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1 Unité de Recherche 633 Zoologie Forestière, Institut National Recherche Agronomique, Centre d’Orléans, France, 2 Unité Mixte de Recherche 1062 Centre de Biologie
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Abstract

Mapping species spatial distribution using spatial inference and prediction requires a lot of data. Occurrence data are
generally not easily available from the literature and are very time-consuming to collect in the field. For that reason, we
designed a survey to explore to which extent large-scale databases such as Google maps and Google street view could be
used to derive valid occurrence data. We worked with the Pine Processionary Moth (PPM) Thaumetopoea pityocampa
because the larvae of that moth build silk nests that are easily visible. The presence of the species at one location can
therefore be inferred from visual records derived from the panoramic views available from Google street view. We designed
a standardized procedure allowing evaluating the presence of the PPM on a sampling grid covering the landscape under
study. The outputs were compared to field data. We investigated two landscapes using grids of different extent and mesh
size. Data derived from Google street view were highly similar to field data in the large-scale analysis based on a square grid
with a mesh of 16 km (96% of matching records). Using a 2 km mesh size led to a strong divergence between field and
Google-derived data (46% of matching records). We conclude that Google database might provide useful occurrence data
for mapping the distribution of species which presence can be visually evaluated such as the PPM. However, the accuracy of
the output strongly depends on the spatial scales considered and on the sampling grid used. Other factors such as the
coverage of Google street view network with regards to sampling grid size and the spatial distribution of host trees with
regards to road network may also be determinant.
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Introduction

Globalisation and one of its most publicized consequences, the

species redistribution, has received a considerable attention during

the last decades [1–3]. A lot of research efforts has been directed

towards unravelling ecological processes implied in the spread of

species [2,4]. In that context, GISs have proven particularly

precious to monitor species spread [5]. There is a concomitant

increasing demand for data documenting the spatial distribution of

species for different objectives such as monitoring and modelling

species range expansion [6,7], anticipating future distributions and

devising control strategies [8–11], studying mechanisms at work

with species dispersal and the relationships with landscape

composition and physiognomy [12]. Unfortunately, the amount

of data available is limited for a majority of taxa and geographical

regions. The consequences of data scarcity are dramatic for

example in the field of species distribution modelling [13,14]

where collecting occurrence data is not always easy, time

consuming, and is often non-environmentally friendly (because

of the gas emission of vehicles used for the survey). As a result,

updating or completing existing data sets is difficult albeit it is the

very first step of ecological analysis and modelling.

During the last decade, geospatial data have become increas-

ingly accessible with the advent of new mapping technologies such

as Google Earth that offers free satellite imagery and aerial photos

of most of earth’s land surface. Google Earth has been used in

several research areas that require mapping technology such as

human or animal health [15,16], conservation biology [17,18] or

biodiversity assessment [19]. A new level of spatial information has

been recently reached with the development of Google street view

(GSV) in 2007 [20]. This new technology provides panoramic

imagery captured in hundreds of cities in different countries

around the world. It corresponds to an unprecedented amount of

information at street-level scale. Not only dedicated to cities and

urban areas, GSV documents rural areas and unpopulated places.

GSV is based on the idea of operating numerous data-collection

vehicles around the world. Each vehicle is equipped with camera

and GPS, and records images while driving paved and unpaved

roads. Resulting data are processed and served via the Internet

[20]. Street imagery consists of detailed views allowing users to

navigating and exploring streets and cities [21]. The aim of the

present study was to explore how the GSV technology could be

helpful to ecological research in documenting the geographical

distribution of species. Recent studies have shown that the GSV
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imagery could be used to depict and audit neighborhood

environments in the framework of social science [22] and

preventive medicine [23] but to our knowledge, no ecological

application has been published so far.

