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1 Ecologie, Systématique & Evolution, Univ. Paris Sud, Orsay, France, 2 Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology, Okinawa, Japan

Abstract

Following its introduction from Asia to the USA, the Asian needle ant (Pachycondyla chinensis) is rapidly spreading into a
wide range of habitats with great negative ecological affects. In addition, the species is a concern for human health because
of its powerful, sometimes deadly, sting. Here, we assessed the potential of P. chinensis to spread further and to invade
entirely new regions. We used species distribution models to assess suitable areas under current climatic conditions and in
2020, 2050 and 2080. With a consensus model, combining five different modelling techniques, three Global Circulation
(climatic) Models and two CO2 emission scenarios, we generated world maps with suitable climatic conditions. Our models
suggest that the species currently has a far greater potential distribution than its current exotic range, including large parts
of the world landmass, including Northeast America, Southeast Asia and Southeast America. Climate change is predicted to
greatly exacerbate the risk of P. chinensis invasion by increasing the suitable landmass by 64.9% worldwide, with large
increases in Europe (+210.1%), Oceania (+75.1%), North America (+74.9%) and Asia (+62.7%). The results of our study
suggest P. chinensis deserves increased attention, especially in the light of on-going climate change.
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Introduction

Among the over 12,000 described species of ants [1], more than

200 species have established populations outside their native range

[2]. The rate of new species introductions continues to increase

due to the ever growing human-mediated transportation via

international trade and tourism [3]. Only a small subset of

introduced ant species eventually becomes invasive, but these

species can have a large impacts [4–6]. They can cause significant

biodiversity losses, in particular as extremely efficient predators

and competitors [7]. For example, most native ant species may be

eliminated from the invaded habitat and a variety of other taxa,

ranging from soil microbes to small mammals, can be negatively

affected [6,8]. In addition, invasive ants can disturb ecological

networks, such as seed dispersal mutualism, thereby impairing

ecosystem functioning [7]. Finally, they often damage agroecosys-

tems and are a nuisance to humans by infesting estates, leading to

high economic costs [9].

Ants are known to be very sensitive to changes in temperature

and humidity, because it affects their survival [10], foraging

activity [11] and foraging networks [12] and dominance hierar-

chies [13]. It is generally accepted that with climate change, many

invasive ant species will progressively colonize higher latitudes and

altitudes, where the currently too cold climatic conditions are

expected to become more suitable [14,15]. In this regard, several

studies have used species distribution models [16–19] or physio-

logical experiments [11,20,21] to investigate the relationship

between temperature and humidity and ant distribution. Climate

is one of the most important factors influencing the distribution of

ants [22–24] and climatic suitability has been shown to be even the

most important factor responsible for the current global distribu-

tion of the invasive Argentine ant, Linepithema humile [25]. Climate

can therefore serve as an important proxy to estimate the potential

distribution of invasive ants worldwide. It is generally recognized

that climate change is going to be a major determinant of species

physiology, phenology and range shifts during this century [26].

However, few studies have gone beyond the estimation of current

potential invasive range and forecast also the future potential

distributions of invasive species in general (but see [27–29]).

Furthermore, such pioneer studies estimating the future potential

ranges of invasive ants have concentrated on the few species of

Linepithema humile [25,30] Solenopsis invicta [31] and Pheidole

megacephala [16], leaving a great knowledge gap for most other

major invasive ant species.

Risk assessments conducted prior to the arrival of an invasive

species are a vital component of biosecurity preparedness, because

most species, including invasive ants, are extremely difficult to

eradicate once they become established [32]. Providing a spatial

model of relative climatic suitability is an important component of

risk assessments to prioritize surveillance efforts for invasive species

with a high likelihood of establishing in a particular region. The

greater the extent of an invasion, the higher the environmental

impacts of management attempts and the difficulty of achieving

successful eradication [33]. It is known that reactive programs

have generally a higher cost than proactive programs [34]. In this

context, the Asian needle ant, Pachycondyla chinensis, is of utmost

interest. Despite its introduction from Asia to the eastern part of

North America in the first part of the 20th century, the invasion of

this fast-spreading species was only detected recently in a wide
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range of habitats in North America, including mature temperate

forests, where it causes a strong decline in native ant abundance

[35]. In addition, the species has been shown to disrupt an ant-

seed dispersal mutualism by displacing a native keystone ant

species [36]. The species’ negative impact on native seed dispersers

has been compared to the impact of Argentine ant [36], which is

among the ‘‘100 of the worst invasive species’’ list of the IUCN

[37] and has enormous impacts on biodiversity [38]. Additionally,

P. chinensis is a growing concern for public health due to its

powerful, and sometimes deadly, sting [35].

