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Abstract

We simulate the dynamics of a suspension of bacterial swimmers, which chemotactically sense gradients in either ambient
or self-secreted attractants (e.g. nutrient or aspartate respectively), or in both. Unlike previous mean field models based on a
set of continuum partial differential equations, our model resolves single swimmers and therefore incorporates stochasticity
and effects due to fluctuations in the bacterial density field. The algorithm we use is simple enough that we can follow the
evolution of colonies of up to over a million bacteria for timescales relevant to pattern formation for E. coli growing in
semisolid medium such as agar, or in confined geometries. Our results confirm previous mean field results that the patterns
observed experimentally can be reproduced with a model incorporating chemoattractant secretion, chemotaxis (towards
gradients in the chemoattractant field), and bacterial reproduction. They also suggest that further experiments with
bacterial strains chemotactically moving up both nutrient and secreted attractant field may yield yet more dynamical
patterns.

Citation: Curk T, Marenduzzo D, Dobnikar J (2013) Chemotactic Sensing towards Ambient and Secreted Attractant Drives Collective Behaviour of E. coli. PLoS
ONE 8(10): e74878. doi:10.1371/journal.pone.0074878

Editor: Nick Monk, University of Sheffield, United Kingdom

Received May 29, 2013; Accepted August 6, 2013; Published October 3, 2013

Copyright: � 2013 Curk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the 7th Framework Program of European Union through grants ARG-ERC COLSTRUCTION 227758 and ITN-COMPLOIDS
234810, by the Pan-European Research Infrastructure for High Performance Computing HPC-Europa2 (http://www.hpc-europa.org/), and by the Slovenian
Research Agency through grant P1-0055 (J.D.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jd489@cam.ac.uk

Introduction

Microbial colonies such as suspensions of bacteria can form

striking and spectacular patterns, whether in nature, or in the lab

on a Petri dish. Examples are provided by biofilms and microbial

mats [1–3], or by the regular or amorphous clusters and ring

patterns formed by motile E. coli and S. typhimurium cells which are

grown on dilute agarose gel [4–7], or by bacterial suspensions in

microfluidic chambers and inside mazes [8]. The latter patterns

are particularly relevant to our work here: because they form in a

controlled environment in the lab, one may imagine that the

mechanism underlying their arousal should be relatively simple.

Indeed, a lot of models have been proposed in the literature [9–13]

to account for the formation of microbial rings, whether swarming

or static, and spots. Such models have established that these

patterns can result from collective behaviour driven by interactions

between the bacteria, such as chemotactic aggregation [7],

competition for food [14], or even solely through a combination

of reproduction and a density-dependent swim speed [15].

Almost invariably, the models proposed in the literature to study

bacterial pattern formation in semisolid media involve the study of

a system of partial differential equations which follow the coupled

dynamics of the bacterial population, and, when needed, of a set of

chemicals which affect bacterial motility. Therefore, the resulting

description is a mean field one, where fluctuations are generally

disregarded. In our work, instead, we take a different approach,

and set up a microscopic model which follows the evolution of

individual bacteria, whose motility is coupled to a set of continuum

equations to model nutrient diffusion and consumption, as well as

chemoattractant production, or secretion. This framework natu-

rally includes noise and can model fluctuations in the bacterial

density and their associated effects. This may be particularly

important when pattern formation arises as a non-equilibrium

phase transition between a uniform and a pattern-forming phase

[7,15–17] (this is the case in most theoretical models proposed thus

far).

Resolving individual bacteria is computationally challenging, as

the timescales relevant to pattern formation in bacterial colonies in

agar are of several hours, and within this time bacteria grow so

that their number can increase essentially exponentially in time. In

view of these difficulties, we refrained from modelling the

chemotaxis at the molecular level [18] and rather designed a

simple and fast algorithm, where chemotaxis is modelled simply by

a drift velocity in the direction of concentration gradients, and is

coupled to a stochastic rule for bacterial swimming and

replication, as well as to deterministic rules for nutrient

consumption and secretion of chemoattractant. Via large scale

parallel simulations, we show here that we can easily reach colony

size and timescales of respectively millions of bacteria and several

hours, which are well in the experimentally relevant range.

