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Abstract

Invasive species cause catastrophic alterations to communities worldwide by changing the trophic balance within
ecosystems. Ever since their introduction in the mid 1980’s common red lionfish, Pterois volitans, are having dramatic
impacts on the Caribbean ecosystem by displacing native species and disrupting food webs. Introduced lionfish capture
prey at extraordinary rates, altering the composition of benthic communities. Here we demonstrate that the extraordinary
success of the introduced lionfish lies in its capacity to circumvent prey risk assessment abilities as it is virtually undetectable
by prey species in its native range. While experienced prey damselfish, Chromis viridis, respond with typical antipredator
behaviours when exposed to a common predatory rock cod (Cephalopholis microprion) they fail to visibly react to either the
scent or visual presentation of the red lionfish, and responded only to the scent (not the visual cue) of a lionfish of a
different genus, Dendrochirus zebra. Experienced prey also had much higher survival when exposed to the two non-invasive
predators compared to P. volitans. The cryptic nature of the red lionfish has enabled it to be destructive as a predator and a
highly successful invasive species.
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Introduction

Invasive species are recognised as one of the greatest threats to

marine biodiversity worldwide [1,2], and have been found to cause

catastrophic alterations to communities by changing the trophic

balance within ecosystems [3,4]. Many of the invasive species that

cause the most dramatic effects are predators. Release from their

natural enemies and improper anti-predator behaviours by native

prey can exacerbate the negative effects of the invasive species

[5,6]. Whether prey will react appropriately to an alien predator

depends on the functional similarity and cues of the new predator

to ones that are native to the system. This determines the

establishment and spread of the invader and the level of impact on

the unwitting community. Understanding the underlying aspects

of the encounter between a non-native predator and its prey is key

to understanding the success and impact of invaders [7]. However,

for many non-native predator species the reasons underlying their

success are unclear because of the lack of information concerning

the mechanisms that underlie their performance in their native

communities.

Responding appropriately to predators requires prey to obtain

accurate information on the trophic identity and intention of the

predator [8]. Innate information can assist in the identification of

predators and is most useful when the range of likely predators is

small. Learned information augments innate knowledge and many

studies have found that prey possess a variety of sophisticated anti-

predator mechanisms whereby they can catalogue predators,

reinforce memories or de-emphasise (‘forget’) information that is

no longer relevant [9–12]. Aquatic organisms in particular have

been shown to have well developed mechanisms of identifying and

assigning appropriate levels of risk to predator cues that operate

through the olfactory and visual systems [13]. When damage

released skin extract cues are coupled with the smell or sight of a

novel predator, the subsequent smell or sight of the predator alone

will elicit an antipredator response, through a process known as

associative learning [11]. It is unclear whether or how non-native

predators manage to circumvent this extremely efficient and rapid

learning mechanism.

In the marine environment there are few examples of predator

invasions that have been as destructive to the native marine fauna

as introduction of the common lionfish, Pterois volitans, to the

tropical and subtropical east coast of the United States and

Caribbean basin. Native to the Indian and Western Pacific

Oceans, the lionfish was introduced to Florida in the mid 1980’s

[14] and has become widespread throughout the Western Atlantic

from Florida Keys to Cape Hatteras and throughout the

Caribbean basin [15,16]. The effects of the introduced lionfish

are reverberating through the ecosystem, as these hyper-successful

nuisance invaders have already altered recruitment patterns,

abundance and species composition on many of the invaded reefs

[17,18]. While many aspects of the trophic ecology of the invading

populations have recently come under intense scrutiny [19–24],

little is known of the ecology of the species in its native habitat. It is

only by obtaining a detailed understanding of the encounter

between the lionfish predator and its native prey that we can better

understand why these predators may have become so successful in

their novel system.
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In this study we examined how experienced and naı̈ve prey

individuals (juvenile damselfish, Chromis viridis, hereafter Chromis)

responded to different cues that signify the presence of three

different predators. In a series of three experiments we tested

whether Chromis were able to learn that the chemical cues, visual

cues or combined cues of the red lionfish, P. volitans, represented a

threat. Responses were compared to prey that had been exposed

to cues from a common predatory rockcod (Cephalopholis microprion)

or a lionfish of a different genus (zebra lionfish, Dendrochirus zebra).