Consequently, there is a strong need to develop predictive

models of the potential distribution of this highly invasive species,

both currently and in the future with predictions of climate

change. Here we use species distribution models to: (1) to quantify

the current potential distribution worldwide and within six broad

geographic regions; and (2) quantify the change in potential

distribution with global climate change at the global and regional

levels.

Materials and Methods

Species Distribution Data
Species distribution models search for a non-random association

between environmental predictors and species occurrence data to

make spatial predictions of potential distribution. Because our

models should include the full set of climatic conditions under

which the target species can exist, we included occurrence points

(presence only data) from both invaded and native habitats [39].

In total, we used 283 occurrence points, 219 from North America

(invaded range) and 64 from Asia (native range) (Fig. S1). The

exact distribution of P. chinensis’ native range is problematic as this

species belongs to a large and taxonomically unresolved complex

of species [40]. To maximize data integrity, the data used for

modeling were limited to specimens collected in its native range

and identified by one of the authors (BG) and specimens strictly

identified as P. chinensis in literature [40,41]. In its introduced

range, where P. chinensis identification is not problematic, localities

were extracted from literature, museum records and personal

collecting (BG).

For models requiring absence data, 10,000 pseudo-absence

(background) points were generated randomly from all around the

world to provide background data. This is a classic procedure

because confirmed absence data is difficult to obtain for most

species and requires great sampling efforts [42]. True absence data

might improve the model accuracy because some pseudo-absence

points may be drawn from regions where the species is actually

present, but has not been recorded. However, it is not possible to

base our projections on true absences due to lacking large-scale

absence data of the species. In addition, in the case of invasive

species, even a true absence point may indicate a suitable location

that the species has not yet been introduced to due to a lack of

opportunity. Therefore, we believe that pseudo-absence data can

serve as a reasonable proxy.

Climatic Predictors
Climatic predictor data was sourced from the Worldclim

dataset. The 19 Worldclim variables represent annual trends

(e.g. mean annual temperature, annual precipitation) and extreme

limiting environmental factors (e.g. temperature of the coldest and

warmest months, precipitation of the wettest or driest quarter) and

are known to influence species distributions [45,46]. All Worldclim

variables are 30-year averages of monthly temperature and rainfall

values from 1960–1990 [43], which is characteristic of the climate

that the species experienced when the occurrence point was

collected or the species established in this locality. We modelled

the species niche based on 4 of the 19 bioclimatic variables that

were not collinear (pair-wise rPearson ,0.75). The selected variables

were (in the order of their relative contribution to the Maxent

model): Precipitation of the driest month, isothermality, precipi-

tation of the warmest quarter and maximum temperature of the

warmest month. These variables are believed to directly influence

ant distributions because many features of ant biology are sensitive

to small differences in temperature [16] or humidity, for example

foraging [11], oviposition rates [44], survival [10], the structure of

foraging networks [12].

Future climatic data were sourced from the 4th IPCC

assessment report [47]. The direct output of Global Climate

Models is provided in the form of very large (500 km) grid cells

because of the heavy calculations needed for the simulation of

geophysical processes. To get a better resolution required for

species distribution modelling, climate centres use statistical

models to infer climatic variation at a more local scale,

‘‘downscaling’’ the data by using the WorldClim data for ‘current’

conditions for calibration. Therefore the projections at different

time horizons can be compared. In order to consider a range of

possible future climates, we used downscaled climate data from

three Global Circulation Models (GCMs), provided by different

climate centres, each based on different geophysical assumptions:

the CCCMA-GCM2 model; the CSIRO-MK2 model; and the

HCCPR-HADCM3 model [47]. We also used two extreme

Special Report on CO2 Emission Scenarios (SRES): the optimistic

B2a and pessimistic A2a scenarios. In total, we used six future

climatic scenarios (3 GCM62 SRES). Data for the future climatic

projections were climate data averaged across a decade, centred

on the focal year (e.g. 2020) [47].

