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Abstract

We study by means of analytical calculation and stochastic simulations how intrinsic noise modifies the bifurcation diagram
of gene regulatory processes that can be effectively described by the Langevin formalism. In a general context, our study
raises the intriguing question of how biochemical fluctuations redesign the epigenetic landscape in differentiation
processes. We have applied our findings to a general class of regulatory processes that includes the simplest case that
displays a bistable behavior and hence phenotypic variability: the genetic auto-activating switch. Thus, we explain why and
how the noise promotes the stability of the low-state phenotype of the switch and show that the bistable region is
extended when increasing the intensity of the fluctuations. This phenomenology is found in a simple one-dimensional
model of the genetic switch as well as in a more detailed model that takes into account the binding of the protein to the
promoter region. Altogether, we prescribe the analytical means to understand and quantify the noise-induced
modifications of the bifurcation points for a general class of regulatory processes where the genetic bistable switch is
included.
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Introduction

Cells’ functions are controlled by networks of interacting genes

and proteins that set the basis of regulation, signaling and

response. Over the past decade a number of studies have shown

that the level and activity of the species involved in such regulatory

circuits fluctuate [1]. These fluctuations are mainly due to the

inherent randomness of biochemical reactions that becomes

especially significant when the number of molecules of the

chemical species is very low [2]. Biochemical noise, either intrinsic

or extrinsic, is not necessarily a nuisance but an essential biological

component that in many situations has a positive functional role

[3], as for example improving cellular regulation [4].

Importantly, stochastic effects are believed to play also an

important role in cell differentiation [5]. Thus, noise allows cells

that are exposed to the same environment to choose between

different fates, thereby increasing the phenotypic diversity. In this

regard, the simplest, non-trivial, regulatory system showing

phenotypic multi-stability correspond to a genetic switch with

two possible stable solutions: low/high concentrations of a

regulatory protein. The core of the genetic circuit underlying

bistable systems typically involves a protein that up-regulates its

own production, leading to a positive feedback loop. Such a

behavior has been found in a number of biological systems, as for

example the lactose utilization network in E. coli [6], and has been

also implemented in synthetic circuits [7–9]. Consequently, the

characterization of genetic switches is important both for the

development of larger and more robust synthetic circuits that use

small gene modules with well-defined behaviors [10] and for the

understanding of complex processes such as cell differentiation.

The conceptual framework of cell differentiation is rooted in

Waddington’s ideas about the projection of the genotype space

into the phenotype counterpart [11]. Therein phenotypes are

associated with attractors, i.e. stable fixed points, in a phase space

(the epigenetic landscape) that can be parametrized by the

concentration of the molecular species of interest (genotype)

[12]. Interestingly, several studies have shown that a stochastic

bifurcation diagram (i.e. a stochastic epigenetic landscape) can

differ significantly from its deterministic counterpart [13–17].

Recent advances in the field include the noise-induced bimodality

in the response of the ERK signaling pathway [18] or the

increased stability of phenotypic states in bistable systems due to

noisy contributions [16,19]. Moreover, recent studies have

clarified the role of different noisy sources for defining the global

phenotypic attractor in bistable regulatory systems [17]. Still,

despite these efforts, there is a lack of a theoretical formalism to

easily understand how those changes in the phenotypic stability

are driven by the inherent biochemical fluctuations.

Here, we introduce a perturbative theory to analyze how noise

modifies the epigenetic landscape. In particular, we address the

problem of the stochastic stabilization/destabilization of a

phenotypic state with respect to the noise-free system. We

illustrate this phenomenon by means of the well-characterized

example mentioned above: a genetic bistable switch. Our results

show that noise stabilizes, and consequently favors, one pheno-

typic landscape with respect to the deterministic system. In

addition, we examine the role played by biochemical fluctuations
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with a non-null correlation time and show that, while the effect is

lessened, the stochastic modification of the epigenetic landscape

also emerges. Our theoretical calculations are generic and can be

applied to any regulatory circuit that is susceptible to be described

by the Langevin formalism and in particular to a general class of

regulatory processes with feedback where the genetic switch is

included. Moreover, in order to check that our conclusions are not

an artifact due to an oversimplified mathematical description, we

demonstrate that the effect also develops in a detailed model of the

genetic switch that we simulate by means of the Gillespie

algorithm.