We assessed the presence of an insect species by roadside

sampling [24] based on GSV imagery and compared the outputs

with independent field data. We selected the Pine Processionary

Moth (PPM) (Thaumetopoea pityocampa Den. & Schiff., Lepidoptera,

Notodontidae) as the biological model for our survey because it is a

good example of expanding species that offers various advantages

with regard to our aims. The PPM is a pine defoliator occurring

on various tree species of the genera Pinus and Cedrus that are used

in forestry or as ornamental trees in urban and rural areas

throughout Europe. PPM larvae build white winter nests that are

easily discernable and thus provide unambiguous indication of

species presence since no other organism produce similar

structures in these tree species at that time of the year. The nests

are spatially aggregated [25] and exhibit a strong edge effect with

considerably higher densities at stand edges [26] or along host

tree-lined streets. This characteristic is invaluable with regards to

roadside sampling. We sampled the subject species in two

sampling areas using both field sampling and visual examination

of GSV imagery and worked at two resolutions (i.e. grains) in order

to test possible scale effects. Attention was paid to the coverage of

the GSV database because it could constitute an important cause

of discrepancies between field and in silico data sets. This study is a

first step towards new methodologies for monitoring species

geographical distribution across large spatial scales making use of

the ever-increasing amount of data available through the Internet.

Materials and Methods

Model species
The PPM is a common defoliator occurring on various native

and exotic conifer species throughout southern Europe and

Mediterranean countries, where it is the most important pine

and cedar defoliator. Its preferred host, Pinus nigra, as well as

several other potential host tree species have been used for both

large-scale afforestation and ornamental plantations and are thus

widely distributed. The PPM range is largely controlled by the

minimum winter temperatures [27,28]. A recent study has

revealed that the PPM geographical range is expanding both

northward and in altitude [29], probably in relation to climate

changes [11,27,30,31]. Adult emergence occurs during summer

depending on local climatic conditions. Soon after emergence,

adults mate and females select a host tree and lay one egg batch on

the host tree needles. Hatching occurs roughly one month later i.e.

from August to September in our study area. Larvae are

gregarious, feed on pine needles, and build a silk nest [32,33].

The first two instars build small temporary silk nests only

detectable from nearby the host tree. From the third instar on,

larvae built a definitive nest in which they will develop during

autumn and winter. The winter nest is white and shiny due to

newly produced silk. The pupation procession (which gave its

name to the species) is the migration of larvae into the soil where

they pupate until the following summer. It occurs at the end of

winter or in early spring according to climatic and meteorological

conditions. Empty nests turn to brownish and deteriorate. They

have usually disappeared the following year when next PPM

generation starts to build new nests.

Ethics statements
All the data used in the present work were collected on the

public thoroughfare and thus did not require specific permissions

according to the French law (Arrêt n. 516 du 7 mai 2004 Cour de

cassation – Assemblée plénière). The present survey did not

involve endangered or protected species.

Sampling zones and grid resolution
We surveyed the PPM spatial distribution in two sampling areas

of contrasted extent (Figure 1). A large sampling area (46 848 km2)

was designed so as to cover the Région Centre in France which

northern and eastern parts have been recently or are currently

being colonized by the PPM. A second, smaller sampling area

(22622 km = 484 km2) was located within the former at the north

of the Beauce area. Each sampling area was discretized into a set

of sampling cells which size defined the grain or resolution of the

survey. The large sampling area was discretized into 183 cells of

16616 km size (Figure 1). This sampling zone will be thereafter

referred to as LG (large grid). Similarly, the Beauce sampling

window was discretized into a set of 121 cells of 262 km size and

the resulting sampling grid will be referred to as SG (small grid)

(Figure 1).

Field sampling protocols
The PPM was sampled within each individual cell throughout

each sampling grid according to a protocol defined to monitor the

species range expansion towards northern France [30,34] on the

basis of nest road sampling. Each cell is visited by car and PPM

host trees are observed by eye and with binoculars (when

necessary) from the road and public land. When a nest is

observed, it is georeferenced, the species is considered as present in

the cell and then the neighbouring cells are prospected. When all

the paved and unpaved roads practicable by car within a cell have

been visited without detecting a nest, the PPM is considered as

absent. The geographic coordinates of the tree hosting the

observed nest are recorded by GPS (or the location of this tree

is mapped onto a georeferenced aerial photo using PhotoExplor-

eur or Arpentgis mobile in case of distant observation).