Worldclim data is the standard source of climate data for species

distribution models. However it is poor at interpolating climate in

topographically complex regions such as mountains or coastal

regions [48]. But the focus of our study is projections at the global

scale with a spatial resolution of 10 arcmin (approx. 18.5618.5 km

pixel), where complex coastlines are not visible. Predictions based

on coarser resolutions are more likely to be controlled by climatic

predictors, whereas fine-scale, patchy distributions at a smaller

scale are more likely to be determined by micro-topographic

variations or habitat fragmentation [49].

Species Distribution Modelling
In order to make spatial predictions of potential distribution, we

used species distribution models (SDMs), which explain the

species’ current distribution based on a set of climatic predictor

variables. It has been shown that model outputs are sensitive to the

algorithms, climatic data from different global climate models and

different human development scenarios [50]. One way to deal

with these uncertainties in species distribution modelling is to

conduct a consensus forecast which can be defined as combining

multiple simulations across a range of possible initial conditions

and different classes of models [51].

To generate the consensus forecasts we used five machine

learning methods, which are a set of algorithms that learn the

mapping function or classification rule inductively from the input

data [52]. The first two models were based on one- and two- class

Support Vector Machines (SVMs) [39,31]. Two-class SVMs

(SVM2) seek to find a hyperplane that maximally separates the

two target classes. Recently, one-class SVMs have also been

developed [42] that distinguish one specific category from all other

categories. Third, we used Artificial Neural Networks (ANN),

which extract linear combinations of the input variables as derived

features (synthetic variables), and model the output as a nonlinear

Potential Distribution of Pachycondyla chinensis
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function of these derived features [42,54]. Fourth, we used

Classification Trees (CT), which partition the response variable

into increasingly pure binary subsets with splits and stop criteria

[41,42,53]. Finally we used the Maximum Entropy Method

(Maxent) which estimates a probability distribution of a species

being present by seeking the most widespread distribution, given a

set of constraints [18,57,58]. For a more detailed description of

these algorithms see [16,19]. All models were run using the

ModEco Platform with default parameters [59].

A clear limitation of modelling is that outputs are dependent on

the specifically chosen input settings, in this instance the

algorithms, global climate models and scenarios of human

development. To minimise potential resulting variation, we

conducted consensus forecasts [51] using the outputs of the five

different modelling techniques detailed above with each of three

climate models (GCMs) and two CO2 emission scenarios (SRES).

The purpose of consensus forecasts is to separate the signal from

the ‘‘noise’’ associated with the errors and uncertainties of

individual models, by superposing the maps based on individual

model outputs. Areas where these individual maps overlap are

defined as areas of ‘‘consensual prediction’’ [51]. This is different

from averaging the individual projections, as the area predicted by

the consensus forecast can be smaller than any individual forecast

if there is little spatial agreement (i.e., overlap) between individual

forecasts. Simple averaging across individual forecasts is consid-

ered unlikely to match reality [51].

The contribution of the individual models (i.e. the spatial

prediction of ‘‘suitable range’’) was weighted according to their

AUC (section on model validation) in order to enhance

contribution of models with higher model performance values

(see [18]). Only binary projections (present or absent) have been

combined to generate the consensus model because continuous

outputs can have different meanings for different models and

cannot be simply added together [59]. The combination of the

individual forecasts then yields a projection (the consensus model),

where the value of pixels vary between 0 and 1 and can be

interpreted as a probability of the species occurring in each pixel

[51].

The consensus model was generated using all 30 individual

projections, each based on a different combination of CO2

scenario6GCM6modelling technique, yielding a consensus pro-

jection for 4 time horizons (current, 2020, 2050 and 2080). The

future climatic projections that we used as a basis of our models

are in fact averaged climate data across a decade, centred on the

focal year (e.g. 2020) [47].

