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Audrey M. Dorélien1*, Sebastien Ballesteros2, Bryan T. Grenfell2,3

1 Center for Social Epidemiology and Population Health, University of Michigan, Ann Arbor, Michigan, United States of America, 2 Department of Ecology and

Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America, 3 Fogarty International Center, National Institutes of Health, Bethesda,

Maryland, United States of America

Abstract

We analyze the impact of birth seasonality (seasonal oscillations in the birth rate) on the dynamics of acute, immunizing
childhood infectious diseases. Previous research has explored the effect of human birth seasonality on infectious disease
dynamics using parameters appropriate for the developed world. We build on this work by including in our analysis an
extended range of baseline birth rates and amplitudes, which correspond to developing world settings. Additionally, our
analysis accounts for seasonal forcing both in births and contact rates. We focus in particular on the dynamics of measles. In
the absence of seasonal transmission rates or stochastic forcing, for typical measles epidemiological parameters, birth
seasonality induces either annual or biennial epidemics. Changes in the magnitude of the birth fluctuations (birth
amplitude) can induce significant changes in the size of the epidemic peaks, but have little impact on timing of disease
epidemics within the year. In contrast, changes to the birth seasonality phase (location of the peak in birth amplitude within
the year) significantly influence the timing of the epidemics. In the presence of seasonality in contact rates, at relatively low
birth rates (20 per 1000), birth amplitude has little impact on the dynamics but does have an impact on the magnitude and
timing of the epidemics. However, as the mean birth rate increases, both birth amplitude and phase play an important role
in driving the dynamics of the epidemic. There are stronger effects at higher birth rates.
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Introduction

The incidence of influenza and many other respiratory

infections increases during cold winter months; cholera and

malaria incidence increase during the rainy season; even the

incidence of sexually transmitted disease such as gonorrhea

increases during the summer months [1–4]. As these examples

illustrate, seasonal fluctuations in the incidence of disease are

common and have been documented for a range of diseases as

early as circa 380 B.C. [5]. In recent decades, public health

measures such as the World Health Organization’s (WHO)

Expanded Program on Immunization and Supplementary Immu-

nization Activities and the Measles Initiative have led to a

reduction in incidence of many acute childhood immunizing (ACI)

infections [6]. However many ACI diseases, such as measles, are

still characterized by large episodic and seasonal outbreak, and

remain significant killers of children in sub-Saharan Africa [7,8]. A

more detailed understanding of the disease drivers and the

consequences for disease dynamics and control are needed.

A range of mechanisms with the potential to drive seasonal and

multiannual fluctuations in the incidence of infectious diseases

have been identified. They include factors that impact transmis-

sion, such as ability of the pathogen to survive outside a host, and

seasonal changes in host behavior; factors that impact host

susceptibility, such as seasonal changes in immune function; and

factors that impact host birth rate, such as seasonal fluctuations in

the birth rate [5,9–11]. Despite some understanding of the

proximate mechanisms that can create cyclical fluctuations,

identifying the ultimate factors driving these processes (disease

drivers) is difficult.

Most human disease ecologists have focused on identifying

drivers leading to seasonal fluctuations in the transmission

parameter, because of its large impact on infectious disease

dynamics [11]. For strongly immunizing acute infections such as

measles, seasonality in transmission (and stochastic forcing) can

interact with the nonlinear epidemic clockwork to drive longer

term epidemic oscillations [9,11–13]. Transmission seasonality of

measles has been found to be driven by aggregation of children

during the school term in pre-vaccination England and Wales and

by rural-urban migration in response to agricultural cycles in

Niger and Cameroon [8,14–18]. In contrast, relatively little

research has been conducted on the epidemiological implications

of seasonality in birth rates or host immune function [1,11].

