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Abstract

Population structure and kinship are widespread confounding factors in genome-wide association studies (GWAS). It has
been standard practice to include principal components of the genotypes in a regression model in order to account for
population structure. More recently, the linear mixed model (LMM) has emerged as a powerful method for simultaneously
accounting for population structure and kinship. The statistical theory underlying the differences in empirical performance
between modeling principal components as fixed versus random effects has not been thoroughly examined. We undertake
an analysis to formalize the relationship between these widely used methods and elucidate the statistical properties of each.
Moreover, we introduce a new statistic, effective degrees of freedom, that serves as a metric of model complexity and a
novel low rank linear mixed model (LRLMM) to learn the dimensionality of the correction for population structure and
kinship, and we assess its performance through simulations. A comparison of the results of LRLMM and a standard LMM
analysis applied to GWAS data from the Multi-Ethnic Study of Atherosclerosis (MESA) illustrates how our theoretical results
translate into empirical properties of the mixed model. Finally, the analysis demonstrates the ability of the LRLMM to
substantially boost the strength of an association for HDL cholesterol in Europeans.
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Introduction

Population structure and kinship represent genetic relatedness

between samples at different scales, and are widespread con-

founding factors in genome-wide association studies (GWAS) that

can decrease power and increase the false positive rate of tests of

association [1]. As a result, it is common practice to infer

population structure and kinship based on genome-wide SNP data

and to exclude problematic individuals or account for these effects

in the test of association [1]. Principal components analysis (PCA)

is widely used to detect population structure [2]. The inferred

principal components capturing the genetic ancestry of each

individual are often included as fixed effects in a regression-based

test of association in order to account for population structure

[3,1]. More recently, a linear mixed model (LMM) that considers

the genome-wide similarity between all pairs of individuals was

proposed to account for population structure, known kinship as

well as cryptic relatedness [4,5], and recent technical advances

have made such models tractable for very large datasets

[4,6,7,8,9,10,11,12].

While simple tests of association assume statistical independence

between individuals, population structure and kinship indicate

covariance between individuals based on the genetic similarity

between individuals and the heritability of the phenotype [4].

Since it is well established that ignoring this covariance in a test of

association produces deflated p-values that do not follow a uniform

distribution under the null [13], it is common to apply a LMM or

include principal components as fixed effects in order to model the

dependence structure [1]. Both approaches model this covariance

between individuals, and both can be stated as regressing the

phenotype on principal components of the genotype matrix

[14,15,16] so that the LMM essentially includes principal

components as a random effect rather than a fixed effect. While

the top principal components capture population structure,

explicitly modeling the pairwise relatedness between all individuals

captures both population structure and kinship [4,1,17,18]. Thus

much recent attention has focused on the LMM since it shows

better empirical performance in modeling the dependence

structure of GWAS datasets [4,1,17,18].

Motivated by the empirical differences between the LMM and

including principal components as fixed effects, we describe a

unified framework that connects these models. This framework

facilitates a statistical examination of the methods’ differing

frequentist vs. Bayesian interpretations, their differing approaches

to inference and how these differences drive their empirical

properties. We next introduce a summary statistic, the effective

degrees of freedom, that measures overall model complexity and

the influence of each principal component on the fit of the LMM.

Leveraging the unified framework and the effective degrees of

freedom, we propose a novel method, the low rank linear mixed

model (LRLMM) using the algorithm of Lippert, et al. [6], that
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learns the dimensionality of the correction for population structure

and kinship.

Methods

Modeling principal components as fixed versus random
effects
Considering the matrix of genotype data X (n|p) for n

individuals and p genetic markers, where entry Xk,j[f0,1,2g
represents the number of copies of the minor allele that individual

k has of marker j, the singular value decomposition underlying

principal components analysis (PCA) has the form

X~USVT ð1Þ

so that the first i principal components are the first i columns of U
(n|n), S (n|n) is diagonal so that S~diag(s) where s contains
singular values corresponding to each principal component, V
(p|n) stores the loadings on each marker, and each marker in X
has been mean centered and scaled [2]. Including the first i

principal components as fixed effects in a linear model takes the

form

y~mzxjbzU1:ivze ð2Þ

e*N (0,s2e )

where y (n|1) is a vector of phenotype values, m is the scalar

mean term, xj (n|1) is the jth marker with scalar regression

coefficient b, U1:i are the first i principal components with

coefficient vector v (i|1), and e (n|1) is the normally distributed

residual error term with variance s2e . Principal components are

treated as fixed effects, such that maximizing the likelihood

involves directly estimating all parameters. From the Bayesian

perspective of maximum a posteriori (MAP) estimation of all

parameters, the model does not have an explicit prior on

regression coefficients, v, and thus implies a uniform improper

prior. Furthermore, scaling each principal component by any

value yields a statistically equivalent model with respect to the

genetic term, xjb, since the prior on the coefficients, v, is

implicitly uniform. While methods have been proposed to

determine the number of relevant principal components [2,19],

in practice i is often selected heuristically based on the eigen-

spectrum or the quantile-quantile plot of the p-values from the

corrected test of association.