To determine the role learning plays in influencing survival, naı̈ve

and experienced Chromis were placed together with one of the

three predators for 48h and monitored for survival. We show that

the predatory success of the red lionfish lies in its capacity to

circumvent prey risk assessment abilities as it is virtually

undetectable by a common prey species in its native range. The

effectiveness of this ability to block innate antipredator responses

of prey has most likely contributed to the ecological success of P.

volitans in invaded regions.

Results

Behavioural responses of Chromis to predators differed signifi-

cantly depending on both type of cue and the species of predator

they were exposed to (MANOVA: Olfactory, Pillai’s

trace6,174 = 0.5, P,0.0001; Visual, Pillai’s trace6,178 = 0.6,

P,0.0001; Combination, Pillai’s trace 6,180 = 0.5, P,0.0001).

Chromis that had been conditioned to learn Ce. microprion cues

displayed strong anti-predator responses upon presentation of all

threat cues associated with this predator, with the strongest

responses seen when prey were exposed to chemical and visual

cues simultaneously (Figures 1, Figure 2, Figure 3). When exposed

to any Ce. microprion cue, experienced prey foraged less (MAN-

OVA: Olfactory F2,88 = 20.4, P,0.0001; Visual F2,90 = 39.4,

P,0.0001; Combination F2,91 = 31.9, P,0.0001), reduced activity

levels (Olfactory F2,88 = 14.9, P,0.0001; Visual F2,90 = 19.5,

P,0.0001; Combination F2,91 = 16.3, P,0.0001) and spent more

time in shelter (Olfactory F2,88 = 18.8, P,0.0001; Visual

F2,90 = 43.2, P,0.0001; Combination F2,91 = 38, P,0.0001) com-

pared with Chromis that had no prior experience of the Ce.

microprion (Figures 1, Figure 2, Figure 3).

Chromis with prior experience of D. zebra responded to the odour

of the predator with reduced activity and feeding, as well as an

increase in shelter use compared with inexperienced prey (Tukey’s

HSD test: P,0.0001; Figure 1). There was no response to the

visual appearance of D. zebra regardless of experience (Tukey’s

HSD: P.0.05; Figure 2). The simultaneous presentation of D.

zebra scent and visual cue resulted in a similar anti-predator

response in experienced prey compared to the response to

olfactory and visual cues alone (Tukey’s HSD: P.0.05; Figure 3).

Regardless of experience, there was no response of prey to any

predator cue associated with the common lionfish, P. volitans

(Tukey’s HSD: P.0.05; Figures 1–3). When exposed to P. volitans

scent, visual presence or the combination of these cues prey did

not appear to visibly react; they continued foraging at a similar

rate as pre-exposure.

Survival trials of Chromis revealed a strong influence of both

experience and type of predator (Kaplan-Meier survival plot

x2
5 = 133, P,0.0001; Figure 4). Regardless of experience, all prey

exposed to P. volitans were consumed within 24 hours after release

with the majority (true conditioning = 79%, N = 49; false condi-

tioning = 77%, N = 48) being eaten within the first 3 hours.

Experienced prey placed together with Ce. microprion had a

significantly higher survival with only 33% of individuals being

consumed after 48 hours, while 94% of the inexperienced prey

were eaten after 48 hours (N = 33). Experienced Chromis exposed

to D. zebra displayed an intermediate survival pattern with 43%

uncaught after 24 hours and close to 30% still alive after 48 hours

(N = 36) while only 7% of the inexperienced prey (N = 39)

remained uncaught after 48 hours.

Discussion

Our results show that the response of damselfish prey to three

different predators greatly differs depending on predator species,

threat signal (olfactory, visual or a combination of both) as well as

previous experience. Experienced prey will respond strongly to a

rockcod threat regardless of the cue, while the physical appear-

ances of the two lionfish species prevented prey from detecting

their presence, instead labelling them as non-threatening animals.