The paper is organized as follows. In the Methods section, we

introduce our theoretical approach to analyze the stochastic

modification of the epigenetic landscape for a general class of

regulatory processes. In the results section, we first apply our

finding to a simple model describing a genetic switch. Subse-

quently, by means of numerical simulations of a more detailed

model, we demonstrate that the stochastic stabilization effect is

generic for this kind of architecture. Finally, in the Discussion

section, we present the main conclusions and discuss about the

applicability and relevance of our study.

Methods

Stochastic Modification of Bifurcation Points:
Perturbative Theory

In the context of genetic circuits, a definition of stochastic

bifurcation has been previously proposed, based on experimental

data [20] or results from gene network models [13,15]. In general,

a stochastic bifurcation is characterized by a qualitative change in

one of the observables of the stochastic process. In the case of a

bistable system, one may consistently identify two subpopulations

of cells whose states are distributed around the two stable states (or

attractors) [20]. We will follow this approach and define the

stochastic system as monostable if its steady state probability

distribution is unimodal and bistable if its distribution is bimodal.

More complex stochastic bifurcations has been proposed, for

example in the case of systems with oscillatory dynamics [15].

In the context of gene regulatory circuits, the chemical kinetics

formalism that address the different processes underlying regula-

tion leads to a Master equation representation [21]. The latter can

be approximated by different expansion techniques to an Itô

Langevin equation for the concentration of the species [21,22].

Thus, we start by studying a general stochastic system described by

a Itô Langevin equation of one variable x and control parameter

a:

x
:
~f (x,a)zg(x,a).j(t) ð1Þ

j(t) being a Gaussian white noise such that,

Sj(t)j(t0)T~s2d(t{t0): ð2Þ

The symbol . indicates that the stochastic process must be

interpreted according to Itô.

Under these conditions, the stationary probability density reads

[23],

r(x,a)~Ne
{ 2

s2
y(x,a) ð3Þ

N being a normalization constant and,

y(x,a)~s2 log g x,að Þ½ �{
ð x

0

f (z,a)

g(z,a)2
dz: ð4Þ

It is easy to show that the extrema of the probability density are

located at points that satisfy

h x,að Þ~f x,að Þ{s2g x,að Þgx x,að Þ~0, ð5Þ

where we have used the compact subindex notation for the partial

derivatives, e.g. gxxa~
L3g

Lx2La
:

On the other hand, the inflection points of the probability

density satisfy

2f x,að Þ f x,að Þ{3s2g(x,a)gx(x,a)
� �

zs2g2(x,a) fx x,að Þzs2 3 gx x,að Þð Þ2{g(x,a)gxx(x,a)
h ih i

~0:
ð6Þ

Thus, if there is a stochastic bifurcation point such that a new

extrema appears/disappears, the bifurcation points (x�,a�) must

satisfy equations (5) and (6) simultaneously leading to

h x,að Þ~hx x,að Þ~0: ð7Þ

Notice that in the deterministic case, i.e. s2~0, the bifurcation

points are given by the points (x0,a0)=(x�,a�), satisfying the

equations f (x,a)~fx(x,a)~0.

In order to analyze how the bifurcation points vary with due to

the presence of fluctuations, we assume that if the noise intensity is

small then the following s2-expansion of the points (x�,a�) holds,

x�~
X?
n~0

xns2n~x0zs2x1zO s4
� �

ð8Þ

a�~
X?
n~0

ans2n~a0zs2a1zO s4
� �

: ð9Þ

Thus, by expanding f x,að Þ and g x,að Þ in powers of s2 and

collecting terms, the equations (7) read

h x,að Þ~
X?
n~0

h nð Þs2n~f 0zs2 x1f 0
x za1f 0

a {g0g0
x

� �
zO s4

� �
~0

ð10Þ

hx x,að Þ~
X?
n~0

h nð Þ
x s2n~f 0

x zs2 x1f 0
xxza1f 0

xa{ g0g0
x

� �
x

h i
zO s4

� �
~0,

ð11Þ

where the superindex 0, indicates that the functions are evaluated

at the point x0,a0ð Þ. By solving the conditions h(n)~h
nð Þ

x ~0, we
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can obtain the corrections xn and an up to an arbitrary order n. As

expected, at zero order, h 0ð Þ~h
0ð Þ

x ~0, we obtain the deterministic

conditions for the bifurcation point: f 0~f 0
x ~0: At order one,

h 1ð Þ~h
1ð Þ

x ~0, we get

a1~
g0g0

x

f 0
a

ð12Þ

x1~

g0
x

� �2
zg0 g0

xx{
g0
xf 0

xa

f 0
a

� �
f 0
xx

ð13Þ

We have also calculated the corrections at order 2, yet, the

expressions are cumbersome and we provide the results in the

Supplementary Information (see Text S1).