Now consider the linear mixed model (LMM)

y~mzxjbzaze ð3Þ

a*N (0,Ks2a)

e*N (0,s2e )

where a (n|1) is a random effect vector with a multivariate

Gaussian prior, K (n|n) is the genetic similarity matrix between

all pairs of individuals so that Kk,l represents the similarity

between individuals k and l, and s2a is the additive genetic

variance. Here population structure is treated as a random effect

and fitting the model involves integrating over the vector a with

respect to the Gaussian prior so that the likelihood is maximized

with respect to s2a, s
2
e , m, and b [20,5].

For simplicity, let the genetic similarity matrix K be a simple

function of observed genotypes as in Patterson, et al. [2], and

consider the singular value decomposition from equation (1) and

the factorization of K

K~XXT ð4Þ

~USVT (USVT )T

~USVTVSUT

~USV{1VSUT

~US2UT

~US(US)T

~RRT

so that the columns of U are the principal components of the

genotype matrix, X, exactly as in equation (1), and, by

construction, the columns of R (n|n) are the principal

components weighted by their respective singular values. We note

that each principal component Ut has a singular value st and

eigen-value s2t . Using the property of a multivariate Gaussian that

w*N (m,S)Bw*N (Bm,BSBT ), and the decompositions in (4), it

is apparent that c*N (0,s2
a)[Rc*N (0,Ks2a), so the LMM (3)

can be rewritten equivalently as

y~mzxjbzRgze ð5Þ

c*N (0,s2
a)

e*N (0,s2
e)

Based on the relationship between equations (2) and (5), it is

apparent that modeling principal components as fixed or random

effects share the same underlying regression model. This

transformation explicitly formalizes the previously described

relationship between modeling principal components as fixed

versus random effects [14,16,15,11,21]. While the LMM includes

all principal components, only i%n principal components are

included in the fixed effects model since the number of covariates

cannot be on the same order as the sample size while still

maintaining reasonable statistical power in a fixed effects model

[22]. We discuss the implications of this result in subsequent

sections.

We note that while equation (4) assumes K is the product of the

centered and scaled genotype matrix [2], this relationship is also

Analysis of the Linear Mixed Model
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consistent with other genetic similarity metrics that yield a positive

semi-definite K. Other closely related metrics use the estimated

rather than observed allele frequencies [3], adjust the similarity of

an individual to itself to reduce sampling variation [23], use a

Gower’s centering to reduce sampling variance [4] or are

proportional to these metrics [4]. In addition, each marker may

be scaled or centered [9,24], or other more complicated metrics

may be used [5,25,26]. Finally, the simiarity metric can be

constructed using only the top set of markers identified by a test of

association that does not correct for population structure or

kinship [6,11,12]. Any of these similarity metrics can be used in

the LMM or the principal components of the corresponding

similarity matrix can be included as fixed effects.

Linear mixed model considers principal components’
eigen-values
It is well established that the eigen-value of each principal

component serves as a metric of biological relevance in relation to

any underlying population structure [2,27]. Thus a method for

determining the relevance of a principal component to a given

phenotype should consider both its eigen-value and its correlation

with the phenotype [19]. Therefore, instead of considering only

the principal components, U, a more sophisticated model should

consider the weighted principal components, R~US, since

S~diag(s) weights each principal component by its correspond-

ing singular value (i.e. the square root of its eigen-value). However,

in the fixed effect model the estimate of the genetic effect, b, is
invariant to the scale of the principal components due to the

uniform prior implied in equation (2). Thus the fixed effect model

assumes that each principal component has equal prior probability

of being relevant to the phenotype. Alternatively, the LMM

explicitly models the scale of the weighted principal components in

equation (5). The LMM considers both the eigen-value and

correlation with the phenotype when determining the relevance of

each principal component to the phenotype. Moreover, the

LMM’s Gaussian prior on regression coefficients implies the

biologically desirable property that a principal component with a

larger eigen-value has a higher prior probability of being relevant

to the phenotype [28].

Inference methods
Since modeling principal components as fixed or random effects

share the underlying regression model, the differences in their

ability to account for population structure and kinship [18,17,1,4]

can be attributed to the different inference methods and the

number of principal components included. Yet the substantial

theoretical and practical consequences of these differences have

not been examined. With the goal of elucidating the statistical

differences between modeling principal components as fixed versus

random effects, we consider the theoretical properties of exact

inference methods for the LMM where K is fixed beforehand

[5,7,9,6]. We note that our discussion also applies to approximate

LMM methods since they approximate other aspects of the model

[29,4,8].

In both fixed and random effects models, the parameter of

interest for the hypothesis test is the coefficient b corresponding to

the effect of a single genetic marker, xj , so that the coefficients v
or c corresponding to the principal components are so-called

nuisance parameters not of direct interest. The difference between

the methods lies in how the statistical inference treats these

nuisance parameters. The fixed effect model necessarily incorpo-

rates only i%n principal components and maximizes the

likelihood with respect to all coefficients so that the hypothesis

test is conducted at the maximum likelihood estimates of the

nuisance parameters. Thus the fixed effects model implies the

likelihood

Lfixed (b,m,v,s
2
e Dy)~N (yDmzxjbzU1:iv,s

2
e ) ð6Þ

which has iz3 free parameters to be estimated from the data.