Almost all human populations exhibit seasonal variation in

reproduction, which typically account of a large source of

variation in birth rates [19]. Key features of birth seasonality are

amplitude and phase. In this paper, amplitude refers to the

maximum percent deviation from the mean, in this case the
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average birth rate, and the phase indicates the timing of the birth

peak within the year (see Figure S1). Despite the ubiquitous

presence of seasonal fluctuations in human birth rates, researchers

have focused on the effects of slow changes in birth rates on disease

dynamics. Researchers have clearly illustrated that changes in the

baseline birth and vaccination rates can lead to dynamical

transitions in periodicity of disease incidence and can influence

the multiannual timing of an epidemic in the presence of transmission

seasonality [20,21]. Only one study thus far (summarized below)

analyzed the impact of human birth seasonality as a driver of

seasonal diseases [22].

This paper is an extension of the work of He and [22], who were

the first to analyze the effects of human birth seasonality on

infectious disease dynamics, to our knowledge. In their analysis of

the impact of birth seasonality on infectious disease dynamics, He

and Earn [22] focused on identifying whether increasing birth

amplitude could create resonance (where amplitude of disease

incidence is much larger than birth amplitude) and which

combination of parameter ranges of R0 and duration of infectious

period result in complex dynamics. As a result, they found that for

most childhood infectious diseases, realistic levels of birth

seasonality for developed countries do not induce resonance;

furthermore, as birth amplitude increases, a wider range of R0 and

infectious periods lead to complex dynamics. They also found that

complex dynamics can occur in disease models with very short

durations of infectious period (less than one day), even with low

birth amplitude.

Other studies looking at the effect of intra-annual fluctuations in

birth rates comes from studies of wildlife diseases [23]. However,

unlike models of human diseases, these systems exhibit density-

dependent host demography, short host life spans, and are often

strictly constrained to a breeding season.

In this paper, we analyze the impact of seasonal fluctuations in

human birth rates (birth seasonality) on measles disease incidence

and dynamics. Not all infectious disease dynamics will be sensitive

to seasonal forcing in the birth rates. Diseases of interest have the

following properties–acute, immunizing infections, with a low

mean age of infection [24]. Seasonality in birth rates will have the

greatest impact on diseases where the majority of susceptibles are

young [11]. We choose to model measles because it is a

prototypical ACI infection.

We focus on the effect of changes in birth amplitude given a

wide range of baseline birth rates that corresponds to empirical

data from sub-Saharan Africa, while He and Earn model a

relatively low baseline birth rate (e.g., 20/1000) that corresponds

to developed countries [22]. Birth seasonality is likely to have a

strong impact on populations with high birth rates, and low

vaccination levels. These conditions were present historically in

developed countries, but still occur in many locations in sub-

Saharan Africa (SSA) (Figure 1 illustrates the large birth rates

typical of SSA). Furthermore, some of the largest birth amplitude

levels in modern times are found in SSA. Figure 2 is a comparison

of birth seasonality in the United States versus Nigeria. During the

1990s, amplitude in Nigeria was above 30 percent while amplitude

in the US was approximately 6 percent. Therefore, in this paper

we use demographic parameter ranges based on the much wider

range in SSA.

Furthermore, we model the effect of birth seasonality on one

disease, measles, so mean duration of the infectious period is

constant and R0 does not vary widely. We also extend our analysis

in several ways. We analyze the impact of birth amplitude and

phase on magnitude and timing of cyclical epidemics. We include

both seasonal forcing in births (a) and transmission rates (b).

Specifically, we try to answer the following question: what are

the impacts of changing the parameters of the seasonal birth

forcing function (e.g., baseline birth rate, amplitude, and phase;

see Figure S1 for an illustration of the effects of changes in these

parameters on birth rates) on infectious disease incidence and

dynamics, in the absence and presence of seasonal transmission? It

has been illustrated that changes in baseline birth rate and changes

in baseline transmission rate lead to the same dynamical

transitions Earn2000. Therefore, when we model the effects of

changing baseline birth this has the same implications as changing

baseline transmission rates. The intuition behind this is that the

transmission rate has two components: contact rate and transmis-

sion probability. Increasing birth rate is like increasing the contact

rate, which increases the transmission probability.