Our formalism and results can be applied to a general class of

regulatory processes with feedback described by the following

biochemical reactions:

1 '
m x,að ÞV

k
X ð14Þ

where X stands for the regulatory species (number of molecules),

m x,að Þ is the gene regulatory function describing effective

production (x being the concentration of X ), k the degradation

rate and V the cellular volume. It is easy to demonstrate that in

this case,

f x,að Þ~m x,að Þ{kx

g x,að Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m x,að Þzkx

p

s2~V{1:

A bifurcation point leading to multistability will exist if there are

at least three non-negative real solutions satisfying the equation

m x,að Þ~kx. In those cases, the modification of the bifurcation

points of the deterministic system due to the biochemical noise

reads

a�~a0z
s2k

m0
a

zO s4
� �

ð15Þ

x�~x0z
s2

2
1{

2km0
xa

m0
am0

xx

	 

zO s4

� �
: ð16Þ

While in terms of x� it is not trivial to envision the sign of the

displacement caused by noise, in terms of a� it is easy at least at

first order: its sign is prescribed by the putative role played by a in

the regulation of species X . That is, if a promotes positive

regulation (activator), maw0, then a�wa0, as in the case of the

auto-activating genetic switch (see below). Contrariwise, if a is an

inhibitor of production then noise will advance the location of the

bifurcation point (a�va0).

Birth and Death Process: Exact Solution
The formalism and results presented above, apply to the

(approximated) Itô Langevin description. Yet, the exact solution of

the regulatory processes described by (14) can be also obtained.

Thus, by comparing the exact epigenetic landscape with that

resulting from the Langevin description we can validate the scope

of our calculations beyond the numerical simulations. Note that

the biochemical reactions (14) are equivalent to the birth and

death processes [24]:

X?Xz1 : Vm
X

V
,a

	 


X?X{1 : kX

The master equation describing this process is.

dp X ,tð Þ
dt

~p X{1,tð ÞVm
X{1

V
,a

	 

zp Xz1,tð Þk Xz1ð Þ

{p X ,tð Þ Vm
X

V
,a

	 

zkX

� �
,

where p X ,tð Þ stands for the probability of having X number of

molecules at time t. By imposing that at equilibrium the net flux

between neighboring states becomes null (detailed balance), the

stationary probability, p Xð Þ, reads,

p Xð Þ~p 0ð Þ
V
k

� �X
e
PX{1

Y~0
log m Y

V
,að Þ½ �

X !
, ð17Þ

where p 0ð Þ is a normalization constant such that
P?

X~0 p Xð Þ~1:

Non-null Memory Fluctuations
Single cell level experiments have revealed that intrinsic

fluctuations show a ‘‘short’’ correlation time, i.e. white-noise-like

[25]. Yet, the white noise is an idealization about the actual

behavior of fluctuations since implies a memoryless process. In

order to clarify the consequences of this fact in regard to

modification of the epigenetic landscape, we also examine the

role play by colored fluctuations. The so-called Ornstein-

Uhlenbeck (OU) process is defined by the stochastic differential

equation [23]:

_gg~
1

t
{gzsz tð Þf g,

where Sz tð ÞT~0 and Sz tð Þz t0ð ÞT~d t{t0ð Þ: Under these condi-

tions the mean and the correlation of the OU process read,

Sg tð ÞT~0

Stochastic Stabilization of Phenotypic States
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Sg tð Þg t0ð ÞT~
s2

2t
e{

t{t0j j
t ,

where t stands for the correlation time (memory) of the

fluctuations. In the limit t?0 the OU process tends to a white

noise with intensity s2, that is,

lim
t?0

Sg tð Þg t0ð ÞT~s2d t{t0ð Þ:

Importantly, the Wong-Zakai theorem [23] shows that when

t?0, and the OU process is multiplicative in the stochastic

differential equation, the right interpretation of the latter is

Stratonovich instead of Itô. In this regard, note that the stochastic

differential equation,

x
:
~f (x,a){

s2

2
g x,að Þgx x,að Þzg(x,a)0j(t)

Sj(t)T~0

Sj(t)j(t0)T~s2d t{t0ð Þ,

where 0 indicates that the stochastic integral must be interpreted

according to Stratonovich, represents the same stochastic process

as Eq. (1). Consequently, the stochastic differential equation,

x
:
~f (x,a){

s2

2
g x,að Þgx x,að Þzg(x,a)g(t), ð18Þ

where g tð Þ stands for the OU process, has the same solution as Eq.