In fact, irrespective of previous experience, damselfish prey did not

respond to any signals, be they visual or chemical cues from the

common lionfish, P. volitans. Survival patterns of prey emphasized

the importance of behavioural responses, as damselfish with

previous experience of C. microprion had learnt to evade the

predator, displaying significantly higher survival rates than

inexperienced prey or those exposed to either lionfish species.

Prey placed together with P. volitans did not survive long regardless

of experience, highlighting the efficiency of the highly cryptic

nature of the common lionfish. Experienced prey placed together

with D. zebra displayed intermediate survival patterns, suggesting

that at least some prey individuals are able to learn to avoid the

predator through olfactory cues alone and/or a combination of

olfactory and visual predator cues.

This study demonstrates that P. volitans have evolved into highly

successful predators, with prey unable to recognize body-shape,

coloration or scent of red lionfish in their native ranges. The

ecological importance of P. volitans’ ability to circumvent prey risk

assessment can be seen in the successful invasion of this species in

the Caribbean. This strategy of preventing prey detection,

together with life history characteristics such as high reproductive

output, rapid range expansions into many different habitats as well

as lack of natural predators and/or parasites, helps explain their

extraordinary success in colonising new habitats and in devastating

native prey populations [3,25]. A similar pattern can be seen in

another highly successful invader, the ctenophore Mnemiopsis leidyi,

a planktonic predator that is endemic to Atlantic coasts of North

and South America. It has invaded several different regions from

the Black Sea in the early 1980s through to the fairly recent

invasion in the Baltic and North Sea [26], where it has altered the

ecosystems by decimating zooplankton stocks, often followed by

trophic cascades [27]. Its ecological success is attributed to its

highly efficient feeding technique whereby it generates a hydro-

dynamically silent current that entrains and transports prey while

remaining undetected [26]. Mnemiopsis leidyi, like P. volitans, is a

large, slow swimming predator that greatly benefits from

remaining concealed until after encountering prey, allowing them

to become hyper-successful nuisance predators in introduced

regions. Furthermore, alien predators that are more generalised in

their feeding habits can exert keystone effects because of their

complex roles in community dynamics. Lionfish prey upon fishes

from a variety of functional groups (herbivores, detrivores and

small predators alike) as well as numerous invertebrates, so their

impact spans multiple trophic levels therefore having particularly

widespread and detrimental effects on the communities they

invade [20,28].

Our results illustrate the importance of prey detecting and

appropriately responding to predator cues, as the predators

responsible for the highest prey removal rates were visually and

Predatory Success of Lionfish
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chemically concealed from prey. The appearance of lionfish differ

from most other fish predators in that they have an extravagant

body shape characterized by long dorsal spines, greatly expanded

pectoral fins, as well as several filamentous appendages above and

below their eyes and mouth. Taken together with their disruptive

body markings (bright white spots throughout, horizontal stripes

on body and vertical stripes on fins), the general outline of lionfish

may function to continually confuse and lure prey as they are

unable to detect and/ or recognize the lionfish as a predator [29].

In terrestrial carnivores, vertical and horizontal stripes provide

camouflage by background matching thus allowing the predator to

hunt prey undetected [30]. The lack of prey responses to P. volitans’

olfactory cues may be due to chemical camouflage, where the

predator gives off a scent that labels it as non-threatening. Many

terrestrial insects display this type of mimicry, which allows them

to enter prey territories undetected [31] or hide from their natural

enemies [32]. In many cases the chemically cryptic organisms

secrete specific substances that hide their presence either through

passive [31] or active mechanisms [33]. A less likely explanation is

that P. volitans is odourless, having a chemically insignificant profile

that allows them to merge with the background environment.

Whatever the mechanism of olfactory crypsis, the technique is

highly effective at allowing these predators to get very close to their

prey. This coupled with the visual crypsis and toxic spines make

them a dangerous and skilful predator adept at invading new

regions.