Therefore i degrees of freedom are used to correct for population

structure.

Alternatively, the LMM includes all principal components in

the model and integrates over the random effect with respect to its

prior distribution. The likelihood can be stated in terms of the

genetic similarity matrix,

LLMM (b,m,s2a,s
2
e Dy)~

ð
N (yDmzxjbza,s2

e)N (aD0,Ks2a) da ð7Þ

[20] or equivalently in terms of the scaled principal components,

LLMM (b,m,s2a,s
2
e Dy)~

ð
N (yDmzxjbzRc,s2e)N (cD0,s2

a) dc ð8Þ

based on the equivalence between equations (3) and (5). While

other equivalent forms of the likelihood are used for estimation in

practice [6,5], stating the likelihood in this way formalizes the

Bayesian interpretation of the LMM where a Gaussian prior is

placed on the regression coefficients of the principal components

and the effect of population structure and kinship is integrated out.

Due to the integration over nuisance parameters, the LMM is able

to include all principal components in the statistical model, yet

estimate only 4 free parameters from the data.

Dimensionality of population structure versus kinship
Population structure and kinship are both confounding factors

in GWAS since they produce covariance between individuals’

phenotype values. Yet the dimensionality of these two processes

are different. Population structure is a low dimensional process

embedded in a high dimensional space so that a relatively small

number of principal components represent the underlying

population genetics [2,27,30]. Therefore, a small number of

principal components can be adequate to account for population

structure in GWAS datasets [3,1]. Conversely, kinship is a high

dimensional process since small sets of individuals are very closely

related while being unrelated to the remaining individuals.

Consider an idealized example of independent parent-offspring

duos so that the coefficient of coancestry between parent and

offspring is 0.5, and 0 between all other individuals. It follows

directly that the corresponding coancestry matrix is block diagonal

and the eigen-spectrum has a long tail so that all eigen-values are

nonzero (Figure S1). Thus kinship is a high-dimensional process

that cannot be captured by a small number of principal

components. Moreover, GWAS datasets contain a mixture of

population structure and kinship that can produce eigen-spectra

with long tails yet have very large leading eigen-values. This

interpretation of kinship is consistent with the long history of

modeling the full eigen-spectrum with a random effects model for

trait prediction in plant and animal breeding [31,32,33],

heritability estimation in medical genetics [33] and linkage

analysis with arbitrary pedigrees [34].

Assessing the complexity of a regression model
A generalized metric of model complexity facilitates evaluation

of the theoretical and empirical properties of competing regression

models. In the simple case of comparing two fixed effects models,

Analysis of the Linear Mixed Model
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the most natural metric is the number of parameters. Thus

compared to a model with p predictors, adding an additional

predictor and using pz1 parameters produces a more complex

model that will explain more of the variance in the response.

Standard theory shows that increasing the number of parameters

increases the covariance between the observed and fitted response

[22]. In this context, the number of parameters is referred to as the

degrees of freedom of the model [22].

The metric of model complexity introduced here can be

generalized to arbitrary regression models with normally distrib-

uted errors. We consider the general theory first and then apply it

to specific models. Letting ŷy denote the fitted response, and s2

denote the variance of the random error, the ‘‘effective number of

parameters’’ or ‘‘effective degrees of freedom’’ (dfe) is defined as

dfe~
X

i

cov(ŷyi,yi)

s2
ð9Þ

and explicitly connects the model complexity with how well the

model fits the response [35,36]. It is clear that increasing the

degrees of freedom causes the model to explain more of the

variance in the response, thus increasing the covariance between

the observed and fitted response. When the fitted response is a

linear function of the observed response, such that

ŷy~Hy ð10Þ

where H is determined by the data, then

dfe~
X

i

Lŷyi
Lyi

ð11Þ

~
X

i

Hi,i ð12Þ

~tU(H) ð13Þ

[35,36].

Considering a fixed effects model with p predictors in X (n|p),
the estimated coefficients are

b̂b~(XTX){1XTy ð14Þ

so that the fitted values have the form

ŷy~Xb̂b ð15Þ

~X(XTX){1XTy ð16Þ

~Hy ð17Þ

where H is defined by construction. The effective degrees of

freedom is thus

dfe~tU(H) ð18Þ

~tU(X(XTX){1XT ) ð19Þ

~tU(XTX(XTX){1) ð20Þ

~tU(Ip) ð21Þ

~p ð22Þ

so that it is equal to the number of parameters in the model, and

satisfies the standard definition of degrees of freedom in the case of

ordinary least squares estimation [35,36].

This generalized theory has been widely adopted as a metric of

model complexity for penalized splines, nonparametric regression

and generalized additive models where H does not have such a

simple form [37,38,39,40,28]. The effective degrees of freedom is

thus a fundamental statistic in regression modeling that gives

insight into the theoretical and empirical properties of a statistical

model [38,35,36,28] and much recent work has focused on

developing this statistic for specific models

[41,42,43,44,45,46,47,48].