Our main result is that our microscopic model can account for a

wide range of bacterial patterns previously observed experimen-

tally, either in microfluidic chambers, or on a Petri dish. In

particular, we first show that chemotactic bacteria spontaneously

accumulate inside narrow boxes, and aggregate into clusters whose

spatial position can be controlled by the confining geometry. We

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e74878



also reproduce the dynamic and steady-state patterns in agarose

gel reported in Refs. [4,5], where a small inoculum spreads out as

a swarming ring, leaving behind an array of microbial spots.

Another important result is that in our computer simulations we

can vary the relative chemotactic sensitivity to nutrient and to

secreted chemoattractant gradients: if the ratio between the former

and the latter becomes large enough, then the bacterial spots

become motile and the eventual pattern is a ring made up or

merging moving spots rather than an amorphous or regular array

of static ones. We hope that these results will spur further

experimental work on bacterial strains with controlled sensitivity

to nutrient and chemoattractant fields.

In our model, the essential mechanism leading to pattern

formation is a self-trapping feedback mechanism: bacteria can

accumulate locally due to, for instance, a density fluctuation, this

triggers an increase in the local chemoattractant secretion, which

leads via chemotaxis to even more bacteria in that spot, etc. This

explanation also suggests that density fluctuations, which our

model correctly captures, can be important in practice, as, for

instance, they will affect the parameter values required for the

onset of pattern formation.

Before presenting our results, a note on the nomenclature. In

what follows we will refer to the secreted attractant as the

‘chemoattractant’ for simplicity, even though the nutrient field is

also an ambient attractant for bacteria.

Results

Chemoattractant and geometry: spot formation
To begin with, we consider the case of an initially uniform

suspension of motile bacteria which secrete chemoattractant at a

constant rate a. As mentioned in the Methods section, the bacteria

interact with the chemoattractant concentration c by adding a drift

velocity which is proportional to the gradient of c.

Fig. 1A shows the dynamics observed in the absence of any

boundaries. Here bacteria accumulate through a self-trapping

feedback mechanism, which works as follows. Imagine that via a

density fluctuations more bacteria occupy a region of space; as

they are constantly producing chemoattractant, they will soon set

up a chemoattractant source which attracts more bacteria, leading

to further density increase, and to a positive feedback which

enhances clustering. Apart from the diffusion of bacteria, the only

force opposing the build-up of density is excluded volume, which

sets the local concentration we observe in the cluster. Note that a

similar self-trapping mechanism has been proposed for bacteria

with density-dependent swim speed [15]; we will return to this

simpler model later on. In all our simulations, the bacterial spots

coarsen to yield a single cluster in a steady state.

While the tendency to aggregate is observed in an open

geometry as shown in Fig. 1, the presence of boundary can localise

the bacterial clusters, as shown in Figs. 1B–1D. Fig. 1B shows that

when a wall is present the cluster sits there. Self-propelled particles

have a known tendency to localise at walls when the time they

need to get there is smaller (or much smaller) than the time

associated with their rotational diffusion (or tumbling) [19,20].

However, in our case the mechanism leading to the effective

attraction to the wall is different: this is due to the fact that

gradients of chemoattractant at the wall are larger (by about a

factor of 2) than in the bulk, and as a consequence the aggregation

tendency will be larger close to a boundary.

More complicated geometry can further control the location of

the emerging patterns: for instance adding a corner localises the

bacterial spot there, again due to the larger driving chemical

gradient which can be created (Fig. 1C). Fig. 1D shows what

happens if we place a square box in our simulation domain, with

an opening on one of its sides (width *100 times larger than the

size of a bacterium). This geometry resembles the one studied

experimentally in Ref. [8], where it was found that chemotactic

strains of bacteria spontaneously occupy the region within the box.

Here our simulations reproduce this observations, and the

mechanism is once more the coupling between production of

chemoattractant and biased propulsion (chemotaxis). Our model

also predicts that, just as in Fig. 1C, also within the box bacteria

should accumulate at the corner. It would be interesting to check

experimentally this prediction using larger boxes and high

resolution microscopy experiments.

Chemotaxis towards nutrient or towards secreted
attractant: swarming rings and spots

In the previous Section we studied pattern formation starting

from a uniform bacterial suspensions; here we want to instead

study the dynamics starting from a localised inoculum of bacteria,

which is more typical in experiments performed in semisolid

media, such as dilute agarose gel where bacteria can still swim.