We identify plausible parameter ranges for both the baseline

birth rates and birth amplitudes from analysis of sub-Saharan

African (SSA) Demographic and Health Surveys (DHS). The DHS

use nationally representative samples of women of reproductive

age. The DHS contains retrospective birth histories, which have

been widely used to estimate birth rates and recently seasonal birth

amplitude. Although it had long been known that seasonal

fluctuations in births are ubiquitous in human populations, there

were very few estimates of birth seasonality in SSA, in part due to

lack of vital registration data. Fortunately the DHS data can also

be used to calculate birth seasonality. Following the method

described by He and Earn [22, page 275], we obtain estimates of

average monthly amplitude.

On average, SSA birth rates range from 22.1 in South Africa in

1998, to 51.7 per 1000 in Niger in 1998. We documented birth

amplitude levels ranging from 5 to 65 percent at the national level.

At the sub-national level, higher levels of birth amplitude have

been documented, in SSA some in excess of 100 percent [25].

In addition to having an estimate for the strength of seasonality,

we also need information on the shape of the seasonal forcing

function [11,20]. It has been shown that in the case of seasonality

of transmission, the shape of the forcing function has large effects

on the dynamics. As shown in Figure 2, we will assume a

sinusoidal function for birth seasonality. For instance, we take the

average monthly birth amplitude for Nigeria from 1980 to 2000,

and using least squares estimation we are able to fit the data to the

following function:

Avg: % dev: from annual monthly mean

~amplitude cos (2p(t{phase)=12)
ð1Þ

If the goal is to fit a disease model with birth seasonality, to

observed data, we may choose to use actual monthly fluctuations

in birth rates or birth amplitudes as parameters. Nevertheless, for

the rest of this paper, a simple cosine function is used, as the shape

of the seasonal recruitment function does not qualitatively affect

whether bifurcations will take place [20].

Methods

1 Measles Biology and the Seasonal SEIR Model
Measles is a highly infectious virus transmitted by aerosol

particles [26]. It conforms well to assumptions of simple

compartmental models with mean latent period of s{1 = 8 days

and a mean infectious period of c{1 = 5 days. Furthermore,

immunity is lifelong following both natural infection and

seroconversion after administration of the live attenuated vaccine

against the disease [26]. In this paper we use a compartmental

Birth Seasonality on Infectious Disease Dynamics
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model, illustrated in Figure 3, that divides the population into

susceptible (S), exposed but not yet infectious (E), infectious (I), and

recovered (R) groups, referred to as SEIR, to simulate the

propagation of an immunizing non-fatal acute disease in a stable

and well-mixed population with frequency-dependent transmis-

sion. For simplicity we do not use age-structured models which are

common for childhood infectious diseases. Our model differs from

standard SEIR models in that both birth and transmission rates

can be seasonally forced (i.e., can vary overtime in a cyclical

manner).

The rates of change in the compartments is defined by the

following differential equations:

dS=dt~a(t)N{m0S{b(t)
SI

N
ð2aÞ

dE=dt~b(t)
SI

N
{(m0{s)E ð2bÞ

dI=dt~sE{(m0{c)I ð2cÞ

dR=dt~cI{m0R ð2dÞ

Here, the seasonal forcing functions–birth seasonality (which in

this case refers to births of susceptibles post waning maternal

immunity) a(t) and frequency dependent transmission seasonality

b(t) are given by:

Figure 1. Recent Sub-Saharan African birth rates from the Demographic and Health Surveys. All of the SSA birth rates are above 20/1000,
the baseline birth rate modeled by He and Earn [22].
doi:10.1371/journal.pone.0075806.g001

Birth Seasonality on Infectious Disease Dynamics

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e75806



a(t)~a0(1za1(cos(2p(tzwa)))) ð3Þ

b(t)~b0(1zb1(cos(2p(tzwb)))) ð4Þ

The per capita natural death rate (m0) is equal to the baseline per

capita birth rate (a0). The birth rate a(t) and transmission rate b(t)
vary seasonally around their respective baseline values (a0andb0),

with an amplitude equal to a1 and b1. The parameter w (phase),

with values between 0 and 1, indicates the location of the peaks

within the year. The mean duration of the latent period and

infectious period are s{1 and c{1, respectively.