Effective degrees of freedom of the linear mixed model
While the relationship between the LMM and including

principal components as fixed effects has been previously discussed

[14,16,15,11,21], an explicit examination of the complexity of

these methods illustrates how they model the population genetics

of the data. In standard GWAS analysis, population structure is

modeled as a low dimensional process [2,27,30] and a small

number of principal components are included as fixed effects [3,1].

Following the theory from the previous section, the degrees of

freedom is equal to the number of principal components included

and serves as a metric of the complexity of the correction for

population structure. Moreover, the degrees of freedom is fixed

and determined by the analyst.

Alternatively, the LMM is able to model both population

structure and kinship by considering the full eigen-spectrum. Yet

assessing the model complexity is no longer trivial since all

principal components are included while only 4 parameters are

estimated. Therefore, we consider the effective degrees of freedom

of the LMM in order to elucidate the statistical properties of the

LMM as well as its biological interpretation.

Ignoring fixed effects for simplicity, the estimated the fitted

response values based on only the random effect are

ŷy~K(KzId){1y ð23Þ

~Hy

where d~
s2e

s2a
and H is defined by construction [20]. Following the

theory from the previous section, the effective degrees of freedom

is

dfe~tU(H) ð24Þ

Analysis of the Linear Mixed Model
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~
X

i

s2i
s2izd

ð25Þ

where s2i is the ith eigen-value of K forming the diagonal of S2 in

equation (4) and the derivation of equation (25) is shown in the File

S1.

This form of the effective degrees of freedom facilitates an

interpretation of the influence of each principal component that is

composed of a marker-based element, s2i , and a phenotype based

element, d. It is apparent that the Gaussian prior in the LMM

causes the influence of the ith principal component to be a

nonlinear function of the magnitude of its corresponding eigen-

value, s2i . This formulation satisfies our intuition for dfe since the

contribution of a single principal component is between 0 and 1 so

that dfe, which is the sum of the contributions of all principal

components, is naturally bounded between 0 and the number of

principal components. Moreover, while s2i has a local effect on the

influence of each principal component separately and is indepen-

dent of the phenotype, estimating d adaptively learns the effective

degrees of freedom based on the correlation of the principal

components with the phenotype and has a global effect by

influencing the contribution of all principal components. In

addition, it follows that the effective degrees of freedom of each

principal component decreases with its eigen-value.

Returning to the biological interpretation of the effective

degrees of freedom, we note that LMM relates the genetic

similarity between individuals to the heritability of the trait [23], as

well as population structure and kinship [49,3,4,5,1]. Thus the

LMM uses the estimated ‘‘pseudo-heritability’’ of the trait in the

present set of individuals to determine how strongly to correct for

population structure and kinship. This data-adaptive property

reflects the ability of the LMM to learn dfe directly from the data.

Moreover, the dfe statistic is composed of heritability, population

structure and kinship so that the value of dfe reflects the ‘‘effective
dimensionality’’ of the correction for confounding.

Low rank linear mixed model
To this point we have considered the standard LMM where the

genetic similarity matrix is full rank and all principal components

make a contribution to the phenotype [5,4,9,7,29,8]. Yet the

correction for genetic confounding due to population structure

and kinship need not necessarily be full rank. Including principal

components that are not biologically relevant to the given

phenotype can dilute the influence of relevant principal compo-

nents and degrade the quality of the correction since the random

effect is governed by a single global parameter, d. The low rank

linear mixed model (LRLMM) has two distinct interpretations that

depend on the nature of the genetic similarity metric. When the

metric is based on markers selected using a test of association that

omits population structure and kinship [6,11,12], the eigen-

spectrum can be partitioned into principal components represent-

ing markers tagging genetic variants responsible for genetic

confounding and principal components unrelated to genetic

confounding. We note that such metrics consider the population

genetics of the only the selected markers, rather than the entire

genome. In this case, a LRLMM can learn the partition and use

only a subset of principal components to correct for genetic

confounding [6,11,12]. Alternatively, when the genetic similarity

metric is based on a genome-wide set of markers and not based on

the phenotype, the eigen-spectrum can be partitioned, at least in

theory, into principal components representing population struc-

ture, kinship, and random noise. Here, we consider learning the

partition of the principal components in this latter context using a

data-adaptive LRLMM.

Learning the partition of principal components using an

LRLMM requires a metric of model complexity that facilitates

the comparison of models with different number of principal

components. The effective degrees of freedom is a natural metric

of complexity that extends to low rank models and has the form

dfe~
XU

i~1

s2i
s2izd

ð26Þ

where U denotes the rank. Furthermore, learning the optimal rank

requires a metric of how well the model fits the data and we

consider Akaike Information Criterion (AIC) [50], Bayesian

Information Criterion (BIC) [51], and generalized cross-validation

(GCV) [52], which all depend on the effective degrees of freedom

and are widely used in this context in many areas of statistics

[38,28,53]. Moreover, we also consider the log-likelihood.

In order to identify relevant principal components, we fit a

LRLMM where the rank varies from 0, where we fit the standard

linear model, to the sample size, where the full rank LMM is used.