Fig. 2 shows the bacterial patterns formed over time as the

inoculum spreads on a surface. Note that in the simulations in

Fig. 2, the motile bacteria reproduce – this is important as the

timescales typically probed in experiments with semi-solid medium

span several bacterial generations. There is also nutrient in the

simulations, which in Fig. 2 only controls the replication rate,

according to a Michaelis-Menten-like law (see Methods).

Our simulations show that the bacterial population moves

outwards. The outward motion resembles the formation of a

Fisher wave [7], which forms in any microbial suspensions where

the components are motile (i.e. diffuse) and replicate. In our case,

however, the spreading wave has the shape of a ring, rather than a

disk as is common for a Fisher-wave, and this is due to the

interaction mediated by the chemoattractant. The spreading wave

velocity is * cm/hr, which is of the same order as a Fisher wave

velocity in a medium where growth is rapid.

The patterns in Fig. 2 resemble those observed in experiments

with E. coli [4,5], where the bacteria were observed to form a

swarming ring depositing static bacterial droplets on its wake.

While the stability of the final clustered structure only relies on the

self-trapping mechanism identified when discussing the results in

Fig. 1, and can therefore be explained by a variety of models [15],

the correspondence between the transient patterns in experiments

and simulations (see Figs. 2, 3, 4, 5) can only be achieved if

nutrient-dependent growth rate and chemotaxis towards chemoat-

tractant sources are both incorporated in the simulations.

While the strains simulated in Figs. 1 and 2 move up the

gradient of chemoattractant, their drift speed is unaffected by the

concentration field of nutrients. On the other hand, most bacterial

strains do sense nutrient gradients as well as, or instead of,

chemoattractant gradients. The chemotaxis towards nutrient

gradients is actually an important, and very well studied,

phenomenon in bacterial colonies, and we therefore asked whether

we could reproduce experimental observations under those

conditions as well. Therefore Fig. 3 shows the dynamics of a

bacterial inoculum moving in a solution where nutrient is initially

constant. As the bacteria consume the nutrient in the centre of the

simulation domain, they sense the gradients which has been

generated and move outwards, to reach higher nutrient concen-

tration. In doing so, they form a swarming ring, which again

resembles the one found on a Petri dish for strains which are only

chemotactic towards a nutrient.

Collective Chemotactic Patterns
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Chemotaxis towards nutrient and secreted attractant:
swarming rings and motile spots

Having explored the patterns observed for strains which sense

chemotactically either a gradient in the nutrient or in the

chemoattractant density, it is natural to ask for colonies which

can sense both. This can on one hand be used to design further

experiments to test our microscopic chemotactic model; it might

also be directly relevant to existing experiments probing

Figure 1. Resulting configurations after 3 h of simulated time, for a bacterial suspension initialised with randomly chosen
positions. Bacteria are white dots, chemoattractant field is represented with colours. Periodic boundary conditions were employed. Geometries are:
(a) no boundary; (b) a wall; (c) four walls; (d) a box. Bacteria squeeze spontaneously into the small box in (d), just as they do in experiments realised
with a similar geometry [8]. Parameters were: a~10mMmm2s{1 , b~0:001s{1 , chemotactic efficiency XC~1. The chemoattractant concentration is
presented by a colour code as displayed at the side of each figure in units of mM : 0 (blue) to 10 mM (red).
doi:10.1371/journal.pone.0074878.g001

Figure 2. Patterns formed for a bacterial strain secreting chemoattractant, and initialised as a localised inoculum with 3 mm
diameter. The scale bar is 1 cm. The chemoattractant concentration is presented by a colour code: 0 (blue) to 10 mM (red). The population has a
doughnut shape and moves outwards, and the spots left behind are stationary. The evolution has been followed here for a period corresponding to
4 hours of real time. Eventually the spots are unstable against coarsening and the final pattern, at very long time, should only feature a single cluster.
doi:10.1371/journal.pone.0074878.g002

Collective Chemotactic Patterns
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chemoattractant sensing, as it is difficult to completely eliminate

chemotaxis towards nutrient sources.

Figs. 4 and 5 show the patterns observed when the chemotactic

sensing is increased gradually. When the sensitivity to nutrient

gradients is 10% of its maximum experimentally observed value,

then the pattern in Fig. 2 becomes more ordered, as can be seen

from Fig. 4. The higher symmetry in the pattern arises as the

positions of the spots is guided by the swarming ring, which is

more sharply focused when bacteria move chemotactically

towards higher nutrient concentrations. In Fig. 4, we find that

the swarming ring leads to the formation of spots arranged in two

concentric rings – if the simulation were to proceed, we would

expect the formation of further rings.