2 Analysis
We solve the model by numerical integration using the Runge-

Kutta-Fehlberg (4, 5) integration method from the GNU Scientific

library. Starting with a population where the proportion of

susceptible individuals are six percent of the population, exposed

and infectious individuals are each 0.1 percent of the population,

and recovered individuals represent 93.8 percent of the population

and parameter values (e.g., a0…), the model is run for at least a

1000 years so that the dynamics have reached their attractor. ‘‘It is

possible to observe qualitatively different dynamics (or multiple

attractors) for the same combination of parameter values,

depending on initial conditions’’ [27]. Therefore, in regions with

coexisting attractors, we may need to sample a large set of initial

starting conditions to see if there are any qualitative differences.

We then view and analyze the results using plots, bifurcation

diagrams, and heat maps of bifurcation diagram results (a.k.a.,

two-parameter bifurcation diagrams) and incidence. See below for

details of these methods.

We calculate the periodicity of the epidemic cycle in two ways.

The first method involves calculating the period of the attractor.

Discarding the first 1000 years of the simulation, we identify the

peaks, and then calculate the time it takes for the trajectory to

reach the peak value a second time. If that peak value occurs the

following year, we can deduce that the pattern is annual, if the

peak appears two years later, it is biennial, and so on. We will call

this measure the period of the attractor (blue circles in Figure S2).

Following the formula in Keeling and Rohani [27], the

dynamics are of period n if:

Dlog(I(tzn)){log(I(t))Dvv where v~log(2): ð5Þ

We also calculate the dominant period of the epidemic cycle

using Fourier spectra (background of Figure S2 the peaks are in

red). This method informs us on the major components of the

periodicity. For instance, we may have a strictly four year cycle but

the dominant period may be two years; which may mean that we

have a high-low-high-low pattern, where the two peaks are not of

the same magnitude. A major weakness of this strategy is that even

when a cycle is multiennial or chaotic, the annual signature may

dominate (due to the seasonal forcer). Therefore we also calculate

the Lyapunov exponents to determine whether the dynamics are

indeed chaotic [28]. Lyapunov exponents are the exponential rates

at which two nearby orbits diverge or converge from each,

therefore they are crude measures of chaotic behavior. If the main

Lyapunov exponent is positive (nearby points diverge from each

other), then the dynamics are said to be chaotic; when the system

bifurcates the Lyapunov exponent equals zero.

As mentioned above, the model is sensitive to starting

conditions, so the bifurcation diagrams are run with a fixed set

of initial starting conditions, in addition to extrapolated starting

conditions. Nevertheless, because of the influence of initial starting

conditions, a large sample of bifurcation diagrams is needed to

model the range of possible behavior.

Results

1 Birth Seasonality in the Absence of Seasonal
Transmission

Impact on dynamics. As expected, the seasonal fluctuations

in the birth rate can lead to oscillations in disease incidence. In the

absence of seasonal transmission rates, seasonal birth rates can

lead to annual and biennial dynamics, as shown in Figure 4.

Which type of dynamic we observe depends on the baseline birth

rate and transmission rate as well as the birth amplitude.