(1) in the limit t?0 and the modification of the epigenetic

landscape is the same as in the white noise case (data not shown).

Equation (18) cannot be solved analytically for an arbitrary

value of t. However, we can elucidate the modification of the

epigenetic landscape in the limit t??, that is, for long correlation

times. We notice that in that limit, for a finite noise intensity, the

OU process vanishes and the system behaves as the deterministic

system [23],

x
:
~f (x,a){

s2

2
g x,að Þgx x,að Þ:

Therefore, for long correlation times, the bifurcation points are

located at points (x�,a�) satisfying,

ĥh x,að Þ~ĥhx x,að Þ~0,

where,

ĥh x,að Þ~f (x,a){
s2

2
g x,að Þgx x,að Þ: ð19Þ

Interestingly, these are the same conditions as (7) if in Eq.(5)

g x,að Þ?g x,að Þ=
ffiffiffi
2
p

(alternatively if the noise intensity is halved).

Thus, at order one, for long correlation times, the correction of the

bifurcation points read,

âa1~
g0g0

x

2f 0
a

ð20Þ

x̂x1~

g0
x

� �2
zg0 g0

xx{
g0

xf 0
xa

f 0
a

� �
2f 0

xx

: ð21Þ

In summary, as the correlation time of the fluctuation increases,

the shift effect over the bifurcation points is lessened (see numerical

simulation results below). Yet, even in the limit case of infinite

memory fluctuations a shift appears and its sign does not depend

on the colored character of the noise.

Results

We now apply our theoretical calculations to a well-character-

ized system: the auto-activating switch [6,8]. In this genetic circuit,

a protein forms an oligomer that binds to the promoter region of

its own gene and activates its expression (see Figure 1). As shown

elsewhere, this regulatory process can be effectively described by

the Hill function formalism and leads to the following determin-

istic equation for the concentration, x, of protein [16]:

x
:
~rz

axn

Kdzxn
{k5x ð22Þ

where r is the basal expression rate (promoter leakiness), a the

maximum production rate (efficiency of the auto-activation), n the

cooperativity (oligomerization index), Kd the concentration of

protein yielding half-maximum activation and k5 the degradation

rate. Notice that the auto-activating regulatory scheme fits within

the general class (14): m x,að Þ~rz axn

Kd zxn being the gene

regulatory function. Alternatively, the dimensionless version of

eq. (22) reads

~xx
:

~~rrz~aa
~xxn

1z~xxn
{~xx ð23Þ

with ~xx~ xffiffiffiffiffi
Kd

n
p , ~tt~k5t, ~aa~ a

k5

ffiffiffiffiffi
Kd

n
p , ~rr~ r

k5

ffiffiffiffiffi
Kd

n
p :

If n§2 and 3
ffiffiffi
3
p� �{1

w~rrw0 then the system exhibits a bistable

behavior (phenotypic variability) for a range of values of ~aa. Here

we choose n~2 and ~rr~0:12. Notice that the system has two

Figure 1. Scheme of the genetic auto-activating switch model.
The expression of gene x leads to protein X that after oligomerization
binds to its own promoter acting as an self-activator.
doi:10.1371/journal.pone.0073487.g001
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bifurcation points that define the bistability region. These points

correspond to the solutions x0,a0ð Þ of the polynomial equations,

f 0~~rrz
~aa0~xx2

0

1z~xx2
0

{~xx0~0 ð24Þ

f 0
x ~

2~aa0~xx0

(1z~xx2
0)2

{1~0: ð25Þ

We now examine how the bifurcation diagram, the epigenetic

landscape, changes due to the biochemical fluctuations. In

particular, we look at the shift of the bifurcation points. The It

Langevin equation that corresponds to this system reads [16,22]

~xx
:

~f (~xx,~aa)zg(~xx,~aa).j(t) ð26Þ

f (~xx,~aa)~~rrz~aa
~xx2

1z~xx2
{~xx ð27Þ

g(~xx,~aa)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~rrz~aa

~xx2

1z~xx2
z~xx

s
ð28Þ

~ss2~
1

~VV
ð29Þ

where ~VV~V
ffiffiffiffiffiffi
Kd

n
p

is the dimensionless volume. By proceeding as

described in the previous section, see eqs. (15) and (16), the

bifurcation points ~xx�,~aa�ð Þ read

~aa�~~aa0z~ss2 1z
1

~xx2
0

� �
zO ~ss4

� �

~xx�~~xx0z~ss2 1

2
z

2

3~xx2
0{1

� �
zO ~ss4

� �
:

The analytical expressions for the second order corrections are

provided in the Supplementary Information (see Text S1). Figure 2

shows, in agreement with our analytical calculations, the location

of the bifurcation points as a function of the noise intensity ~ss2, at

first (triangles) and second (diamonds) orders as well as the exact

solutions (circles) (see also Figure 3 bottom inset). Note that in

terms of ~aa� the correction due to the noise is always positive.

Consequently both bifurcation points, those defining the bistable

region, are shifted to the right. Moreover, the shift largely

increases as ~xx0 approaches to zero, and the bistable region widens

with respect to the deterministic system. In addition, the low state,

for which ~xx0 *> 0, has a negative correction in terms of ~xx�, i.e.

~xx�v~xx0. Altogether, our calculations indicate that one of the states

(the low protein concentration one) becomes more stable due to

the biochemical noise. We call this effect the stochastic stabilization of

a phenotypic state. Alternatively, this phenomenon can be

interpreted as a noise-induced bistability since there is a range of

values of the control parameter for which the stochastic system

displays a bistable behavior in opposition to the monostable

response of the deterministic system.

Figure 3 shows the analytical bifurcation diagrams for the

deterministic and the stochastic cases. In the stochastic cases, with

regard to the Langevin approximation, we define the stable and

unstable branches by means of the extrema of the probability

distribution, i.e. by numerically solving the condition (5) and, in

the case of the exact analytical solution, Eq. 17, by numerically

finding the extrema of p Xð Þ. The results support the stochastic

stabilization phenomenon: compared with the deterministic

system the low protein concentration state becomes stable for a

larger range of values of the control parameter as the noise

intensity increases. Moreover, our results validate the Langevin

approximation since is in good agreement with the exact solution.

In order to gain more insight into the stabilization phenome-

non, we perform stochastic simulations of equations (1) and (18). In

these cases, the position of the maxima are computed by using a

Gaussian peak detection algorithm over the numerical probability

distributions obtained in the simulations. On one hand, in the

white noise case, the position of the maxima show a good

agreement with the analytical results. However, our simulations

reveal that despite noise extends the low state stability to higher

values of ~aa, the probability of residing at the low state quickly

drops when increasing the control parameter. This is the reason

why the detected peaks of the low state from the simulations do not

extend as far as the stable branch of the low state computed from

the analytical calculations. On the other hand, in the case of the

colored noise (~tt~0:1), the simulations confirm the analytical

calculations when the biochemical fluctuations are not memory-

less: for the same noise intensity of the white noise case, the effect is

lessen, yet present and the low state becomes stabilized.

The noise-induced bistable behavior is revealed by the bimodal

shape of the stationary probability density in opposition to the

deterministic system for which the only stable solution is the high

state (Figure 3 top inset). The analytical distribution computed

from (3) agrees with both the exact solution and the distribution

computed from the stochastic simulations. Notice that when

colored noise is considered the stochastic stabilization effect is

Figure 2. Noise-induced shift of the bifurcation points for the
simple genetic switch. Change in the position of the bifurcation
points (~xx�1,~aa�1) and (~xx�2,~aa�2) for different values of noise intensity: ~ss2~0

(black symbols), ~ss2~0:01 (red symbols), ~ss2~0:03 (green symbols) and
~ss2~0:06 (orange symbols). Numerical exact solution (circles), first order
approximation (triangles) and second order approximation (diamonds).
The biochemical fluctuations shift the position of both bifurcation
points but the effect for ~aa�2 is more noticeable and widens the bistability
region that ultimately promotes the stability of one phenotype.
doi:10.1371/journal.pone.0073487.g002
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lessened as revealed by the drop of the maximum that correspond

to the low state.