The higher symmetry in the spot position is to some extent

reminiscent of the radially or hexagonally ordered patterns

observed in some cases in experiments bacterial [4,5], although

the experimental patterns are more regular – possibly a better

match would be found by considering larger samples and a larger

number of bacteria in the spots, which would reduce stochasticity

and disorder in the patterning.

As the efficiency of nutrient sensing is tuned up, the dynamic

pattern changes quite dramatically. For instance, in Fig. 5 we show

that when the sensitivity to nutrient gradients is doubled, spots no

longer form in the wake of the advancing ring. Rather, the ring

first expands, then breaks up into spots; however, these are still

sufficiently motile up the nutrient gradient that they cannot be left

behind. Due to replication, the microbial density in the moving

ring is always increasing, this leads to more and more motile spots,

which eventually merge once again. Both the dynamics and the

steady-state patterns are therefore much affected by the ratio

between the efficiency of chemotaxis to nutrient or chemoattrac-

tant gradients. Our results suggest that it would be interesting to

perform systematic experiments with a series of different bacterial

strains to identify the transition (or crossover) between dynamical

patterns which we observed in the simulations in Figs. 2, 4 and 5.

A comparison with the patterns found with density-
dependent motility

It is instructive to compare the patterns found due to the

chemotactic self-trapping in Figs. 1 and 2 with other spot patterns

which can be found with similar model. For instance, it has been

recently proposed that if the swim speed of a self-propelled particle

decays with density, this can, if the decay is steep enough, lead to

spot formation and phase separation [15]. The reason for pattern

formation in that case is that bacteria (or indeed self-propelled

particles), unlike passive particles, accumulate where they go

slower. It is then possible to setup a self-trapping positive feedback

loop similar to the one described for Fig. 1: due to fluctuations the

local bacterial density increases; then this leads to further increase

of the bacterial density (as bacteria accumulate where they are

slow), which leads to further slowing down etc.

Fig. 6 explores the dynamics of a bacterial suspension of similar

density than the one in Fig. 1A, but with the additional feature that

the bacteria regulate their swimming speed according to the local

density rather then by sensing chemoattractant. The local density

is measured in an area of size A around each cell. If the physical

reason behind the slowdown is steric – bacteria slow down where

they jam – then it is reasonable to assume that the area A is about

the size of a bacterium plus flagellum, i.e. around A&p(5mm)2,

which is the choice made in the simulations in Fig. 6. In this case,

we do observe spot formation starting from an initially uniform

suspension, however the spot size is much smaller than that of the

clusters formed by chemotactic aggregation in Figs. 1 and 2

(compare the spatial scale there with that in Fig. 6). The spot size

can in principle be controlled by varying A (see Figure 6b).

However, a value of A larger than the size of bacteria with flagella

cannot represent the crowding mechanism; it rather corresponds

to longer-range interactions chemically mediated by, e.g. quorum-

sensing interactions. Therefore, by increasing the range of

interaction beyond
ffiffiffiffiffiffiffiffiffi
A=p

p
&5mm, we interpolate between the

simple crowding model and the model with sensing chemoat-

tractant, as in Figs. 1 and 2.

Figure 3. Evolution of a bacterial strain sensing only nutrients without secreting chemoattractant. (a) Pattern formation for a bacterial
strain which is initialised as an 3 mm inoculum at the centre of the simulation domain, and is capable of chemotaxis only towards nutrient gradient: a
swarming ring forms and moves out radially. The picture shows a snapshot obtained after 2 hours (real time). The scale bar is 1 cm. (b) The evolution
of the radial distribution of the bacteria around the inoculum during the formation and expansion of the ring. The curves from the left to the right are
the distributions after each 20 min of the simulation. The right-most solid red curve corresponds to the snapshot (a) after 2 hours. (c) The position of
the ring as a function of time. The plateau is due to the final system size.
doi:10.1371/journal.pone.0074878.g003

Collective Chemotactic Patterns
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Intriguingly, in the experiments in Ref. [8] it was observed that

clustering proceeds in a two-step fashion. First chemotactic

aggregation proceeds, with a spot size similar to the one in the

experiments in Ref. [5]. About 10 hours later, the clusters

disassemble to form a ‘‘bacterial crystal’’ made up by smaller

spots, about 20mm in diameter – their size and irregular ordering is

compatible to those obtained with a sterically induced motility

slowdown as in Fig. 6.