Model Validation
Model robustness was evaluated using the AUC of the ROC

curve, which is a nonparametric threshold-independent measure

of accuracy commonly used to evaluate species distribution models

(e.g., [18,60]). We used the AUC because it does not depend on

the selected classification threshold, and it readily indicates if a

model discriminates correctly between presence and absence

points [18,60]. AUC values range from 0 to 1, where a value of 0.5

can be interpreted as a random prediction. AUC between 0.5 and

0.7 are considered low (poor model performance), 0.7–0.9

moderate and .0.9 high ([42] and references therein). For model

evaluation, the data needs to be split into a train and a test group.

Here, we used 10-fold cross-validation, whereby the data was split

into 10 equal parts, with 9/10 of the observations used to build the

models and the remaining 1/10 used to estimate performance.

Validation was repeated ten times and the estimated performance

measures were averaged [42,61].

Assessing Climatically Suitable Areas
Studies with a priori objectives may use a range of different

threshold values [62] to determine habitat suitability. As this was

not the case here, we applied a limit whereby pixels with a

probability of presence exceeding 0.5 were classified as ‘‘suitable’’

area, as is frequently done for binary classification for species

distribution modelling [42,63]. Users of our models may want to

minimize the chance of either over- or under-prediction of

potential distribution (omission or commission errors) and to apply

a different threshold. For example, for management decisions it

could be better to apply a more ‘‘prudent’’ (lower) threshold that

lowers the probability of omission errors. To allow these user-

specific applications of our models, we provide maps with a

continuous output with a probability of presence between 0 and 1

(with 0.1 intervals).

In addition, we created a difference map (future suitability map

– current suitability map), which showed relative differences that

are independent of any classification threshold and indicated areas

where the climatic suitability improved or decreased. Second, we

generated a ‘‘shift’’ map where we mapped the net gains, losses

and stable ranges under current and future climatic conditions.

Third, we calculated two indices that have been recently proposed

as complementary measures to evaluate the extent of spatial shift

[64]: the spatial congruence index (2a/2a+b+c), based on the

Sorensen-Dice dissimilarity measure, and the stable range (a/

(a+b)), which is a measure of spatial shift vs stability, whereby

a = area suitable currently and in the future, b = area suitable

currently only, and c= area suitable in the future only. Spatial

analyses were carried out using DIVA-GIS [65] and Arcgis v. 9.3.

Results

The AUC values indicated excellent model performance for all

five algorithms in predicting the species’ distribution based on the

consensus model (AUC values: SVM1=0.968, SVM2=0.991,

Maxent = 0.998, ANN=0.991, CT=0.997).

Current Climatic Conditions
Maps of the consensus model under current and future climatic

conditions by 2020, 2050 and 2080 indicated large and increasing

suitable areas for P. chinensis (Fig. 1a–d). Under current climatic

conditions, 3.33% of global landmass was predicted to be suitable

for P. chinensis. The suitable range was unequally distributed

among biogeographic regions, with the highest relative amount of

suitable landmass found in North America (45%), followed by Asia

(38%), South America (11%), Europe (3%) and Oceania (2%)

(Fig. 2a). The relative proportion of suitable landmass was also

highest in North America (Fig. 2b).

Climate Change Impacts
The suitable range for P. chinensis increased dramatically with

projected climate change. In 2020 the potential range increased by

15.6%, in 2050 by 29.3% and in 2080 this increase reached

+64.9% of the currently suitable landmass (Fig. 3).

By 2080, changes in suitable landmass differed greatly among

biogeographic regions, with large increases in Europe (+210.1%,

i.e., +363,117 km2), Oceania (+75.1%, i.e., +94,332 km2), North

America (+74.9%, i.e., +1,972,781 km2) and Asia (+62.7%, i.e.,

+1,403,693 km2) and a decrease in Africa (222.9%, i.e.,

22,042 km2).

Spatial Shifts of Suitable Conditions
The net changes in suitable landmass were almost exclusively

due to gains in potential distribution (+4,350,682 km2, Fig. 4a).