Low and high levels of baseline birth rate and transmission rates

(a0 and b0) lead to annual epidemics regardless of the magnitude

of birth amplitude. This is a similar finding to what is found in

Figure 2. SSA birth rates are seasonal and exhibit some of the
strongest birth fluctuations in modern times. Peak amplitude in
Nigeria is above 30 percent while US peak amplitude is 6 percent.
Vertical lines represent 95 percent confidence intervals. For many SSA
countries, observed fluctuations in monthly birth amplitude can be
represented by a sinusoidal function, as illustrated for Nigeria. Source:
Annual summary of Monthly Vital Statistic Report, National Center for
Health Statistics, United States; http://www/cdc.gov/nchs/births.htm
Accessed 2010 June 21. Nigeria Demographic Health Surveys.
doi:10.1371/journal.pone.0075806.g002

Figure 3. Transfer diagram for the SEIR model with seasonality
in birth rate and transmission.
doi:10.1371/journal.pone.0075806.g003
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density dependent models [27]. At intermediate ranges of baseline

birth rate (a0) and transmission rates, high levels of birth amplitude

can lead to biennial dynamics (Figure 4 and Figure S3). If

transmission rates are very large, than lower levels of baseline birth

rates are needed for birth amplitude to induce biennial dynamics.

For high parameter values of birth amplitude (a1) and some

values of a0, the dynamics depend in part on the initial starting

conditions. For instance, in Figure 5, the parameters are the same,

however Panel A is constructed using extrapolated initial

conditions (the numbers of susceptibles, exposed, infectives, and

recovered at the end of one simulation are used to start the next

simulation [27]) starting at a1~0, while Panel B is constructed

using starting conditions a1~1. In the former, the resulting

epidemics are always annual, while in the latter for large values of

birth amplitude, the dynamics are biennial. These results indicate

that these are regions with coexisting annual and biennial

attractors. He and Earn also identified regions with coexisting

attractors [22].

Impact on disease incidence. As predicted by He and Earn

[22], we do not find any resonance (the amplitude of disease

incidence is not greater than the birth amplitude). In the regime of

annual attractors, the size of the epidemic increases with

increasing birth rate and birth amplitude. At higher birth rates

(birth rates greater than 30 per 1000) the influence of changing

birth amplitude is magnified (Figure 4).

Impact on timing of disease peak. Pitzer et al. [21]

illustrated that spatiotemporal variation in birth rates in the

presence of transmission seasonality explained the timing of

rotavirus epidemics in the United States. Therefore we are

interested in the influence of birth rate and birth amplitude on

timing of disease epidemics in the absence of transmission

seasonality. As the baseline birth rate increases, the epidemic

occurs slightly earlier in the year, but as the amplitude increases,

the epidemic occurs slightly later in the year. As expected, the

phase has a stronger influence on the timing of the peaks

compared to amplitude (not shown).

2 Birth Seasonality in Presence of Seasonal Transmission
According to He and Earn [22], ‘‘even with large phase

differences between the two seasonal forcing functions, inclusion of

birth seasonality will not have substantial effects on asymptotic

dynamics for parameter ranges that correspond to known

infectious diseases.’’ That statement is correct when the baseline

birth rate is low (e.g., a0~20=1000). In Figure 6, we run a model

with both birth and transmission seasonality and analyze the

impact of varying both the birth and transmission amplitudes on

the periodicity of the disease dynamics (Panel A), and the

magnitude (Panel B) and timing of the epidemics (Panel C). It is

clear that at low birth rates, it is the seasonality in the transmission

parameter that is having the largest influence on the periodicity of

the epidemics, changing birth amplitude has very little effect on

determining whether the epidemics are annual or biennial

(Figure 6a). Nevertheless, the interaction between birth and

transmission amplitude, as well as the phase, does influence the

magnitude and timing of the epidemics.

