are

not descriptions of the state of any one individual. We have

previously given such accounts in the case of an animal system

[42,43], where a single formalism is used to attribute computa-

tional (‘‘strategic’’) states to both individual animals and emergent

groups. Ref. [44] provides an explicit analogy between the formal

language hierarchy and the decompositions of Ref. [42].

Our work in this paper extends these accounts to human social

systems, considered not as ensembles of individual (formal)

language users but as a free-standing and unreduced process.

Over and above its role in the discussion about cooperative

phenomena in social systems, our main result presents a challenge

to theory: what formalisms are most natural for the description of

non-finite-state processes in the biological and social world?

Our results demonstrate that empirical study itself can play a

role in determining the relative importance of different ways a

system can transcend the finite-state aspects of a system: large

scratchpads vs. interaction combinatorics. While formal language

theory presents us with a number of ‘‘post-finite’’ languages, such

as the context-free grammars and pushdown automata [13], it

seems likely that these will have to be extended or modified to

provide tractable models for empirical investigation.

Supporting Information

Probabilistic Pumping Lemma; Appendix S2: Numerical Tests of

Figure 2. Solid line: distribution of consecutive single-user C
(‘‘cooperative’’) events in George_W._Bush. The contrast to the
multi-user case is clear, showing that long periods of cooperative
editing can not be accounted for by unbroken single-user patters. The
distribution is well-modeled by the collective state model, Eq. 8, with
distinct functional form and parameter values from the fit for the multi-
user case. The fit is preferred to the finite-state nEXP model at
(pv10{3).
doi:10.1371/journal.pone.0075818.g002
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