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Abstract

This paper proposes a novel bayesian phase I/II design featuring using a hybrid mTPI method in phase I for targeting the
MTD level and a randomization allocation schema for adaptively assigning patients to desirable doses in phase II. The
mechanism of simultaneously escalating dose in phase I and expanding promising doses to phase II is inherited from a
design proposed in literature. Extensive simulation studies indicate that our proposed design can vastly save sample size
and efficiently assign more patients to optimal dose when compared to two competing designs.
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Introduction

Though some designs, under the name of phase I/II, have been

proposed recent years. Most of them target the maximum

tolerated dose(MTD) level(MTD refers to the highest dose that

will produce the desired effect without unacceptable toxicity.),

which should, as the authors believe, bear a more appropriate

name: phase I/II dose finding design([1], [2], [3], [4], [5], [6]).

Based on our knowledge, only several proposed designs could be

titled as ‘‘true’’ seamless phase I/II design, among them, there are

XJT design proposed by Xie etc.([7]) and three-stage design

proposed by Pan etc ([8]),which are currently available. While

both of them show good performances, the three-stage design

outperforms the XJT design. However, at the phase I stage, the

three stage design still failed to use more flexible adaptive design,

like CRM or mTPI designs(both are model-based Bayesian

adaptive phase I designs). In this paper, we equip the three-stage

design with the advanced mTPI design. More steps have been

made in this paper: we adopt the hybrid mTPI in phase I and

conduct extensive simulations to compare their performances to

draw final conclusion. The major reason that we select the mTPI

instead of CRM design to improve the efficiency in phase I of the

three-stage design is that it has been proven to have the similar

statistical performances to the CRM design yet simple to use([9],

[10], [11]). We are aware that none of this kind of studies that

equip the mTPI design with the integration of the phase I and II

processes have been explored in the literature.

We briefly introduce the paradigm of the three-stage design as

follows. The design’s three stages refer to phase I, phase IIa, and

IIb, respectively. The design features integration of the processes

of dose escalation and dose expansion. Dose escalation is guided

by the 3+3 approach, which is a classical design and has been

considered as the gold standard design in phase I trials([10]). Once

a current administered dose is escalated and a new dose is opened

for toxicity study, this current dose is expanded to phase IIa(stage

2) for preliminary research. The efficacy information is updated by

a beta-binomial model. Stage 2 requires two interim analyses: a

futility rule which determines when the current dose should be

dropped out from the study and a graduation rule which informs

whether the current dose should be graduated to phase IIb(stage 3)

or not. In stage 3, an adaptive randomization procedure is

implemented to assign the treated patients to desirable dose levels.

Readers refer to([8]) for details.

This paper is organized as follows. Section 2 covers the scheme

of mTPI design and its hybrid version. In Section 3, the general

design structure is introduced in depth. Section 4 elaborates on the

extensive simulation studies. Finally, Section 5 is devoted to

discussions and conclusions.

Phase I mTPI Design and its Hybrid Version

Firstly, we will introduce mTPI designs; and then the hybrid

mTPI versions will be described.

mTPI Design
The dose-finding rules for the mTPI method involve two major

steps. In the first step, one introduces an equivalence interval (EI),

which leads to three toxicity probability intervals that partition the

probability space (0,1) into three intervals, corresponding to three

conditions, namely, under-dosing, proper dosing, and over dosing,

respectively. Building upon the EI, the mTPI method computes

the unit probability mass (UPM, which is defined as the ratio of the

probability the interval and the length of the interval) for the three

toxicity probability intervals, and sets up a decision-theoretic

framework to guide dose escalation decision on a Bayes rule basis.

Specifically, define w to be the target toxicity probability of the

MTD (e.g, w = 0.25). The goal of phase I clinical trials is to find the

highest dose with a toxicity probability closest to w. Let
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p = (p1, � � � ,pD)
0

denote the toxicity probabilities for dose

j = 1,� � �,D, where D is the total number of candidate doses in

the trial. The observed data include the nj patients treated at dose j

and the corresponding xj experiencing toxicity. The likelihood

function is a product of binomial densities,

l(p)! P
D

j~1
pj

xj (1{pj)
nj{xj ð1Þ

The mTPI design assumes independence among dose responses

and proposes to use models with vague priors for pj so that the

shape of the resulting posterior distributions will be decided mainly

by the shape of the likelihood based on the observed data. In this

design, we set priors of pjs as Beta(1,1), with Beta density

proportional to xa{1(1{x)b{1. Combined with the likelihood in

(1), the posterior of pj follows independent Beta(1zxj ,1znj{xi),

for j~1, . . . ,D. Evidently, when strong prior information on the

toxicity of the candidate doses are available, informative beta

priors can replace the vague priors.