Figure 4 shows stochastic trajectories for ~aa~2:3 when the

fluctuations are white. At this value, the low state is unstable in the

deterministic system and the only plausible phenotype is the high

state. Indeed, when the volume is large (low noise intensity) the

system is monostable and stays at the high state (~xx*2). However,

when the volume is small (high noise intensity) the system exhibits

a bistable behavior, jumping between the high state and the low

state (~xx*0:1). In order to show that the residence time at the low

state is large enough and, as a result, noticeable as a phenotype, we

indicate in Figure 3 the characteristic duration of a bacterial cell

cycle (40 minutes) under two different conditions of the protein

degradation rate: stable proteins with an effective degradation

driven by the cellular growth (dilution), k5~ log (2)=40 min{1,

and unstable proteins with fast degradation induced by tagging

[26], k5~( log (2)=40z1:0) min{1.

Our results towards the understanding of the modification of the

phenotypic landscape due to the biochemical fluctuations are

based on a simplified view of the regulatory process (the genetic

switch) described by a single variable. However, one might wonder

if our results are applicable when a more detailed model is

considered, that is, if our predictions are an artifact due to an

oversimplified mathematical description. In order to address this

question, we consider a more detailed, yet equivalent, model of the

genetic switch using the chemical kinetics formalism. In particular,

our model takes into account the basal expression rate, the

binding/unbinding events of the protein oligomer to the promoter,

an effective transcription/translation rate, and the protein

degradation:

1'
rV

k5

X ð30Þ

PznX '
k3=Vn

k4

P�

P�?
k2

P�zX ð31Þ

where X stands for the protein (number of molecules), n its

oligomerization index and P=P� the unbound/bound states of the

Figure 3. Bifurcation diagram of the simple genetic switch.
Deterministic system (blue line), white-noise stochastic system (Lange-
vin: green line; Exact solution: red line). The bifurcation diagram of a
system with colored fluctuations in the limit ~tt?? is also depicted

(cyan line). In all cases ~VV~12:5. The results from stochastic simulations
are in agreement with the analytical results, as can be seen by the
detected peaks (orange circles) of the probability distribution of ~xx at
steady state (color code, logarithmic scale). The numerical simulations
for a non-null correlation time noisy sytem, ~tt~0:1, indicate that the
effect is lessened when memory is considered (purple circles). The top
inset reveals that the probability distributions obtained in numerical
simulations (orange histogram) are in perfect agreement with the exact
solution (red line) and the Langevin description (green line), ~aa~2:3. For
that value of the control parameter the deterministic system only have
one stable solution and the probability distribution corresponds to a
Dirac delta (blue arrow). When the correlation time of the noise is not
null, ~tt~0:1, the stability of the low state decreases with respecto to the
white noise case (purple line). The circles in the inset denote the
maxima as detected by the Gaussian peak detection algorithm. Bottom
inset: increasing noise (decreasing volume) clearly extends the stable
branch of the low state, an effect that we call stochastic stabilization:
~VV~100, 50, 30 and 12.5.
doi:10.1371/journal.pone.0073487.g003

Figure 4. Trajectories for the simple genetic switch i for small
and large volume. Trajectories from stochastic simulations of the
simple genetic switch model for small volume ~VV~12:5 (orange line)

and large volume ~VV~1000 (blue line) for ~aa~2:3. For this value of
parameter ~aa, the system is monostable and stays at the high state
(~xx*2) when the noise intensity is small (large volume), while it is
bistable when the noise intensity is high (small volume) and jumps
between the low state (~xx*0:1) and the high state (~xx*2). The black
bars indicate the characteristic duration of a bacterial cell cycle (tc~40
minutes) under two different conditions of the protein degradation rate
and show that the residence time at the low state is large enough to be
noticeable as a phenotype: stable proteins driven by dilution effects

(k5~ log (2)=40 min{1) and unstable proteins with fast degradation

induced by tagging (k5~( log (2)=40z1:0) min{1).
doi:10.1371/journal.pone.0073487.g004