Potential Distribution of Pachycondyla chinensis
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Very small areas of suitable landmass was lost (i.e., suitable

under current but not under future climatic conditions:

288,300 km2, Fig. 4a). These increases were from range

expansions at the edge of the suitable range, but also entirely

of new areas that became suitable (e.g. Europe, Northern Brazil

or Indonesia, Fig. 4a). The stable range index was 0.569,

meaning that only 56.9% of P. chinensis’ current potential range

will remain suitable in the future. Spatial congruence was 0.722,

which provides a measure of the stability (stable range) vs shift

(losses and gains), indicating that 72.2% of all current and

future suitable areas can be considered as ‘‘stable range’’ over

time, whereas 27.8% will be either suitable currently or in the

future, but not under both climatic scenarios.

The relative differences between the current and future areas of

suitability, indicated that P. chinensis was likely to experience higher

relative climatic suitability in all biogeographic regions, including

large parts of north Africa, Arabia, India, South East Asia, north

east America and eastern Europe (Fig. 4b). Few areas, such as the

eastern USA showed a slight decrease of suitability (areas in light

blue, Fig. 4b).

Discussion

The Asian needle ant is native to Asia and has already invaded

the South Eastern part of the USA [35]. Our models suggest that

the species has a far greater invasive potential and is capable of

invading large parts of the global landmass on several continents,

particularly north east America, South East Asia and south east

America. In addition the consensus models suggest that climate

change will exacerbate the risk of invasion by P. chinensis globally.

Strikingly, the global suitable landmass is predicted to increase by

64.9% with climate change. At the regional scale, most of P.

chinensis’ potential distribution was found in its Asian native range

and in North America where the species is now considered

invasive [35]. With climate change, the amount of suitable area for

P. chinensis is predicted to greatly increase based on more suitable

conditions, by 74.9% in North America. In addition, our models

also predict a potential expansion into new biogeographic regions

that should become suitable by 2080, in particular Europe, South

America or Indonesia and an expansion in Asia relative to its

current known distribution range.

In addition to direct climatic suitability, climate change could

enhance the invasion likelihood by disadvantaging other compet-

ing ants in the invaded areas. Ant community structures are

known to be temperature-dependent [13,66], and therefore a

change in temperature might lead to new invaders dominating.

For example, P. chinensis has recently been found to establish in

sites dominated by the invasive Argentine ant, L. humile, resulting

in a dominance swap and even localised extinction of L. humile

[65]. Because P. chinensis does not seem to be behaviourally

dominant, this dominance shift has been attributed to differences

in the climatic preferences of the two species, with P. chinensis

establishing nests and expanding is population earlier in the season

when temperatures were lower before L. humile populations could

expand [65].

Our consensus models for the potential distribution had a

high accuracy (good to excellent AUC) and were designed to

include a broad range of climate change scenarios, with an

optimistic B2a and a pessimistic A2a CO2 emission scenario

and three global circulation climatic models [47]. We addition-

ally reduced uncertainty due to single modelling methods by

building models with five different algorithms that contributed

to the final consensus forecast [51]. Nevertheless, inherent

uncertainty in the spatial projection remains because of the

underlying assumptions shared by all species distributions

models [49], [46] in that they assume that the species is in

equilibrium with its environment and therefore its current

distribution reflects the ideal climatic conditions for the species,

which can be used to model its potential distribution. That

means that a model of the potential distribution of an invasive

species with climate change has to make two extrapolations: 1)

in space (invasion of a different place); and 2) in time (with

future climate change). However, niche shifts during invasions

are possible and have already been observed [67–69] and

species may display phenotypic plasticity or show evolutionary

adaptations, such as has been shown for the Asian ladybeetle

which has the same invasion pattern as P. chinensis, dispersing

from Asia to the east coast of North America [70]. Therefore,

projections for invasions under climate change come necessarily

with some uncertainty and should be only viewed as an attempt

to evaluate future trends and invasion risks, and not as a precise

prediction at a small scale. For example, a new occurrence

point of P. chinensis has been recently recorded in Washington

D.C. by the School of Ants project [71], where the species does

not find ‘excellent’ climatic conditions according to our

projections. One of the inherent problems of species distribution

models is that the species may be able to occur within areas

predicted to be of relatively low suitability, if the microclimatic

conditions favour the species or if it is associated to human

infrastructure. Despite these limitations, species distribution

Figure 1. Maps of potential distribution. Climatic suitability ranges
from ‘‘low’’ (light purple) to ‘‘excellent’’ (dark purple). (a) Current
climatic conditions (b) Consensus model of 6 future climatic scenarios
(3 GCM62 SRES) for 2020, (c) 2050 and (d) 2080.
doi:10.1371/journal.pone.0075438.g001