Figure 1. Pine processionary moth sampling grids. A large
sampling grid covering the administrative region called ‘‘Région
Centre’’ (46 848 km2) in France was investigated. A second, smaller
(121 km2), sampling grid was nested within the former.
doi:10.1371/journal.pone.0074918.g001
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PPM presence-absence data in both grids were collected

between 2007 and 2009 following the protocol described above.

Note that a grid cell where the PPM was sighted on one sampling

occasion is assumed to remain colonized the following years.

Sampling based on GSV
For each cell, an operator virtually drove along the roads

available in the GSV database. He performed in silico roadside

sampling by visually analyzing the available panoramic views.

Figure 2 shows different pictures of PPM nests, infested trees and

several trees located along streets in the region of Orléans, France,

as they could be observed using GSV. When different views of the

same place were available, all the points of view were explored.

This work was realized in September and October 2011. As soon

as a nest was detected, the cell was considered colonised by the

PPM and the operator switched to another cell.

When a nest was difficult to identify, several views with different

zoom levels and different viewing angles were examined. The

spatial coordinates of each nest were recorded. Four kinds of cells

were thus considered: cells without road covered by GSV at the

date of the observation; cells containing at least one nest

identifiable without ambiguity (‘‘presence’’ cell); cells with a

putative nest but with a persistent doubt (‘‘indistinct’’ cells); cells

without nest detected (‘‘absence’’ cells).

Spatial coverage of Google roads and GSV
For the SG, we encountered several cells with no available GSV

data and a high discrepancy between field and in silico data (see

results). We therefore assessed the structure of the road network

covered by GSV to examine its spatial variability and determine if

it could explain the divergences between data sets. We developed a

java script to collect information from the Google API (code

available in Text S1), we then derived maps of roads included in

the GSV database on a regular grid of 250 by 250 m mesh. The

coordinates of each point were used to retrieve the nearest road

and the nearest road available in the GSV database. We

additionally computed an index to quantify the coverage by

GSV within each sampling cell using the following procedure: cells

were rasterized at the resolution of 250 by 250 m using the R

package raster [35]. We then computed the proportion of pixels

corresponding to road covered in the GSV database.

Comparing field and Google-derived data sets
Both zones led to two grids of PPM occurrences corresponding

to field and Google-derived data. This was considered as a two-

class prediction problem i.e. binary classification. Cells in which

the PPM was observed formed the ‘‘positive’’ class while cells

where the PPM was absent formed the ‘‘negative’’ class. We

computed the four possible outcomes of that binary classifier,

namely the true positive (TP), the true negative (TN), the false

positive (FP) and the false negative (FN) [36], assuming that field

sampling gave true data. TP corresponded to cases where the PPM

was observed both in the field and from Google database. TN

corresponded to absence in the field and in the Google derived

data. FP corresponded to cells where the PPM was not observed in

the field but was present according to Google data. Finally FN

corresponded to field observations associated to absence according

to Google data. TN, FN, TP and FP formed the confusion matrix

reported in the results section (Tables 1 and 2). The sensitivity (rate

of TP) and the specificity (rate of TN) were used to measure the

proportion of good predictions derived from Google data in the

case of cells where PPM is present and absent respectively. The

sensitivity and the specificity were estimated as TP/P and TN/N

where P and N are the total number of positive and negative cases

respectively. We computed the accuracy or the rate of good

predictions as (TP+TN)/(P+N). We additionally computed the

Phi/Matthews correlation coefficient as a measure of discrete

covariation between field and Google derived data [37].

This coefficient ranges from 1 to +1 with 1 indicating a perfect

prediction, 0 a random prediction and negative values a worse

than random prediction. All computations were done using the R

statistical software [38] and the R package ROCR [37].