Principal components are added to the model sequentially and the

log-likelihood and effective degrees of freedom are evaluated for

each rank. Since the order in which principal components are

added to the model affects the optimal rank, we consider different

orderings of the principal components based on 1) eigen-value, 2)

squared correlation between principal component and phenotype

(corSq), 3) eigen-value multiplied by squared correlation between

principal component and phenotype (corSq*eigen-value) [19], 4)

degrees of freedom from fitting each principal component

individually (DF). The DF ordering involves fitting the LRLMM

with rank 1 for each principal component and evaluating

df (i)e ~
s2i

s2
i
zd

for each model. The principal components are then

sorted based on their relevance to the phenotype as measured by

df (i)e .

These methods are available in the software package genard at

http://mezeylab.cb.bscb.cornell.edu/Software.aspx.

Results

Simulations
We considered two distinct strategies for simulating genetic

confounding and examined each separately. First, we simulated

genetic confounding based directly on the principal components of

a full rank genetic similarity matrix where we used 1000 European

individuals from the Multi-Ethnic Study of Atherosclerosis

(MESA) [54] and used Balding-Nichols metric from EMMAX

[4] based on 45,000 markers pruned from 650,000. We conducted

simulations to evaluate criteria for selecting the optimal rank of a

LRLMM. Using the mean squared error of estimated heritability

as a metric for determining how well a method modeled the data,

we simulated genetic confounding based on i principal compo-

nents of K randomly sampled from the first 3i for

i[f2,5,10,50,100g. The phenotype was simulated by sampling

coefficient values for each principal component from N (0,10) for
heritabilities of 30, 40, 50 and 60%, and we considered 1000

replicates for each condition. We evaluated the mean squared

error from sorting principal components by eigen-value, corSq,

corSq*eigen-value and DF, and using AIC, BIC, GCV, or

22*log-likelihood to select the optimal rank (Figure S2, S3, S4,

S5, S6, S7). These simulations indicate that selecting the rank with

BIC and sorting eigen-values based on corSq, corSq*eigen-value

Analysis of the Linear Mixed Model
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or DF provided the most accurate estimates of heritability and thus

provide the best fit to the simulated data. We used BIC for all

subsequent applications of our LRLMM methods.

We evaluated the statistical power of multiple methods under

this model of genetic confounding for the same genetic data. We

simulated genetic confounding by randomly selecting 10 principal

components from the first 30 to affect the phenotype and drawing

coefficients from N (0,1) so that the principal components

explained 15% of the variation in phenotype for each of 50

replicates. We considered cases where 10, 20 or 30 markers

contributed to variation in the phenotype with coefficients drawn

from C(20,1) and we simulated total heritabilities of 30, 40 or

50%. A marker was considered a false positive if it had U2§0:05
with a causal marker [55,56], and multiple such markers in a

100 kb cluster were counted as a single false positive. True positive

markers were determined by complementary criteria with the

same cutoff values. Since a causal marker may be tagged by

multiple true positive markers, power was defined as the number

of causal markers tagged by true positives. Under these conditions,

our LRLMM methods, specifically sorting principal components

using corSq, corSq*eigen-value and DF orderings, were more

powerful than ordering by eigen-value or other methods including

a linear model with no principal components, a full rank LMM

implemented in FaST-LMM [6] or a low rank LMM termed

FaST-LMM-Select that constucts principal components from the

top scoring markers from a linear model [11,12] (Figure 1). We

note that the increased power of our LRLMM methods that use

principal components from a genome-wide set of markers is

consistent with the fact that genetic confounding was based on the

principal components in these simulations.

We considered a second model of genetic confounding due to

the effects of stratified markers. We evaluated the statistical power

on the same genetic data where we simulated phenotypes by

selecting the 5 markers most correlated with each of the first 10

principal components. Coefficients corresponding to these 50

stratified markers were drawn from N (0,1). We considered cases

with an additional 10, 20 or 30 randomly select markers

contributing to the phenotype with coefficients were drawn from

C(20,1) and we simulated total heritabilities of 30, 40 or 50%.

Under this model of genetic confounding, FaST-LMM-Select

[11,12] performed best under all conditions (Figure 2). We note

that the increased power of FaST-LMM-Select is consistent with

the fact that genetic confounding was based on a small set of

stratified markers, as is assumed by this method.

In order to examine the type I error, we sampled phenotypes

from 1000 individuals from N (0,1) and evaluated 10 replicate

simulations with our LRLMMmethods using the genetic similarity

matrix from the previous simulations. The quantile-quantile plots

and genomic control values [13] show no deviation from the

nominal false positive rate (Figure 3).