While the novel predator-crypsis found in the present study may

explain in part why red lionfish are so successful as predators, it

does not explain their large population sizes as invasive species in

the Caribbean ecosystem [14,15]. There is very little information

Figure 1. Behavioural responses of inexperienced and experienced juvenile Chromis viridis to olfactory cues of three different
predators. Experienced prey fed less (A), lowered activity rates (B) and increased shelter use (C) when exposed to olfactory cues of Dendrochirus
zebra and Cephalopholis microprion (N = 16–19). Letters indicate significant groupings.
doi:10.1371/journal.pone.0075781.g001
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on the ecology, behaviour and life history of P. volitans in their

native range that can assist us in understanding their extraordinary

success in invaded regions. This lack of information is partly

because these fish are highly cryptic when in low densities, with

crepuscular or nocturnal activity patterns, and are therefore

difficult to observe [22,24]. Currently, we can only speculate as to

the underlying causes of the rarity of red lionfish in their native

distribution. Possible causes include a release from their natural

enemies, or environmental and biological conditions that influ-

ences their reproductive ecology or larval survival. Like most

teleost fishes, lionfish are highly fecund [18], however recruit

surveys that are conducted along the Great Barrier Reef hardly

ever record red lionfish juveniles. This suggests that population

sizes may be constrained by processes that affect some aspect of

the early life history from gamete viability and embryo develop-

ment through to larval growth and survival. As red lionfish

continue to invade the Caribbean it is important that invasion and

evolutionary ecologists maximize their efforts in understanding

lionfish ecology in their native ranges.

Our findings suggest that lionfish are one of the definitive fish

predators. Their feeding success is not achieved though speed and

surprise, but through a unique form of crypsis that circumvents the

well-established mechanism whereby prey fishes learn about their

predators e.g., [11]. The generality of these risk assessment

mechanism [11,13] suggests that the results should be broadly

applicable to most fish prey species. Further research is warranted

on how lionfish achieve this crypsis. Informed management and

conservation strategies require a better understanding of how their

efficient feeding strategy has promoted invasion through the

interrelationship between foraging success and other aspects of

their ecology, such as enhanced fecundity and offspring survival.

Figure 2. Behavioural responses of inexperienced and experienced juvenile Chromis viridis to the visual presentation of three
different predators (N = 16–18). Antipredator responses were only seen in experienced prey exposed to Cephalopholis microprion. Prey reduced
foraging (A), lowered activity rates (B) and increased shelter use (C). Letters indicate significant groupings.
doi:10.1371/journal.pone.0075781.g002

Predatory Success of Lionfish
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Materials and Methods

Ethics Statement
The research was carried out in accordance with the Australian

Code of Practice for the care and use of animals for scientific

purposes. This work was conducted with the approval and under

the supervision of Lizard Island Research Station and James Cook

University ethics guidelines (Permit Number: A1593). All proce-

dures were conducted with care to avoid any pain or suffering in

animal subjects.