Figure 5. Steady state probability distribution for the simple
and detailed models. Probability distribution at steady state for
volume ~VV~100 for the simple (purple filled curves) and the detailed
(blue filled curves) genetic switch models, for different values of the
control parameter ~aa. The distributions match well except in the region
where distributions are bimodal and highlight the fact that while the
deterministic description is the same in both models, the stochastic one
is not.
doi:10.1371/journal.pone.0073487.g005
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promoter. These reactions lead to the following deterministic

description in terms of ordinary differential equations describing

the concentration of chemical species,

p
:
~k4p�{k3pxn ð32Þ

_pp�~{k4p�zk3pxn ð33Þ

x
:
~{k5xzrzn k4p�{k3pxnð Þzk2p�: ð34Þ

Binding/unbinding events are fast reactions compared to the

protein production and the degradation, i.e. k3,k4&r,k2,k5. Thus,

a quasi-steady state approximation can be implemented such that

p
:
~ p�

:

^0. The latter combined with the conservation law of the

total promoter concentration, pzp�~p0, leads to the following

equation,

x
:
~rz k2P0|ffl{zffl}

a

xn

k4=k3|fflffl{zfflffl}
Kd

zxn
{k5x: ð35Þ

Therefore, assuming that the binding/unbinding of the protein

to the DNA are fast reaction, this model leads to the same

deterministic equation as in the simple genetic switch model.

However, its stochastic description in terms of the set of equation

(30–31) is far more complex that equation (26) even considering

that binding/unbinding are fast events since P and X are

correlated quantities and each species exhibits a fluctuating

dynamics [17]. Then, we perform stochastic simulations of

equations (30–31) using the Gillespie algorithm [27] and apply

the peak detection method to elucidate the bifurcation changes in

the epigenetic landscape.

In order to reduce the number of parameters, we use the same

definition of dimensionless variables as above. Compared to the

simplified model, the detailed model has two additional param-

eters, ~kk2 and ~kk4. Parameter ~kk2 is related to the control parameter ~aa

by the relation ~kk2P0:~aa. In order to change ~aa, we vary the value of
~kk2 and keep fixed the DNA copy number P0~1. In our

simulations the value of ~kk4 is fixed (~kk4~1000) and ensures that

equation (35), and consequently the deterministic bifurcation

diagram, applies when fluctuations are neglected. Yet, when

considering the noise, the differences between the simple and the

detailed stochastic model are noticeable by examining the

stationary probability distributions (see Figure 5). Nonetheless, in

agreement with our theoretical approach, the bifurcation diagram,

Figure 6, shows that noise promotes the stability of the low state

compared to the deterministic system. However, the stochastic

stabilization effect is smaller than in the simple genetic switch

model. For example, for a volume ~VV~10 the maximum in the

distribution corresponding to the low state can be detected up to

the value ~aa~2:55 for the detailed model, while in the simple

model it can be detected up to ~aa~3:5.

Discussion

By using the auto-activating genetic switch as a case study, we

have shown that the biochemical intrinsic noise may induce a shift

in the position of the bifurcation points such that the region of

parameter values for which the stationary probability distribution

is bimodal increases with fluctuations with respect to the

deterministic situation. In particular, the low state stability is

extended; an effect that we call stochastic stabilization and that we

have shown that, in essence, does not depend on the colored

character of the fluctuations. The perturbative method that we

have introduced is general and can be applied to any stochastic

system describing a gene regulatory network. Yet, we point out

that the method is limited to the case of one-dimensional stochastic

differential equations for which the general solution of the

stationary probability density can be written explicitly. Nonethe-

less, we have shown by means of simulations of a more detailed

model, that the stochastic stabilization phenomenon does not

depend on this particular detail thus suggesting a generic

phenomenon in positive feedback switches (see for instance [19]).

Previous studies [14,15] have also found that noise changes the

position and even the number of stable states [18]. In this regard,

our study provides a theoretical framework to predict and

understand such phenomenology.