Discussion

In conclusion, we have presented here a microscopic model for

pattern formation in suspensions of reproducing and chemotactic

bacteria. With respect to previous macroscopic approaches based

on mean field approximations, our microscopic model resolves

individual bacteria, hence it can account for fluctuations in the

bacterial density, as well as for its effects on the onset of pattern

formation and on the nature of the patterns.

The underlying microscopic force driving the pattern formation

in our model is a self-trapping feedback mechanism which couples

an increase in chemoattractant secretion due to, for instance, a

local density fluctuation, to further chemotactically driven

bacterial accumulation. This accumulation leads to first droplet

formation, then coarsening, such that a single bacterial spot is

stable in the steady state. In the absence of reproduction, the

steady-state position depends on geometry in a nontrivial way (see

Fig. 1): if a wall is present the spot is driven there; in a square

chamber bacteria eventually accumulate at the corners, while in a

setup where a box with a small opening is placed in the middle of

the simulation domain, bacteria spontaneously enter into the box

and aggregate there. The latter result is in agreement with

experimental observations of chemotactic aggregation in micro-

fluidic devices [8].

We next simulated pattern formation of bacterial colonies, set

up so as to model experiments in Refs. [4,5]. Instead of starting

from a uniform suspension, we now initialised the simulations with

an inoculum of bacteria, from which the bacteria spread outwards.

We have mapped the parameters determined from the experi-

mental results [5] in order to model realistic bacterial populations.

We considered three cases: bacteria sense (i) only chemoattractant

Figure 4. Patterns formed by a growing bacterial colony chemotactically sensing both chemoattractant and nutrient gradients. The
scale bar is 1 cm. The colour code represents the chemoattractant concentration C and is the same as in Figs. 1 and 2. Initially bacteria just grow and
multiply (a), after some time their density is high enough that a ring first appears (b), which then breaks into spots (c). Spots lock spatially, while
some bacteria escape from them and start spreading radially again; this leads to the formation and breakup of a further ring (d). The process would
presumably continue indefinitely in an infinite domain. Parameters were a~50mMmm2s{1,b~0:05s{1,XC~1:0,XF ~0:1. (e) Corresponding radial
distribution functions for the four snapshots (dotted line (a), dashed line (b), solid red line (c), and solid black line (d)) with peaks at the characteristic
length-scales in the system.
doi:10.1371/journal.pone.0074878.g004
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gradients, (ii) only nutrient gradients or (iii) both. In the first case (i)