Data analysis
Our analysis of GWAS data from four populations and two

phenotypes from the Multi-Ethnic Study of Atherosclerosis

(MESA) [54] (Table 1) illustrates properties of the LMM and

demonstrates the ability of the LRLMM to boost the strength of an

association signal. Eigen-spectra of the genetic similarity matrices

from four MESA populations as well as the matrix of coancestry

coefficients based on the known pedigree from the Framingham

Heart Study [57] illustrate the different dimensionality of

population structure and kinship (Figure 4). It is apparent that

population structure is low dimensional so the eigen-values decay

very quickly in the MESA populations, while kinship from the

Framingham pedigree shows a very long tail indicative of a high-

dimensional process. This observation is consistent with the results

of our previous idealized example (Figure S1). In addition, the

LMM relates the eigen-spectrum of the genetic similarity matrix to

the phenotype and its heritability, and this relationship is reflected

by the effective degrees of freedom for each principal component

(Figure S8). Thus the effective degrees of freedom, normalized by

the sample size, used by the LMM for height is substantially larger

than for HDL cholesterol (Figure 5A), since height is known to

have a larger heritability [58,59]. Moreover, the fact that the

effective degrees of freedom is a substantial fraction of the sample

size indicates that the LMM models the high-dimensional

confounding effect of kinship. We note that the heterogeneity

among populations can be attributed either to differential

population structure or kinship, or to stochastic effects. Finally,

we note that the LMM was fit by maximum likelihood here, but

estimation by REML has little effect (Figure S9).

Applying the LRLMM sorting by degrees of freedom from

fitting each principal component individually (LRLMM-DF)

Figure 1. Simulation results showing power where genetic confounding is simulated directly from principal components. Power is
shown at a false discovery rate of 5% for 50 replicate simulations based on 650,000 markers from 1000 European individuals from the Multi-Ethnic
Study of Atherosclerosis (MESA) for total heritabilities of 30, 40 or 50%, and a) 10, b) 20 or c) 30 markers contributing to the phenotype. Results are
shown for a linear model, FaST-LMM with a full rank genetic similarity matrix [6], FaST-LMM-Select [11,12], and the low rank linear mixed model with 4
orderings of the principal components.
doi:10.1371/journal.pone.0075707.g001
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selects effective degrees of freedom that are substantially smaller

than for the full rank model and the effective degrees of freedom is

generally larger for height than for HDL cholesterol (Figure 5B).

Moreover, the width of the 95% confidence interval is also

substantially smaller. Applying the LRLMM-DF for association

testing for HDL cholesterol in Europeans substantially boosts the

signal from markers on chr8 between positions 19,852,309 and

19,869,675 compared to a standard linear model (Plink [60]) and

three versions of the full rank LMM (EMMAX [4], GEMMA [9],

FaST-LMM [6]), and FaST-LMM-Select [11,12] (Figure 6, S10).

The boost in the association signal is apparent in a zoom-in

manhattan plot illustrating that the LRLMM-DF method

produces many more p-values that exceed the Bonferroni cutoff

(Figure 7). This region has previously been associated with HDL

cholesterol [61,62], so LRLMM-DF is able to strengthen the signal

of a replicated association. Analysis of 2481 European individuals

for 650,000 markers took 12 minutes and 6273 combined samples

took 2 hours 43 minutes on an 8 core IntelHXeonHE5450.

Discussion

The linear mixed model (LMM) has become a standard method

to account for the confounding effects of population structure and

kinship in GWAS datasets [4,1,6,7,8,9,10,11,12]. Our theoretical

and empirical analysis illustrates the properties of the LMM and

Figure 2. Simulation results showing power where genetic confounding is simulated based on stratified markers. Power is shown at a
false discovery rate of 5% for 50 replicate simulations based on 650,000 markers from 1000 European individuals from the Multi-Ethnic Study of
Atherosclerosis (MESA) for total heritabilities of 30, 40 or 50%, and a) 10, b) 20 or c) 30 markers contributing to the phenotype. Results are shown for
a linear model, FaST-LMM with a full rank genetic similarity matrix [6], FaST-LMM-Select [11,12], and the low rank linear mixed model with 4 orderings
of the principal components.
doi:10.1371/journal.pone.0075707.g002

Figure 3. Null simulations show that our LRLMM methods do
not deviate from the nominal false positive rate.
doi:10.1371/journal.pone.0075707.g003

Figure 4. Comparison of eigen-spectra due to population
structure and kinship. The eigen-spectrum based on the known
pedigree from 3063 individuals from the Framingham Heart Study
reflects kinship, while the eigen-spectrum for four populations from the
Multi-Ethnic Study of Atherosclerosis (MESA) reflects both population
structure and kinship. Eigen-values for each dataset are normalized by
the maximum eigen-value so that each spectrum has a maximum of 1.
doi:10.1371/journal.pone.0075707.g004
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formalizes a biological interpretation of the model. We introduced

the effective degrees of freedom in order to interpret model

complexity of the low rank LMM (LRLMM) and the strength of

the correction for population structure and kinship. A fixed effects

model can include relatively few principal components, yet the

LMM models the entire eigen-spectrum of the genetic similarity

matrix. Thus while it is generally suggested that the degrees of

freedom in a regression model be on the order of the square-root

of the sample size in order to maintain reasonable statistical power

[22], the effective degrees of freedom of the full rank LMM

routinely exceeded 40% of the sample size in our analysis and

reached up to 80%. The effect of using such high effective degrees

of freedom on the statistical test of association remains an open

question. Moreover, wide confidence intervals for the effective

degrees of freedom indicate that there is a high degree of

uncertainly about the strength of the correction for population

structure and kinship. In contrast, the confidence intervals for the

LRLMM are substantially smaller and are thus less influenced by

stochastic effects. These results indicate that a high-dimensional

correction for confounding may benefit from a fully Bayesian

treatment of the linear mixed model as it would integrate over the

uncertainty of the strength of the correction [24]. Yet the

LRLMM would likely not benefit as much since it produces a

low-dimensional fit to the data.