Study Species and Sampling
The experimental study was conducted at Lizard Island

Research Station (14u409S, 145u289E), on the northern Great

Barrier Reef, Australia during September-December 2012. The

blue-green Chromis, Chromis viridis (Pomacentridae), is a site-

faithful damselfish that is very common on the shallow reefs of the

Indo-Pacific. Juvenile Chromis are subject to a variety of resident

and transient predators. Individuals (12.760.4 mm mean standard

length SL6SE) were collected as newly settled juveniles from the

reef on SCUBA and maintained (in groups of 20 individuals) in

35 L flow-through aquaria with shelter and fed Artemia nauplii

twice a day. Common lionfish, Pterois volitans (129.463.9 mm SL),

zebra lionfish, Dendrochirus zebra (126.963.2 mm SL) and the

brown rockcod, Cephalophalis microprion (129.864.6 mm SL) were

collected from the fringing reefs surrounding the island and

brought back to the research station. Cephalophalis microprion is a

common predator along the Great Barrier Reef, often found

feeding on juvenile damselfish [34]. Dendrochirus zebra is a much less

abundant component of the reef community than other small

predators, but is nonetheless more common in shallow reef areas

than other members of the family Scorpaenidae (28). The least

Figure 3. Behavioural responses of experienced juvenile Chromis viridis to the exposure of olfactory, visual and a combination of
visual and olfactory cues of three different predators (N = 16–19). Prey did not respond with antipredator behaviours when exposed to any
threat cues from Pterois volitans. Antipredator responses were seen when prey were exposed to olfactory cues of Dendrochirus zebra, but not to visual
cues alone. When exposed to olfactory and visual threat cues of Cephalopholis microprion prey responded with reduced foraging (A), activity (B) and
increased shelter use (C), and there was an additive effect when both cue sources were present. Letters indicate significant groupings.
doi:10.1371/journal.pone.0075781.g003

Predatory Success of Lionfish
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abundant of the three predators is P. volitans which is native to the

GBR, but rarely seen. All predators were maintained individually

in 15 L flow through aquaria and fed juvenile fish of the family

Apogoniidae. Other studies have shown that Apogoniids do not

have damage-released alarm cues that are responded to by

damselfishes [35].

General Experimental Design
When the epidermis of damselfish is damaged they release a

species-specific chemical (a chemical alarm cue) that elicits an

antipredator response in conspecifics [8,13]. When this skin

extract cue is coupled with the smell or sight of a novel predator,

the subsequent smell or sight of the predator alone will elicit an

antipredator response, through a process known as associative

learning [11,36]. Using associative learning Chromis were taught to

recognize chemical, visual or a combination of chemical and visual

cues of three predators. To test the idea that associative learning

plays an important role in responding to and subsequently

surviving predator encounters half (random allocation) of the

Chromis juveniles were exposed to the chemical, visual or a

combination of visual and chemical threat cues paired with

conspecific skin extracts (true conditioning resulting in experienced

individuals), while the other half were given the threat cue paired

with seawater (false conditioning resulting in inexperienced

individuals). The experimental procedure was therefore a two-

step process that first involved a conditioning phase where fish

were exposed to cues of injured conspecifics (true conditioning) or

seawater (pseudo conditioning) paired with those of apredator and

second, a testing phase, where fish were exposed to the

appropriate cue and had their behaviour assessed. The study

was conducted as a series of three experiments.

Following conditioning Chromis were placed individually into

15 L aquaria (38627624 cm) and allowed to acclimate overnight.

The basic tank set up included a 2 cm depth of coral sand and a

small piece of healthy live hard coral (Pocillopora damicornis) for

shelter, while a single air-tube was placed at the other end. A

second tube was fixed to the aeration tube and allowed the

introduction of Artemia food or chemical cues. The air facilitated

the distribution of the cues throughout the tank, dye trials showed

it took 31.460.9 s. Prior to the start of the trial, the water flow was

stopped and 5 ml of Artemia sp (,800) nauplii were added to the

aquaria to stimulate feeding. The behaviour of a single Chromis was

recorded for a 4 min pre-stimulus period. Immediately following

the pre-stimulus period, a further 5 ml of Artemia was added and

fish were exposed to the appropriate cue treatment. The

behavioural response to experimental treatments was quantified

by recording: total number of feeding strikes (successful or

otherwise), activity (quantified as the number of times a fish

crossed a line on the grid (363 cm) suspended over the tank), and

total time (s) spent within the branches of the coral shelter. Data

were analysed as the difference between the magnitude of

behaviours before an experimental stimulus and after exposure

to a stimulus (post-pre). Owing to the interdependency of the three

behaviours, we analysed the three variables together using a one-

way MANOVA, followed by univariate ANOVAs for each

behavioural variable. Subsequent Tukey’s post hoc tests were

performed to assess the differences in behavioural responses

between the different treatments.