the spread of bacteria resembles a Fisher-wave: this is because

bacteria do not move towards source of nutrients, but still they

consume it and their reproduction rate depends on its local

concentration. Rather than a disc like shape, as is achieved in a

standard Fisher wave, the bacteria form a wide spreading ring with

immobile spots, which arise due to the previously discussed self-

trapping mechanism. This result closely resembles the experiments

in Refs. [4,5]. For the case (ii) when sensing is only towards

nutrients, our simulations reproduce the well known results where

the bacterial colony forms a single chemotactic ring spreading

outwards. Simulations suggest that case (iii), where we assume that

bacteria sense both, the nutrients and the chemoattractant, is

particularly interesting. Here the results depend on the ratio

between the efficiency in the chemotactic sensing of the two

chemicals. In particular, we fixed the chemoattractant sensing

strength and varied the efficiency of sensing the nutrients. For

weak nutrient sensing the bacterial colony forms a pattern with

fixed spots, very similar to the one case discussed above without

nutrient sensing. The main difference is that now the patterns are

more symmetric as their position is guided by the dynamics of the

swarming rings. For slightly stronger nutrient sensing the bacteria

still form spots, but these are now mobile and chemotactic, as they

can glide up a nutrient gradient. The motile bacterial spots re-

merge after the initial breakup of the ring. We therefore suggest

that it would be worthwhile to design further experiments with

bacterial strains where the ratio between chemotactic sensing of

nutrient and chemoattractant gradients can be sensed; if such

experiments were done, we suggest that one may be able to see a

Figure 5. Dynamical patterns formed by a bacterial colony which chemotactically senses gradients in both chemoattractant and
nutrient concentrations. The scale bar is 1 cm. Snapshots are taken after (a) 1.5 h, (b) 2 h and (c) 3 h (real time). First a sharp ring forms, which
then breaks into spots. After that spots move outwards and new spots grow until density is so high that spots practically again merge together in a
ring. Parameters were a~30mMmm2s{1,b~0:01s{1,XC~1:0,XF ~0:2. (e) Corresponding radial distribution functions for the three snapshots
(dashed line (a), red solid line (b) and black solid line (c)) with peaks at the characteristic length-scales in the system.
doi:10.1371/journal.pone.0074878.g005
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crossover between distinct patterns, both dynamically and in

steady state.

We finally considered a simpler model where the swim speed

depends on the local bacterial density. This was previously

proposed to account for ‘‘chemotactic’’ patterns in S. typhimirium

[15]. The mechanism through which the patterns form in this case

is again due to a self-trapping mechanism, although the slowdown

does not need to be chemically controlled. We have assumed an

interaction range for the slowdown model which is compatible

with sterically suppressed motion (for instance arising when the

bacteria jam due to the high local density). In this case, the size of

the patterns is orders of magnitude smaller and their shape is more

irregular than the one found via chemotactic aggregation in Figs. 2,

4 and 5. However, the patterns obtained are quite akin to the

‘‘bacterial crystals’’ reported in Ref. [8] where they observe

formation of small irregular spots of E. coli in a micro-fabricated

maze, several hours after the primary chemotactic patterns have

appeared.

Materials and Methods

Basic features of the model
In our work, we model bacteria as two-dimensional hard disks

with radius rb~1mm, which swim with a constant speed

sb~20mm=s. In the absence of chemical gradients, the direction

of motion changes due to an effective rotational diffusion

Drot~1s{1, which models tumbling at a realistic rate for E. coli.

We further assume that the effect of chemotaxis can be included

by adding a drift velocity term to the velocity of bacteria,

renormalising its magnitude so that total speed remains constant.

The model requires knowledge of how the drift velocity depends

on gradients, but this is largely known from the literature. Because

we treat tumbling of bacteria implicitly, here we do not simulate

chemical reactions or solve memory integrals which control the

tumbling rate [18,21–24]. This approach allowed us to write a

very fast code: for instance, a simulation of about 30 k bacteria on

a single core takes *1 second of CPU time per second of physical

time. We also need to simulate diffusion of nutrient and

chemoattractant; to this end we set up a finite difference algorithm

on an underlying lattice (mesh size 40mm): this part of the code

takes up only a limited fraction of the total computational time.

Using MPI parallelisation on 64 or 256 cores, we simulated real

macroscopic systems &4cm square box with up to &106 bacteria

with the same one-to-one mapping between simulation and

physical unit of time.

Our microscopic model, where the chemotactic drift velocity

and bacterial diffusion are essentially dialled in directly, has been

designed to allow easy comparison with previous continuum mean

field models where the bacterial population and concentration of

chemicals (nutrients or chemoattractant) evolve according to a set

of partial differential equations [7,8,15,25]. With respect to those

approaches, importantly, our microscopic model naturally incor-

porates the effect of noise and density fluctuations in the bacterial

colony – the latter can make a difference to pattern formation

problem, especially when they can be seen as non-equilibrium

phase transitions [15].

In summary, our model is computationally cheap, but at the

same time allows us to relax the mean field approximation

common to a large part of the literature on bacterial pattern

formation. Given the current high performance and parallel

computational facilities, the model can deliver realistic microscop-

ic simulations of macroscopic systems like 8 cm Petri dish.

Tuning chemotactic sensitivity
We now discuss how to modify the drift velocity of a bacterium

in response to the gradient of a chemical (either chemoattractant

or nutrient in our simulations). Bacteria exhibit two general types

of sensing, depending on the environment: (i) absolute gradient

sensing where the drift velocity is proportional to gradient of a

chemical (here C); and (ii) relative gradient sensing, (also called

logarithmic sensing) where the drift velocity is proportional to

+C=C~+ log C.