Assume dose j is currently used to treat patients. To apply

mTPI, one simply calculates the three UPMs for under-, proper-,

and over-dosing intervals, given by

UPM (D,j)~
P(pj{wwE2Ddata )

1{w{E2
for under dosing ,

UPM (S,j)~
P({E1ƒpj{wƒE2Ddata )

E2zE1
for proper dosing ,

UPM (E,j)~
P(pj{wv{E1Ddata )

w{E1
for over dosing :

A dose-assignment rule Bj based on these three UPMs chooses

the decision with the largest UPM, that is,

Bj~arg max
m[fD,S,Eg

UPM(m,j): ð2Þ

The mTPI design imposes an extra safety rule which restricts

escalation to toxic doses that have been previously used.

Introduing a random variable T j~1fP(pjwwDdata)wjg, where

1fg is the indicator function and j[(0,1) is a cutoff value

(e.g.,j~0:95), mTPI incorporates T jz1 into the proposed dose-

assignment rule Bj. Let UPM(~EE,j)~UPM(E,j)(1{T jz1) and

define the new dose-assignment rule with this toxicity exclusion to

be Be
j ~arg maxm[fD,S,~EEgUPM(m,j). When T jz1~1, dose jz1

is considered highly toxic and the UPM associated with escalation

equals 0. Therefore, escalation will never be chosen for dose

finding. We recommend readers to refer to (Ji et al., 2010) [11] for

details.

Hybrid mTPI Design
The hybrid version of CRM design is advanced by Yuan & Yin

([12]). They have demonstrated that the hybrid CRM design

outperforms the 3+3 and CRM designs. We borrow their essential

idea here to construct a hybrid mTPI version, which inherits the

robustness of bayesian hybrid dose-finding method. Specifically, in

phase I, if the current observed information is informative enough

for us to know whether this dose is below or above the MTD, we

could make the relevant dose assignment decision (e.g.,either to

escalate or deescalate or stay at the current dose) instantly without

using advanced adaptive phase I design. If the information

observed at the current dose is insufficient to make a definite

decision, we will adopt the mTPI design so that borrowing

strength across all the doses under study to guide proper dose

assignment is feasible. The following is the detailed introduction of

the hybrid mTPI design.

Suppose yj out of nj patients have experienced toxicity with the

dose level j. To evaluate the distance between the toxicity

probability of dose level j and the target toxicity probability of the

MTD w, the following hypotheses are introduced:

H1 : pjvw{d,H2 : w{dƒwzd,H3 : pjwwzd: ð3Þ

where pj is the toxicity probability of dose level j, and d is the

tolerable margin prespecified by physicians. The hypotheses

H1,H2 and H3 represent the situation in which dose level j is

below, approximately equal to, and above the MTD, respectively.

We set up H2 as an interval hypothesis w{dƒwzd rather than a

traditional point hypothesis pj~w in that in clinical practice, as

long as the toxicity probability of a dose is adequately close to w,

this dose can be chosen as the MTD. For example, with w~0:25
and d~0:02, a dose with a toxicity probability within (0:23,0:27)
would be accepted as the MTD.

Given the data observed at dose level j, (nj ,yj), we derive the

evidence of supporting each hypothesis by calculating their

posterior probabilities. We assign the toxic probabilities pj as a

Beta(1,1) prior distribution under each hypothesis:

p(pj DH1)~Unif (0,w{d),

p(pj DH2)~Unif (w{d,wzd), ð4Þ

p(pj DH3)~Unif (wzd,1):

It then follows that the marginal distribution of yj under H1 is

given by

p(yj DH1)~
Fbeta(w{d; yjz1,nj{yjz1)

(w{d)(njz1)
,

where Fbeta(c; a,b) is the cumulative distribution function of a beta

distribution with the shape and scale parameters a and b at the

value c. Similarly, the marginal distributions of yj under H2 and

H3 are given by

p(yj DH2)~

Fbeta(wzd; yjz1,nj{yjz1){Fbeta(w{d; yjz1,nj{yjz1)

2d(njz1)
,

and
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p(yj DH3)~
1{Fbeta(wzd; yjz1,nj{yjz1)

(1{w{d)(njz1)
:

respectively. Therefore, at dose level j, the posterior probability of

Hk(k~1,2,3) is given by

p(HkDyj)~
p(Hk)p(yj DHk)

p(H1)p(yj DH1)zp(H2)p(yj DH2)zp(H3)p(yj DH3)
,

which is equivalently to the following:

p(Hk Dyj)~
p(Hk)

p(H1)BF1kzp(H2)BF2kzp(H3)BF3k

, ð5Þ

where BFik~p(yj DHi)=p(yj DHk)(i,k~1,2,3), is the Bayes factor of

Hi against Hk.