Once the periodicity of the epidemic changes from annual to

biennial epidemics, large changes in the magnitude of the

epidemic peak are not concomitant with changes in the

periodicity; both changes in the transmission and birth amplitudes

can lead to large changes in the magnitude of the epidemic peaks

(Figure 6b). At very low levels of transmission seasonality, increases

in the birth amplitude shifts the timing of the epidemic peak

towards the end of the year when transmission and birth

seasonality are in-phase, but as the transmission amplitude

increases the effects of increases in birth amplitude on the timing

of the epidemic peak diminishes. When seasonal fluctuations in

birth and transmission rates are anti-phase, increases in the birth

amplitude shift the timing of the epidemic peaks towards the

beginning of the year; however the timing of the epidemic peak

does not change significantly once transmission amplitude rises

above 10 percent (Figure 6c).

At higher birth rates, as in SSA, phase differences between the

two forcing functions do have a substantial effect on the dynamics

(Figures 7–9). Specifically, when birth and transmission seasonality

are in-phase, increasing birth amplitude exacerbates the tendency

for chaotic dynamics; when in anti-phase, increasing birth

amplitude stabilizes the dynamics (Figures 7a, 8, and 9a). The

latter is illustrated in Figure 7a by looking at the rows that

corresponds to b1~0:35 when birth and transmission seasonality

are in-phase, for almost all values of a1, the resulting dynamics are

chaotic, but when birth and transmission seasonality are anti-

phase, increasing a1 changes the dynamics from chaotic, to an

eight year cycle, then to a four year cycle. Another way to

understand the effect of the differences in-phase is to look at

Figure 8, which contains one dimensional bifurcation plots of the

effect of varying b1 given different baseline values of a1, and plots

of the main Lyapunov exponent. We find that when the two

forcing functions are in anti-phase the region with chaotic

dynamics is smaller than when they are in phase, this is especially

true for large values of birth amplitude (a1). When there are no

differences between the phase, increasing birth amplitude expands

the range of b1 values that result in chaotic dynamics; when the

phase are asynchronous, the range of b1 values that result in

chaotic dynamics decreases as birth amplitude increases.

At high baseline birth rates, the interactions between the

amplitude and phase of the seasonal birth and transmission rates

also influence the magnitude and timing of the epidemic peaks

(Figures 7b–c and 9b–c). Changes in the magnitude of the

epidemic peak correspond to changes in the periodicity of the

epidemic (Figures 7b and 9b); this was not the case at low baseline

birth rates (Figure 6b). Furthermore, as the baseline birth rate

Figure 4. Heat map illustrating how incidence of epidemics
change with changing birth rate and amplitude. The contour plot
illustrates the transition from annual to biennial epidemics. The timing
of the epidemic did not change significantly with changing birth rate
(a0) and amplitude (a1). (wa = 0, b0 = 1000, b1 = 0).
doi:10.1371/journal.pone.0075806.g004
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increases, the synchrony between the changes in timing and

periodicity also increases.

When transmission and birth seasonality are in-phase, above a

threshold level of transmission amplitude (which rises with baseline

birth rates), increasing transmission amplitude above the threshold

shifts the epidemic towards the beginning of the year while

increasing birth amplitude shifts the timing of the epidemic peaks

towards the end of the year. When birth and transmission

seasonality are out of phase, above the aforementioned threshold,

increasing both transmission and birth amplitudes shift the timing

of the epidemic peak to the beginning of the year (Figures 7c and

9c). Below the threshold, the effects of changing both birth and

transmission amplitude on the timing of the epidemic peak are

more varied but appear to be in part influenced by periodicity of

the epidemics.

Figure 5. Bifurcation diagrams showing the impact of varying birth amplitude (a1) on the periodicity of the epidemics. Simulations
use extrapolated initial conditions (the numbers of susceptibles, exposed, infectives, and recovered at the end of one simulation are used to start the
next simulation [27]). In Panel A the first simulation is at a1 = 0 (left hand of the x axis), then a1 is increased in the subsequent simulations; to further
sample the bifurcation structure, Panel B reverses this order, starting at a1 = 1. Black points represent the relative size of the incidence peaks, blue
circles represent the period of the attractor, while the background is a heat map of the power spectral densities where the color red signifies higher
power. In Panel B, at high levels of a1 , there are both annual and biennial components present but the power is stronger for the biennial component.
(a0 = 35/1000, wa = 0, b0 = 1000, b1 = 0).
doi:10.1371/journal.pone.0075806.g005