The ability of our low rank linear mixed model (LRLMM) to

boost the signal of a known association for HDL cholesterol in

Europeans indicates that the LMM can overfit the data so that the

random effect absorbs too much of the phenotype variance. If the

true model is low rank, then the LRLMM will have greater power

than the LMM. Alternatively, if the true model is high-

dimensional then the full rank LMM is more appropriate. Since

there is no way to know true dimensionality a priori, our novel

LRLMM provides an alternative test of association that can boost

the strength of an association or identify additional associations if it

is a better fit to the data.

The LMM has been interpreted in the context of kinship

[31,23,63], genetic background [64,11,63], latent environmental

effects [49,12], highly differentiated markers in the context of

population structure [21,65,1], and correcting for confounding in

the context of rare variants [12]. Moreover, the formulation of the

LMM in terms of genetic background underlies the motivation of

a LRLMM based on markers selected from a preliminary test of

association [11,12]. Here, we have formalized the interpretation of

genetic confounding and the LMM in terms of the population

genetics of both population structure and kinship. The LRLMM

developed here is based on the principal components from a

genome-wide set of markers and the low rank corresponds to the

Figure 5. Fraction of available degrees of freedom used to account for population structure and kinship. Results are shown for A) the
linear mixed model (LMM) and B) the low rank linear mixed model (LRLMM) sorting by degrees of freedom of each principal component fit
individually (LRLMM-DF). Effective degrees of freedom normalized by sample size are shown for two phenotypes and four populations from the
Multi-Ethnic Study of Atherosclerosis (MESA) plus the combined dataset. Error bars indicate 95% confidence intervals based on the log-likelihood
surface of d. Note the large difference in the scales between (A) and (B). These approximate confidence intervals were generated by maximizing the

log-likelihood of the linear mixed model (8) with respect to all parameters, determining d̂dfe according to d̂d and the mapping (26), evaluating dfe on a

fine grid of values by changing the value of d, and identifying an asymmetric interval around d̂dfe so that a standard asymptotic likelihood ratio test
using a x21 null distribution produced a 5% type I error. These confidence intervals may not be statistically optimal, but we show them here for
illustrative rather than quantitative purposes.
doi:10.1371/journal.pone.0075707.g005

Table 1. Sample size for each population and phenotype
from the Multi-Ethnic Study of Atherosclerosis (MESA) dataset.

Asian Hispanic European

African
American combined

HDL cholesterol 772 1436 2481 1584 6273

height 775 2104 2522 2528 7929

doi:10.1371/journal.pone.0075707.t001
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relevance of only a subset of principal components. We note that

our simulations show that a given method works best when the

genetic architecture follows the assumptions underlying the

method’s statistical model.

With the growing interest in testing associations of rare variants,

new problems of genetic confounding are arising due to the more

recent origin and more localized distribution of rare compared to

common variants [66,67,68]. While addressing this challenge will

require extensive methodology development and empirical inves-

tigations, the framework discussed here suggests important issues

to consider in order to apply appropriate corrections for genetic

confounding in the next-generation of GWAS.

Supporting Information

Figure S1 Simulated genetic similarity matrices and
their eigen-spectra. a) The eigen-spectrum of 3 distinct

populations is dominated by the the first 3 eigen-values. b)
Kinship represented by 33 parent-offspring duos has a long tailed

eigen-spectrum. c) The weighted sum of the genetic similarity

matrices from (a) and (b) combine population structure and kinship

so that the eigen-spectrum has a long tail, yet is dominated by the

first 3 eigen-values. We note that the eigen-spectra are scaled by

the largest eigen-value so that all spectra have the same scale.

Moreover, we note that for simplicity the genetic similarity

matrices were constructed directly and are not based on real or

simulated genotype data.

(TIFF)

Figure S2 Estimated heritability based on 6 LMM

methods for h2~30%. Estimated heritability is shown for i
relevant principal components sampled randomly from the first 3i

principal components for i[f2,5,10,50,100g. Results are shown

for the low rank linear mixed model (LRLMM) using only the

relevant principal components (True), the full rank LMM (Full)

and the LRLMM using 4 orderings of the principal components:

eigen-value, corSq, corSq*eigen-value and DF. Results are shown

where the optimal rank for the LRLMM was determined by

minimizing the AIC, BIC, Generalized Cross Validation (GCV) or

22*log-likelihood (logLik). The dashed line on each plot shows the

true heritability.