Figure 6. Bacterial clustering induced by a density dependant motility. (a) Patterns formed by 2000 bacteria after 3 h (real time) in 500mm
square box (outer walls, no periodic boundary). In this simulation the swimming speed of each cell decreases exponentially with the local density of
bacteria within area A around the cell. The density-dependent slow-down aims at modelling bacterial crowding. Taking a typical size of E.coli cells

and their flagella,
ffiffiffiffiffiffiffiffiffi
A=p

p
&5mm, and the bacterial clusters that form are around 25mm large with irregular shapes. Parameters were

f~30mm2,rf~5mm. Note that the clusters are unstable towards coarsening, although the coarsening is slower than in the case of chemotactic
aggregation in Fig. 1. (b) The mean cluster size as a function of the area A used to define the local density. Increasing A leads to larger clusters,
however, a large value of A cannot be used to model bacterial crowding.
doi:10.1371/journal.pone.0074878.g006
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Guided by the discussions in Refs. [26,27] based on experiments

and explicit modelling of the chemotaxis signalling pathway, we

here postulate that at low concentration of chemicals, bacteria

sense absolute gradient, while at higher concentrations they sense

relative gradient. The drift velocity in our model is thus given by

vC
d ~X Cx0

+C

C
; CwC0 ð1Þ

vC
d ~X Cx0

+C

C0
; CƒC0, ð2Þ

where C0 is the crossover concentration between absolute and

relative sensing. For our simulations we chose C0~10mM [26].

On the other hand, X C is a dimensionless parameter specifying

the chemotactic efficiency and x0 gives the reference drift velocity

per gradient, which we take to be x0~5mm2=s, relevant for wild

type E. coli [27,28].

For chemoattractant gradients, C0 is large enough that only

absolute sensing is relevant at realistic bacterial densities. This is

motivated by the experiments in Refs. [4,5], which always

measured low chemoattractant concentration (&2mM). Further-

more, if we were to assume logarithmic sensing, vd! +C
C

, then the

intuition suggests that the characteristic dimensionless parameter

determining whether cluster formation occurs would be
Lvd

L(+C=C)
=
ffiffiffiffiffiffiffiffiffiffiffiffi
DcDb

p
, where Dc is the diffusion constant of chemicals

and Db the effective diffusion constant of bacteria. As this

parameter is proportional to (+C=C), the criterion for clustering

formation should not depend on density. Moreover, as pattern

formation is fluctuation-driven, it would be more pronounced at

low density, where fluctuations are larger, rather than at high

density. This is the opposite of what is found experimentally. The

experimental trend is, on the other hand, naturally reproduced if

bacteria sense absolute chemoattractant gradients, which strength-

ens the argument in favour of absolute, rather than relative,

chemotactic sensing for chemoattractant. For absolute sensing, the

dimensionless parameter determining whether clusters form is

r Lvd

L(+C)
=
ffiffiffiffiffiffiffiffiffiffiffiffi
DcDb

p
, where r represents the two-dimensional density

of bacteria in the system.

When chemotaxis towards both nutrients (F ) and chemoat-

tractant (C) is simulated, the total drift velocity is given by

v0d~vC
d zvF

d : ð3Þ

We additionally cap the drift velocity at some maximum value

vdrift~ min v0d ,
v0d
jv0d j

smax
drift

� �
, ð4Þ

which we take equal to one third of the total bacterial speed. This

ensures that after normalisation we get smax
drift*5mm/s, in line with

experiments and simulations (e.g. Refs. [27,28] give a swim speed

of &20mm=s and smax
drift&5mm=s).

The bacterial direction in 2D is characterised by a single angle

h(t). In a rotational diffusion time step this angle changes as:

h(tzDt)~h(t)zN(1,0)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrotDt

p
, ð5Þ

where N(1,0) is normally distributed random number with

variance 1 and average 0. The resulting velocity after the step is

equal to

vDif ~sb½cos h, sin h�: ð6Þ

In a complete time step the position of a bacterium, r(t) evolves as:

r(tzDt)~r(t)zsb

vDif zvdrift

jvDif zvdriftj
Dt: ð7Þ

Note that because of this normalisation the effective diffusion of

bacteria is not constant: it decreases when the chemotactic drift is

strong. This provides a (small) difference with respect to the partial

differential equation models where the diffusion is kept constant

[7,15,25].