Birth Seasonality on Infectious Disease Dynamics
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Discussion and Conclusion

In this paper we extend previous work to show that at high birth

rates, amplitude can be important, especially coupled to season-

ality in transmission. We also highlight an important source of

data, the Demographic and Health Surveys, for estimating

seasonal birth patterns for many SSA countries. Having an

estimate of the birth seasonality function, allows us to separate

Figure 6. Heat maps illustrating how periodicity, incidence, and timing of epidemics change with varying levels of transmission (b1)
and birth (a1) amplitudes. In the figures on the left, the two seasonal forcers have the same phase, in the figures on the right, the phases are out of
synch. (a0 = 20/1000, b0 = 1000).
doi:10.1371/journal.pone.0075806.g006
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seasonal forcing in births from other seasonal forcers such as those

in transmission.

Models of acute immunizing childhood infections in SSA should

take into account birth seasonality. The presence of birth

seasonality alone can lead to spatial and temporal variation in

the periodicity, magnitude, and timing of epidemics in SSA. The

interaction between baseline birth rate and birth amplitude are

important. Biennial epidemics occur only at high levels of birth

Figure 7. Heat maps illustrating how periodicity, incidence, and timing of epidemics change with varying levels of transmission (b1)
and birth (a1) amplitudes. In the figures on the left, the two seasonal forcers have the same phase, in the figures on the right, the phases are out of
synch. In Panel A, values in white are chaotic; the contour plots indicate where the main Lyapunov exponent crosses zero. (a0 = 30/1000, b0 = 1000).
doi:10.1371/journal.pone.0075806.g007

Birth Seasonality on Infectious Disease Dynamics
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Figure 8. One-dimensional bifurcations of the effect of varying b1 values given different baseline values of a1 (0.1, 0.2, 0.3, 0.4) and
w (in phase, anti-phase). Black points represent the relative size of the epidemic peaks, blue circles represent the period of the attractor, while the
background is a heat map of the the power spectral densities where the color red signifies higher power. In all of the figures, the presence of an
annual and biennial component is always present even though, for instance, an attractor may have a period of four years. The bottom panel in each

Birth Seasonality on Infectious Disease Dynamics
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of the figures shows the main Lyapunov exponent, when the system bifurcates the Lyapunov exponent equals zero (touches the horizontal line),
when the Lyapunov exponent is greater than zero the dynamics are said to be chaotic. (a0 = 30/1000, b0 = 1000 in all panels).
doi:10.1371/journal.pone.0075806.g008

Figure 9. Heat maps illustrating how periodicity, incidence, and timing of epidemics change with varying levels of transmission (b1)
and birth (a1) amplitudes. In the figures on the left, the two seasonal forcers have the same phase, in the figures on the right, the phases are out of
synch. (a0 = 40/1000, b0 = 1000).
doi:10.1371/journal.pone.0075806.g009
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amplitude and intermediate levels of baseline birth rates. In the

regime of annual epidemics, as baseline birth rate increases the

effect of increasing birth amplitude on peak incidence also

increased.

We also explored the interactions between transmission and

birth seasonality. As He and Earn [22] stated, at low levels of birth

rate, there are no strong interactions between seasonality in birth

and contact rates. However, we show that at the high birth rate

levels found in many SSA countries, birth amplitude and phase

significantly impact disease dynamics in the presences of

seasonality in contact rates. Specifically, at higher birth rates,

when birth and transmission seasonality are in-phase, increasing

birth amplitude tends to exacerbate chaotic dynamics; when they

are out of phase, increasing birth amplitude tends to stabilize the

dynamics.