The results of the detailed model differ quantitatively from the

simple model when fluctuations are considered. In particular, the

probability distributions and the range of values for which the

latter are bimodal are different. Thus, although the deterministic

descriptions of both models are totally equivalent (as long as the

quasi-steady state approximation holds) this is not true when

considering the biochemical fluctuations. In fact, the dynamics at

steady state are quite different and we find that in the detailed

model the switching rate from the low to the high state is slower

than in the simplified model (data not shown). These results are in

agreement with other studies about genetic switches: for example

in the case of the genetic toggle switch it has been shown that

protein-protein interactions can be safely eliminated (adiabatically)

but protein-DNA interactions, even though are also fast, lead to

noticeable changes in the switching rates if neglected [28]. It is also

Figure 6. Bifurcation diagram of the detailed genetic switch.
Bifurcation diagram of the detailed genetic switch with fast protein-
DNA binding/unbinding, The results from stochastic simulations at low
volume ~VV~10 shows that noise induces the same stochastic
stabilization effect as in the simple genetic switch model, as can be
seen by the position of the peaks of the distribution from the
simulations (orange circles) compared to the deterministic system (blue
solid line). Color code denotes the probability distribution from

stochastic simulations for ~VV~10 in logarithmic scale.
doi:10.1371/journal.pone.0073487.g006
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interesting to place our findings in the context of the role played by

different noisy sources, gene switching, translational and tran-

scriptional, for defining the global attractor of bistable systems

[17]. Thus, it has been recently shown that the modulation of the

intensity of these fluctuations can actually condition the global

attractor (the most represented phenotype) and that the elimina-

tion of gene switching noise by means of the adiabatic

approximation can supress some phenotypes. Our results are

consistent with this sudy and provide further means to analyze and

understand such phenomenology.

In this study, we have modulated the intensity of intrinsic

fluctuations keeping the same concentration and varying the

volume of the system. One may wonder how the number of

proteins in our model and the intensity of the fluctuations

compares with the situation found in real biological systems. The

maximum intensity of noise we have used corresponds to a volume

of V&2 mm3 ( ~VV&10), for which the average number of protein X

in the low state is *1. Such volume is in fact the typical volume of

an E. coli cell [29] and this very low copy number of proteins has

been measured in bacteria. For example, the number of LacY

repressors in the lactose operon of E. coli, an auto-activating

genetic switch, has been found to be between 0 and 10, most of the

cells having zero or very few molecules [30], and single molecule

measurement of b-galactosidase in E. coli [31] have also reported

an average level of *1 enzyme per cell. Consequently, the

number of molecules, and therefore the noise intensity, used in our

study is consistent with experimental data on bacterial regulatory

networks. Moreover, the intensity of intrinsic noise may be even

larger when considering protein expression bursts [32], a

phenomenon that we have not included in our modeling.

Summarizing, our study supports the idea that the biochemical

noise, far for being a nuisance, is an essential component of genetic

regulation and cell functioning. Here we have shown how

biochemical noise modifies the location of bifurcation points of

the epigenetic landscape with respect to a noise-free system and

the impact of this phenomenon for promoting the stability of

phenotypic states. We have applied our findings to the well

characterized case of the genetic switch that, in its simplest version,

belongs to a general class of regulatory processes for which our

formalism can be applied. Finally, whether our results are

applicable or not to complex fate decision and differentiation

processes is a matter of further research. In that regard, fate

decisions in some embryonic stem cells are driven by an excitable

dynamics that includes positive feedback loops as the one we have

considered herein [33]. Hence, we speculate that noise would be

also playing a role in redesigning the epigenetic landscape in those

cases. Work along this direction is in progress.
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switching driven by intrinsic molecular noise. PLoS One 7: e31407.

17. Jaruszewicz J, Zuk PJ, Lipniacki T (2013) Type of noise defines global attractors

in bistable molecular regulatory systems. Journal of theoretical biology 317: 140–

51.

18. Birtwistle MR, Rauch J, Kiyatkin A, Aksamitiene E, Dobrzynski M, et al. (2012)
Emergence of bimodal cell population responses from the interplay between

analog single-cell signaling and protein expression noise. BMC systems biology
6: 109.

19. Weber M, Buceta J (2013) Dynamics of the quorum sensing switch: stochastic
and non-stationary effects. BMC systems biology 7: 6.

20. Song C, Phenix H, Abedi V, Scott M, Ingalls BP, et al. (2010) Estimating the

stochastic bifurcation structure of cellular networks. PLoS computational biology
6: e1000699.

21. Van Kampen NG (1992) Stochastic processes in physics and chemistry. North
holland.

22. Gillespie D (2000) The chemical Langevin equation. The Journal of Chemical

Physics 113: 297.
23. Horsthemke W, Lefever R (1984) Noise-induced transitions: theory and

applications in physics, chemistry and biology. Berlin Heidelberg: Springer-
Verlag.
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