Potential Distribution of Pachycondyla chinensis
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models are generally considered to deliver useful approximations

[72,73].

A further factor to consider is that numerous native species are

predicted to suffer the effects from climate change [26]. This may

Figure 2. a+b Distribution and proportion of suitable landmass under current climatic conditions among six biogeographic
regions.
doi:10.1371/journal.pone.0075438.g002

Figure 3. Change in suitable landmass over time relative to the currently suitable landmass. The boxplot represents variation of
projections across six future climatic scenarios, each based on a different combination of Global Climate Model6CO2 emission scenario, per time
horizon (6 s.d). The red line indicates the value of the consensus model.
doi:10.1371/journal.pone.0075438.g003

Potential Distribution of Pachycondyla chinensis
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increase the vulnerability of the community by decreasing the

biotic resistance to new invaders [74,75]. This could even further

exacerbate the invasion risk of P. chinensis.

Our study solely focused on the role of climate change on the

potential distribution of a newly invasive ant species because

climate has been shown to be very important in determining the

distribution of ants at a global scale [22–24] as well as being the

most important factor influencing the global invasion of the

Argentine ant [25]. Therefore, climate is probably a crucial factor

limiting the distribution of other invasive ants, such as P. chinensis.

For future studies, predictions of invasive potential will be

advanced by investigations into the influence of other abiotic

factors and drivers of species displacement. At a finer scale for

example, topographic or terrain variables, such as elevation,

geomorphology or hydrology can be important [42]. For example,

appropriate soil moisture levels can be an important requirement

Figure 4. Differences in suitable climatic conditions between the current climate and the consensus projection in 2080. (a) Net gains
(red), losses (blue) and stable range (yellow), (b) Relative differences in suitability : red colors indicate improved climatic suitability (light to dark red
gradient indicates the relative change in suitability), blue colors indicate deteriorated climatic suitability for P. chinensis.
doi:10.1371/journal.pone.0075438.g004

Potential Distribution of Pachycondyla chinensis
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for nest location of ants. Also important is the effect of disturbance

regimes, because invasive ants are frequently associated with

disturbed habitats [76,77]. However, it should be noted that P.

chinensis has been found to invade intact forests [36].

Our results support the view that biological invasions could

increase due to climate change [60,61,62,10,11] and show it can

do so dramatically. In this way two of the most important threats

to global biodiversity (invasive species and climate change) may

interact synergistically. An important observation is that the

potential distribution of P. chinensis exists at a wide range of

latitudes, and thus this species’ potential range did not simply shift

to higher latitudes. Consequently, invasion risk was exacerbated

globally with entirely new areas covering large amounts of

landmass becoming suitable. Given the important ecological

impacts of P. chinensis [35] and its ability to potentially even

displace one of the most aggressive and dominant species of

invasive ants, the L. humile [81], clearly it is important that

surveillance efforts of this species are increased to prevent further

spread and aid early detection. Eradication of well established

large invasive ant populations can be extremely challenging [32] if

not impossible, but early detection of small incipient populations

can enable managers to carry out early responses and achieve

eradication [34]. The use of species distribution models to inform

risk assessments is increasingly becoming standard, but a spatial

model should be always viewed in the light of the many

uncertainties associated with the approach [58]. Species distribu-

tion models can serve as a guide to prioritize surveillance efforts in

certain regions. Ideally, this approach should be complemented

with interception data at ports of entry. The results of our study

suggest P. chinensis deserves increased attention in new regions of

the world (e.g., Europe and South America) as a rising exotic

species of significance.

Supporting Information

Figure S1 Occurrence points of P. chinensis

(TIF)
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