Learning to recognize predator cues
Our first experiment investigated the ability of juvenile Chromis

to learn to respond to predator odour alone following the

conditioning phase. Chromis were conditioned with 20 ml of the

odour of either P. volitans, D. zebra, or Ce. microprion, paired with

either 10 ml of seawater (pseudo-conditioning) or 10 ml of

conspecific skin extract cues (true conditioning) [36,37]. Predator

Figure 4. Survival curves (Kaplan–Meier plot) of experienced (true conditioned; exposed to the combination of predator visual
presence, odour and conspecific skin extracts) and inexperienced (false conditioned; exposed to the combination of predator
visual presence, odour and seawater) Chromis viridis to three different predator species (N = 33–49).
doi:10.1371/journal.pone.0075781.g004

Predatory Success of Lionfish
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odour was obtained by leaving individual fish predators in separate

68-l aerated flow-through plastic holding tanks filled with 30-l of

aerated seawater. Two pairs of each predator was placed on

staggered alternating cycles of 12 h water flow on and approxi-

mately 56 h water flow off, to ensure that predator odour was

consistently available for experimental use, and stress was reduced.

Following the cessation of water flow for 56 h, predator odour was

prepared by drawing up the predator water into a syringe.

Predator water was drawn from each predator tank within a pair

to avoid intraspecific predator variability effects (a protocol used

previously; 37). Skin extracts were prepared following methods of

Lönnstedt et al. [38]. The following day Chromis were exposed to

the predator odour that they had been conditioned with on the

previous day and their behaviour was assessed.

The second experiment examined how well Chromis learned to

respond to the visual stimuli of the three different predators (P.

volitans, D. zebra or Ce. microprion). Individual predators were placed

in clear ziplock bags (20620 cm) with aerated seawater and placed

in 15 L aquaria containing groups of prey fish (2–4 individuals).

Bags were large enough to allow the predators to move around

freely (and extend their pectoral fins) and they often attempted to

strike at prey through the bag. Chromis were either pseudo-

conditioned with seawater or genuinely conditioned with cues

from injured conspecifics to recognize one of the three predators.

The next day, fish that had been conditioned in groups were

placed individually in aquaria and tested for a response to the

exposure of the relevant predator. Predators were placed

individually in clear zip-locks bag containing water and a thin

layer of gravel (ensuring bags settled on the bottom of the tank)

and gently introduced at the end of the tank on the opposite side of

the coral shelter [38]. The bag was oriented such that the side of

the predator was facing the Chromis.

Lastly, we tested responses of Chromis to the combination of

chemical and visual cues of the three predators. Here, juvenile

prey were placed in groups of 2–4 individuals in 15 L tanks and

exposed to 20 ml of predator odour and the predator inside of a

zip-lock bag paired with either 10 ml of seawater or 10 ml of

conspecific skin extract. After conditioning individual Chromis were

acclimated overnight in experimental aquaria and tested for a

response to the simultaneous exposure of the appropriate predator

odour and visual stimuli the following day.

Survival trials of prey
The mortality rates were compared among Chromis from the six

conditioning treatments [three predators (P. volitans, D. zebra or Ce.

microprion) by two conditioning treatments (pseudo and true)].

Following conditioning with the pairing of olfactory and visual

cues of the relevant predator, 4–6 randomly chosen individuals

from the same conditioning treatment were placed in flow-through

mesocosm pools (111 cm diameter, 45 cm high, 368 L). Meso-

cosms were set up as natural habitats containing a 2-cm deep layer

of coral sand substrate, four air-stones, and a 30630620 cm coral

shelter (hard bushy coral; Pocillopora damicornis) in the centre. Sea

water was pumped directly from the ocean so it followed natural

temperature fluctuations. After one hour a predator (either P.

volitans, D. zebra or Ce. microprion), present in a standing acclimation

tube since the initiation of the trial, was released into the aquarium

and survival of prey fish was monitored every 3 hrs for 48 hrs.

Survival (up to 48 h) of fish was compared using multiple-sample

survival analysis using a Cox’s proportional hazard model

(STATISTICA v. 10.0). Survival curves of experienced and

inexperienced Chromis exposed to the three predators were

calculated and plotted using the Kaplan–Meier product–limit

method.
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3. Cox JG, Lima SL (2006) Naı̈veté and an aquatic-terrestrial dichotomy in the

effects of introduced predators. Trends Ecol Evol 25:674–680.
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