To determine the magnitude of the evidence in favor of each

hypothesis,more specifically, Jeffreys([14]) suggested interpreting

the Bayes factor in the unit of 1/2 on the log10 scale: if

log10BF12w1=2, this indicates that the data contain substantial

evidence in favor of H1 against H2; if log10BF12w1, such evidence

is strong in the data; and if log10BF12w2, then the evidence

appears to be decisive. In our case, if log10BF12w1=2 and

log10BF13w1=2, or equivalently p(H1Dyj)w0:61, there is substan-

tial evidence in favor of H1 against both H2 and H3, suggesting

that dose level j is far below the MTD. As a result, we should

directly escalate the dose to level jz1, without the need to borrow

any information from other doses. Similarly, if p(H3Dyj)w0:61, we

should de-escalate the dose to level j{1 as there is substantial

evidence indicating that dose level j is far above the MTD. Finally,

if p(H2Dyj)w0:61, there is substantial evidence that dose level j is

close to the MTD, the next dose should then stay at the same level.

When none of the posterior probabilities of the hypotheses is

greater than 0.61, that is, p(Hk Dyj)ƒ0:61 for all k, then that’s not

informative enough at dose level j to support any action. As a

consequence, we invoke the mTPI approach to pool the

information together from all the dose levels to guide the dose

assignment for new patients. In other words, if the toxicity

information at the currently administered dose is strong enough,

we draw the decision upon the Bayes factors obtained in (5);

otherwise we resort to the model-based approach to borrow

information across different dose levels.

Design

We replace the 3+3 method in the three-stage design with the

above hybrid mTPI approach. After the completion of phase I

stage, the adaptive randomization approach by Yuan & Yin([15]) is

adopted to effectively assign patients to the ideal dose level. Our

design uses the beta-binomial model for efficacy responses. Let Yj

denotes the number of responses among the nj patients treated with

dose arm j (j~1, � � � ,D) and Y0 is the number of responses among

the n0 patients treated with placebo arm. Let Yj(j~1, � � � ,D) and

Y0 be independent random variables following the binomial

distribution, Bin(nj ,qj ), and Bin(n0,q0), respectively. The joint

likelihood function for all doses can be written as

L(q1, � � � ,qD,q0)&P�D
�j~1 q

Yj

j (1{qj)
nj{Yj |qY0

0 (1{q0)n0{Y0 . In

Table 1. Dose response rates(qd ) and Placebo response rate(q0) scenarios.

Pattern (d1, d2, d3, d4, d5) Dose Response Rate(qd ) Placebo Response Rate(q0)

Null 0.2,0.2,0.2,0.2,0.2

Increasing 0.2 0.3 0.5 0.7 0.8

Decreasing 0.8 0.7 0.5 0.3 0.2 0.2

n-shaped 0.2 0.4 0.8 0.4 0.2 0.5

u-shaped 0.8 0.4 0.2 0.4 0.8

Equal 0.5 0.5 0.5 0.5 0.5

doi:10.1371/journal.pone.0073060.t001

Table 2. Average Total Sample Size and Percentage Reduction.

Equal Toxicity Increasing Toxicity

(0.05,0.05,0.05,0.05,0.05,0.05) (0.03,0.06,0.09,0.12,0.15)

Placebo rate Null Increasing Decreasing n-shaped u-shaped Equal Null Increasing Decreasing n-shaped u-shaped Equal

0.2 101 69 67 67 65 75 80 79 67 63 65 64

(4) (47) (51) (46) (57) (60) (9) (37) (51) (45) (60) (44)

(2) (26) (26) (20) (26) (25) (2) (18) (32) (33) (31) (23)

0.5 97 102 99 96 100 84 84 100 109 96 105 123

(13) (11) (10) (13) (8) (22) (18) (18) (7) (18) (9) (11)

(6) (5) (4) (5) (2) (11) (8) (7) (2) (8) (3) (4)

Note: The first row is average total sample size in our proposed design; numbers in parentheses are percentages reduction of sample size as compared to the XJT and
the three-stage designs.
doi:10.1371/journal.pone.0073060.t002
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our design, the response rates qj and q0 are assumed to be

independent and identically distributed with Beta(0.5,0.5), where

Beta(a,b) denotes a beta distribution, and its density is proportional

to xa{1(1{x)b{1. Based on the Bayesian theory, the posterior

distribution of qj is Beta(0.5+Yj , 0.5+nj2Yj ) and the posterior

distribution of q0 is Beta(0.5+Y0, 0.5+n02Y0).