Results

Large sampling grid
The field data collected for the large scale survey showed that the

PPM was present all over the study area: there were 178 cells

classified as ‘‘presenc’’ and 5 as ‘‘absence’’. Google-derived data

Figure 2. Pictures showing the pine processionary moth silk
nest and different examples of infested trees located along
streets in the region of Orléans, France. A. Winter silk nest. B. Host
tree infested by several PPM colonies. C to E. Infested trees located
along traffic lanes. F. Picture taken from within a car. All host trees are
black pines (Pinus nigra) except in C. where black pines and scots pines
(P. sylvestris) are present. All photos by J. Rousselet.
doi:10.1371/journal.pone.0074918.g002

Table 1. Confusion matrix for the pine processionnary moth
field data (true class) and Google-derived data (hypothetized
class) in the large-scale study grid (LG).

field data

presence absence

Google presence TP = 165 FP = 0

absence FN = 13 TN = 5

doi:10.1371/journal.pone.0074918.t001
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provided slightly different values with 165 cells classified as

‘‘presence’’ and 17 as ‘‘absence’’. One cell was reported as

‘‘indistinct’’ because the pictures did not allow ascertaining the

presence of PPM nests (Figure 3). In that case, we assigned the status

of absence to the cell when computing sensitivity and other indices.

Off the 183 cells, 165 were true positives and 5 were true negatives

(Table 1). The number of false negatives was 13 and there was no

case of false positive (Table 1). This led to very high values of the

sensitivity (true positive rate) and specificity (true negative rate),

which were respectively 0.927 and 1. Both field and Google-derived

data are reported in Figure 3. Overall, Google-derived data showed

a good agreement with field data as revealed by an accuracy of 0.929

and a Matthews correlation coefficient of 0.507.

Small sampling grid
The field data collected over the SG consisted in 70 and 51 cells

classified as ‘‘presence’’ and ‘‘absence’’ respectively. Google-

derived data comprised 3 cells classified as ‘‘presence’’, 109 cells

where the PPM was absent, 3 indistinct cells, and 6 cells for which

no GSV data were available (Figure 4). As in the case of the large-

scale survey, the ‘‘indistinct’’ cells were classified as ‘‘absence’’ and

we did not account for the cells with no data in the computation of

the statistics.

There were 6 true positives and 49 true negatives while the

number of false negatives was 63 and there was no case of false

positive (Table 2). As a consequence, these values led to a low

sensitivity of 0.045 while the specificity was 1. The Google-derived

data showed a fairly low agreement with field data as the accuracy

was 0.452 and the Matthews correlation coefficient was 0.141.

Linking GSV coverage and the PPM sampling
The coverage of the network was expressed as the proportion of

pixels corresponding to roads within each sampling cell. Overall,

this network covered the whole sampling area, with higher

coverage around the main towns like in the bottom right part of

the map that corresponds to the surroundings of the city of

Chartres. The importance of the GSV coverage was not related to

the number of true positive, false negative or true negative cases as

shown in Figure 5. Note that the percentage used here is not the

proportion of roads available within GSV but the amount of pixels

(250 by 250 m) corresponding to roads available within GSV.

Discussion

Spatial scale issues: resolution
The present study showed that the data derived from GSV

imagery were good surrogates for field data when assessing the

spatial distribution of the PPM. By comparing Google-derived and

field data, however, we showed that the resolution of the survey was

critical in that fine scale i.e. high resolution sampling failed to

properly describe the actual distribution (viz as perceived with field

sampling). Scale effects are well known in ecology [39] and in our

case they are directly linked to the resolution or grain, i.e. to the mesh

of the sampling grid (Figure 1). It is analogous to the size of the

sampling unit, which has been shown to strongly affect our

perception of spatial variability [40,41] both in intensity and range.

Table 2. Confusion matrix for the pine processionnary moth
field data (true class) and Google-derived data (hypothetized
class) in the small-scale study grid (SG).

field data

presence absence

Google presence TP = 3 FP = 0

absence FN = 63 TN = 49

Of the 121 sampled cells, 6 were removed from the analysis because no GSV
data were available for comparison with field data.
doi:10.1371/journal.pone.0074918.t002

Figure 3. Large-scale study of the pine processionnary moth in France. A. Field data B. Google street view derived data. The sampling units
are cells of 16 km616 km.
doi:10.1371/journal.pone.0074918.g003
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Google-derived data depend on the density of the GSV

coverage which parameter in turn depends on the size of the

sampling units. Large sampling units such as squares of 16616 km

used in the LG survey are more likely to include a large amount of

roads covered in the GSV system which implies more chance to

properly spot PPM nests when present. Decreasing the grain

amounts to increasing the sampling effect with lower level of

information per unit and ultimately no information in some

locations where no street views are available (we reported 6 such

cases in the SG). Such effect may become less meaningful in the

future, as the density of the Google coverage will be progressively

enhanced.