There are some limitations to this study. We did not use an age-

structured model; however, the SEIR model without age structure

still captures the dynamical essence of the system [20]. We focused

on the effects of changing the baseline birth rate and its degree of

seasonality, however in SSA, under-five mortality is high and may

also oscillate seasonally. In the model, we set baseline birth and

death rates equal, therefore when birth rate were high so was the

death rate. Furthermore, in models with frequency dependent

transmission increases in death rates have a smaller effect than in

density-dependent transmission where changes in the population

size play an important role in transmission. Nevertheless, a high

under-age five death rate could act to dampen the effects of

seasonality in births if deaths are random and aseasonal. Finally,

we presented the results of the analysis based on deterministic

models, however in File S1, we also conducted the analysis using a

model with demographic stochasticity. The presence of stochas-

ticity in an SEIR model with birth seasonality tends to lead to

biennial disease dynamics. However, at high birth rates and

extremely high birth amplitude the dynamics began to resemble

those of the deterministic model.

Future Work
Candidate SSA countries where birth seasonality may play an

important role include Sierra Leone, Guinea, Democratic

Republic of Congo, and Nigeria. These countries have strong

birth seasonality (maximum amplitude between 30 to 65 percent),

low proportions of fully immunized population (20 to 40 percent),

and high birth rates (30/100 to 44/1000)] [29]. We will try to

obtain monthly measles incidence for these countries in order to

test the predictive capabilities of a statistically-fitted SEIR model

with seasonal birth and/or seasonality in contact rates. Alterna-

tively we will also try to use historical data from developed

countries to test our model. For instance, weekly ACI disease

incidence is available for pre-vaccination Copenhagen [30], but

preliminary analysis of Copenhagen birth data revealed low birth

seasonality (five percent from 1900–1937).

Birth amplitude tends to decline over time, as a result of

increased development [31–33]. In SSA higher socio-economic

status, improved housing and other indicators of wealth are

associated with lower birth seasonality; these factors appear to

shield populations from the influence of birth seasonality drivers.

As the demographic transition and birth amplitude declines in

SSA, we expect birth seasonality to have less of a role in

influencing acute childhood immunizing (ACI) disease dynamics.

Supporting Information

Figure S1 Effects of changing the parameters (a1, w, m0)
in the birth seasonality forcing function.

(TIFF)

Figure S2 This bifurcation diagram illustrates the
impact of changing magnitude of a1 on the size of the
relative size of the epidemic peaks (black dots), the
dominant period (yellow background, peaks are in red),
and the period of the attractor (blue circles). Two

trajectories are for a1~0:2 and a1~0:8. No chaotic dynamics

appear. We have annual or biennial epidemics. After the

bifurcation, the dominant period is two years, but there are still

annual epidemics. (a0 = 30/1000, wa~0, b0~1000, b1~0).

(TIFF)

Figure S3 Bifurcation diagram at the Poincaré section
showing the impact of varying birth amplitude (a1) for
different values of baseline birth rates (a0). Single circle

indicates that the period is annual, two circles indicate that the

period is biennial. At low birth rates (20/1000) increasing the

amplitude leads to larger annual epidemics. At intermediate birth

rates (30/1000) increasing amplitude first leads to larger annual

epidemics but at amplitudes greater than 65 percent increasing

amplitudes lead to biennial epidemics with increasing peak sizes.

At very high birth rates (40/1000) changes in amplitude lead to

increasingly large annual epidemics. (wa~0:31, b0~1000, b1~0).

(TIFF)

Figure S4 Spectral analysis and relative size of peak
incidence in model with demographic stochasticity. The

peaks (black dots) are not of the same magnitude from year to year

but a general pattern emerges as we increase amplitude and birth

rates. We use heat colors to indicate the power spectral density,

therefore the highest peaks are in red.

(TIFF)

File S1 Analysis of a Stochastic SEIR model with
seasonality in the birth rate. The periodicity and relative

changes in peak incidence are plotted for varying levels of birth

amplitude and baseline birth rates in Figure S4.

(PDF)
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