(TIFF)

Figure S3 Estimated heritability based on 6 LMM

methods for h2~40%. Estimated heritability is shown for i
relevant principal components sampled randomly from the first 3i
principal components for i[f2,5,10,50,100g. Results are shown

for the low rank linear mixed model (LRLMM) using only the

relevant principal components (True), the full rank LMM (Full)

and the LRLMM using 4 orderings of the principal components:

eigen-value, corSq, corSq*eigen-value and DF. Results are shown

where the optimal rank for the LRLMM was determined by

minimizing the AIC, BIC, Generalized Cross Validation (GCV) or

22*log-likelihood (logLik). The dashed line on each plot shows the

true heritability.

(TIFF)

Figure S4 Estimated heritability based on 6 LMM

methods for h2~50%. Estimated heritability is shown for i
relevant principal components sampled randomly from the first 3i
principal components for i[f2,5,10,50,100g. Results are shown

for the low rank linear mixed model (LRLMM) using only the

relevant principal components (True), the full rank LMM (Full)

and the LRLMM using 4 orderings of the principal components:

eigen-value, corSq, corSq*eigen-value and DF. Results are shown

where the optimal rank for the LRLMM was determined by

minimizing the AIC, BIC, Generalized Cross Validation (GCV) or

Figure 6. Quantile-quantile plot for association tests for HDL
cholesterol in Europeans. Results are shown from a standard linear
model (Plink [60]), 4 versions of the linear mixed model (EMMAX [4],
GEMMA [9], FaST-LMM [6]), FaST-LMM-Select [11,12]), and the low rank
linear mixed model with 4 orderings of the principal components. We
note that LRLMM using eigen-value and corSq*eigen-value orderings
selected no principal components correction and thus give the same p-
values as Plink. lGC indicates the genomic control value [13].
doi:10.1371/journal.pone.0075707.g006

Figure 7. Manhattan plot of chromosome 8 showing 19.6 Mbp
to 20.1 Mbp. Results are shown for the low-rank linear mixed model
(LRLMM) ordering principal components by degrees of freedom based
on the fit of LRLMM with each principal component individually
(LRLMM-DF). P-values from FaST-LMM [6] are shown for comparison.
Dashed line indicates Bonferroni correction of 5% for 650,000 markers.
Linkage disequilibrium is shown in terms of D9. We note that other
methods are omitted for the sake of clarity.
doi:10.1371/journal.pone.0075707.g007
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22*log-likelihood (logLik). The dashed line on each plot shows the

true heritability.

(TIFF)

Figure S5 Estimated heritability based on 6 LMM

methods for h2~60%. Estimated heritability is shown for i
relevant principal components sampled randomly from the first 3i
principal components for i[f2,5,10,50,100g. Results are shown

for the low rank linear mixed model (LRLMM) using only the

relevant principal components (True), the full rank LMM (Full)

and the LRLMM using 4 orderings of the principal components:

eigen-value, corSq, corSq*eigen-value and DF. Results are shown

where the optimal rank for the LRLMM was determined by

minimizing the AIC, BIC, Generalized Cross Validation (GCV) or

22*log-likelihood (logLik). The dashed line on each plot shows the

true heritability.

(TIFF)

Figure S6 Mean squared error of estimated heritability
across all simulation conditions for low rank linear
mixed model (LRLMM). Plots shown here summarize the

results of Figures S2, S3, S4, S5 in terms of mean squared error.

Results are shown for the low rank linear mixed model (LRLMM)

using only the relevant principal components (True) and the

LRLMM using 4 orderings of the principal components: eigen-

value, corSq, corSq*eigen-value and DF. Results are shown where

the optimal rank for the LRLMM was determined by minimizing

AIC, BIC, Generalized Cross Validation (GCV) or 22*log-

likelihood (logLik). Results from the full rank LMM are shown in

Figure S14 since the mean squared errors are much larger when

the true model is low rank.

(TIFF)

Figure S7 Mean squared error of estimated heritability
across all simulation conditions for full rank LMM.
Results are shown for the same simulations as in Figure S6. Results

are shown for a range of heritabilities and number of relevant

principal components. The results for the full rank LMM are

shown here since the mean square error is substantially larger than

for LRLMM methods when the true model is low rank.

(TIFF)

Figure S8 Effective degrees of freedom for each princi-
pal component based on a linear mixed model (LMM)
analysis of HDL cholesterol for four populations from
the Multi-Ethnic Study of Atherosclerosis (MESA) data-
set. Total effective degrees of freedom for each population are

shown in the legend.

(TIFF)

Figure S9 Fraction of available degrees of freedom used
by the linear mixed model (LMM) to account for
population structure and kinship estimated using re-
stricted maximum likelihood (REML). Effective degrees of

freedom normalized by sample size are show for six phenotypes

and four populations from the Multi-Ethnic Study of Atheroscle-

rosis (MESA) plus the combined dataset. Error bars indicate 95%

confidence intervals based on the log-likelihood surface.

(TIFF)

Figure S10 Manhattan plots for HDL cholesterol in
Europeans from the Multi-Ethnic Study of Atherosclero-
sis (MESA). Results shown using Plink, EMMAX, GEMMA,

FaST-LMM: full rank, FaST-LMM-SELECT and our low rank

linear mixed model sorting by degrees of freedom from fitting each

principal component individually (LRLMM-DF).

(TIFF)

File S1 Eective degrees of freedom.

(PDF)
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