Bacteria divide at a nutrient-dependent rate pdiv, given by the

following probability per unit time:

pi
div~lmax F (xi,yi)

F (xi,yi)zK
, ð8Þ

where F (xi,yi) is the local nutrient concentration at the location

(xi,yi) of the bacterium i and K is a ‘‘dissociation’’ constant

defining the concentration at which pdiv~lmax=2. Various

experiments with E. coli on semisolid substrates (see, e.g. [5]) are

compatible with the value K~200mM, which is the value we used

in all the simulations. The prefactor lmax determines the

maximum division rate of the bacteria. Given that the lifetime of

E. coli bacteria under best circumstances is 20 min, the value

assumed here is lmax~0:001s{1. When a bacterium divides, it

splits into two disks, slightly displaced along a random angle

around the centre of the ‘‘parent’’. Due to their steric repulsion,

the two resulting bacteria will quickly separate from each other.

The nutrient consumption is given by a similar equation:

DF (x,y)~{cr(x,y)
F(x,y)

F (x,y)zK
Dt, ð9Þ

where cr is the maximum nutrient consumption rate and r(x,y) is

the local density of bacteria. Chemoattractant production is

constant per bacteria, it also spontaneously decays (this is

necessary in order to reach a steady state):

DC(x,y)~(ar(x,y){bC(x,y))Dt, ð10Þ

where ar and b are the production rate and the decay rate of

chemoattractant, respectively. The nutrient and chemoattractant

molecules diffuse in the medium with the diffusion constant

DC~DF ~900mm2=s [28].

Model parameters
In order to resolve the relevant spatial and temporal scales, in

our simulations we have used the appropriate values for the time

step Dt~0:02s and for the mesh size to model distribution of

chemicals, a~40mm. We have adopted the well-established values

of some of the physical parameters in the model – as explained

above in particular a realistic swimming speed sb and division rate

lmax for E. coli. The experimentally relevant values of the

remaining model parameters a, b and c, are – to the best of our

knowledge – unknown. Moreover, their values depend on various
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external conditions that may vary significantly from experiment to

experiment or in natural environments. However, by carefully

analysing the experimental data in [5], we were able to estimate

the realistic order of magnitude for each of the three parameters.

The decay rate of chemoattractant b can be estimated from the

fact that a steady state in aspartate concentration seems to be

reached in a few hours (Figure 2b in [5]), thus a reasonable value is

b&10{4s{1. From the same figure we can read that the steady-

state concentration of the chemoattractant, which we denote as

C�, lies in the range 1mMvC�v10mM. Since the steady-state

value corresponds to the ratio between the chemoattractant

production and the decay rate, C�~
ra

b
, the value of ra must be

in the range 10{4mMs{1
vrav10{3mMs{1. The nutrient intake

rate of bacteria c should be much larger, c&a, as the bacteria can

secrete only a fraction of the chemicals they consume. An estimate

from Figure 2c in [5] is that bacteria consume the nutrient with

initial concentration 1 mM in about 10 to 30 hours, thus rc is

within 0:01mMs{1
vrcv0:03mMs{1.

In our simulations, a typical density of bacteria was r&10{3=mm2,

thus the parameter values corresponding to the experimental situation

would be 0:1mMmm2s{1 a 1mMmm2s{1, b&10{4s{1 and

10mMmm2s{1 c 30mMmm2s{1. Now, if we used these param-

eter values, it would require computational times of the order of 105

CPU hours, which is not viable. In order to speed up the simulations,

we have used a factor of 100 times larger parameter values:

10 a 100, b&10{2s{1 and c~3000mMmm2s{1 (we have fixed

the value of c since only the two ratios are important for the

morphology of the patterns). In this way we could simulate patterns

with around 106 bacteria in &103 CPU hours of massively parallel

simulation runs. Since we have kept the ratio C�~
ra

b
& 1 to 10 mM,

thus similar to the experimental one, the simulation and experimental

trajectories are in the same sensing regime (i.e. absolute versus relative

sensing, the threshold between both is C0~10mM ) and the emerging

steady-state patterns are also similar. We have varied the values of all

the uncertain parameters in order to assess the stability of the model.

Upon variations within an order of magnitude, we observed

qualitatively similar results. The emerging morphology and the

characteristic length-scales (i.e., size of the clusters, cluster-cluster

distance, size of the rings etc.) depend on both, the ratio
ra

b
~C� and

c

a
– decreasing the latter results in smaller clusters as can be seen in Fig. 2.
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