The grain also affects the variability of the date of the Street

views picture, which may be a central parameter for some species

as the PPM (see below).

Date of pictures: seasonality and other sources of
uncertainty

Some organisms may concentrate or be visible at particular

season or times of the day and this defines the periods when census

becomes possible. Because we used the Google views (pictures) as a

data source, we depend on the date at which pictures where taken.

This is of a particular importance in the case of the PPM because

nests can mostly be observed during winter and deteriorates after

larvae migration into the soil. More generally, using GSV for

species assessment should be approached with caution when

species census is seasonal. As evoked above, the uncertainty

introduced by processing pictures taken at various dates along the

year is increasing as the grain is decreasing. It is important to

highlight the value of the Google data for future research. Google

database is updated and this growing body of data will constitute a

tremendous amount of information in the next decades allowing

for example researchers to perform retrospective analyses of

species expansion processes and biological invasions. Chen et al.

[42] recently published the results of a study assessing 100 years of

environmental changes in Western China based on the compar-

ison of modern versus 100-years old pictures of 250 localities from

Western China. They showed how this type of data could help

detecting and characterising changes in vegetation, landscape and

more globally biodiversity. We believe that GSV may contribute

to such type of retrospective surveys with unprecedented power

and resolution.

Potential of GSV regarding species monitoring
As underlined above, only species visible from photographs or

associated with conspicuous sign of presence can be surveyed using

GSV imagery. This encompasses various organisms that alter

significantly and specifically the colour or shape of trees as well as

tree and plant species that colonize road edges or can be reliably

Figure 4. Small-scale study of the pine processionary moth in France. A. Field data B. Google street view derived data. The sampling units
are cells of 2 km62 km.
doi:10.1371/journal.pone.0074918.g004
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sighted from roads. With that regards, the PPM constitutes a good

biological model since its winter nests are white and easily visible

in the tree foliage. In addition, PPM spatial aggregation at the

edges of forest plots or along roads [26] increases the probability

that the species be spotted if present in a given area. The present

study focused on presence/absence data and the potential use of

GSV for density census has not been considered. This question is

more complicated and requires an estimate of the prospected

surface [43]. Although GSV initially focused on city streets it was

quickly extended to peri-urban areas and is now increasingly

available for rural areas including large agricultural regions with

low population densities. This is the case for different parts of our

study region and in particular the Beauce area (Figure 4). The

results reported in the present paper show that the GSV system, in

its present form, provides a visual overview of urban, peri-urban

and rural streets network allowing a proper assessment of the PPM

regional distribution when assessed using large sampling window

(here, 16616 km). It is likely that the value of the GSV system will

increase in the future as the density of the network will increase

and that, for that reason, studies based on finer resolution will

become possible.

In fact, the better representativeness of urban areas in GSV may

constitute an opportune bias. Populated places often constitute

major points of establishment for exotic organisms [44] from

which invasive species might disperse towards other areas using

different types of corridors [45]. Species monitoring in urban areas

using GSV may prove useful to identify spots of invasive species,

their dispersal pathways and the potential landscape features that

slow down or speed up their dispersal.

Conclusions
The present survey illustrated how the GSV imagery could be

used to perform in silico sampling of species occurrences. It must be

emphasized that only organisms that can be reliably detected by

road sampling can be assessed using GSV. The case of the PPM is

straightforward as this species produces easily visible winter nests

but many other organisms might require important calibration

efforts. The scale issue deserves to be considered carefully and it

must be noted that the method might perform poorly at small

grains (high resolution). Although the ever-increasing coverage of

GSV system should improve the method performances, we have

no clue as to when and where small-scale sampling would become

accurate. With only one case study, we obviously lack hindsight to

advertise the technique for general use but our results show that it

has some promise for future use, at least with species easily

observed by means of road sampling such as the PPM.

Supporting Information

Text S1 The java script code used to identify the roads
covered in the Google street view database.

(TXT)
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