Regarding phase I, assuming that p(H1)~p(H2)~p(H3)~1=3,

three possibilities could be considered: (1) patients in the first

cohort are treated at the lowest dose d1; (2) at the current dose

level jcurr with the observed data yjcurr , we calculate

p(H1Dyjcurr ),p(H2Dyjcurr ) and p(H3Dyjcurr ). If p(H1Dyjcurr )w0:61, we

escalate the dose level to jcurrz1; if p(H3Dyjcurr )w0:61, we de-

escalate the dose level to jcurr{1; and if p(H2Dyjcurr )w0:61, the

dose stays at the same level as jcurr for the next cohort of patients;

(3) otherwise, we switch to the mTPI method to continue the

dose-finding jobs.

During the phase I process, if there is/are promising dose(s)

graduated to phase II, the proposed design adaptively randomizes

to-be-treated patients to all the graduated doses or placebo. In our

design, the cohort size is 3 patients in phase II, the estimated

Table 3. Dose selection percentage and average number patients allocated to each dose under proposed design.

Equal Toxicity Increasing Toxicity

Sc. Control resp rate (0.05,0.05,0.05,0.05,0.05) Sc. (0.03,0.06,0.09,0.12,0.15)

1 0.2 0.2 0.2 0.2 0.2 0.2 13 0.2 0.2 0.2 0.2 0.2

% (21.3) (20.8) (19.7) (20.1) (20.5) % (26.4) (22.1) (19.9) (18.1) (14.1)

# (19.2) (18.6) (18.1) (17.3) (18.1) # (17.3) (15.5) (14.1) (12.8) (9.9)

2 0.2 0.2 0.3 0.4 0.5 0.6 14 0.2 0.3 0.4 0.5 0.6

% (11.4) (13.2) (14.9) (26.1) (34.2) % (13.7) (16.2) (20.1) (24.6) (28.9)

# (7.9) (9.1) (12.2) (13.9) (19.3) # (8.3) (10.5) (12.3) (14.2) (15.1)

3 0.2 0.6 0.5 0.4 0.3 0.2 15 0.6 0.5 0.4 0.3 0.2

% (39.4) (25.9) (16.9) (12.5) (11.1) % (38.2) (24.9) (15.7) (13.1) (8.8)

# (21.2) (15.3) (10.7) (8.3) (5.1) # (20.9) (14.8) (9.9) (7.9) (5.9)

4 0.2 0.2 0.4 0.6 0.4 0.2 16 0.2 0.4 0.6 0.4 0.2

% (11.4) (18.9) (44.1) (13.6) (8.7) % (12.5) (23.1) (43.9) (14.6) (5.9)

# (8.1) (11.6) (23.3) (10.0) (5.6) # (8.2) (11.5) (21.7) (9.1) (5.3)

5 0.2 0.6 0.4 0.2 0.4 0.6 17 0.6 0.4 0.2 0.4 0.6

% (36.3) (16.2) (9.1) (12.2) (29.7) % (37.9) (15.1) (10.0) (11.3) (24.7)

# (19.9) (9.2) (6.8) (8.1) (15.6) # (19.7) (9.9) (6.5) (8.0) (13.6)

6 0.2 0.5 0.5 0.5 0.5 0.5 18 0.5 0.5 0.5 0.5 0.5

% (21.8) (20.5) (20.1) (19.3) (18.3) % (24.7) (25.9) (23.7) (19.2) (10.2)

# (14.8) (14.5) (13.1) (13.9) (14.0) # (15.5) (12.5) (11.9) (10.1) (7.4)

7 0.5 0.5 0.5 0.5 0.5 0.5 19 0.5 0.5 0.5 0.5 0.5

% (21.2) (20.4) (19.7) (18.3) (17.6) % (25.1) (23.2) (21.0) (17.4) (14.1)

# (17.1) (16.4) (16.1) (15.7) (14.8) # (18.6) (16.9) (14.6) (12.2) (10.8)

8 0.5 0.5 0.6 0.7 0.8 0.9 20 0.5 0.6 0.7 0.8 0.9

% (11.6) (14.3) (18.5) (24.1) (28.7) % (12.4) (15.3) (21.5) (22.8) (25.6)

# (10.5) (14.3) (19.8) (22.6) (26.1) # (11.1) (13.7) (19.4) (21.6) (23.1)

9 0.5 0.9 0.8 0.7 0.6 0.5 21 0.9 0.8 0.7 0.6 0.5

% (39.6) (25.3) (15.1) (10.0) (8.3) % (38.8) (27.8) (17.2) (10.1) (6.2)

# (28.6) (24.4) (18.0) (13.1) (7.9) # (29.0) (25.1) (18.9) (12.7) (8.1)

10 0.5 0.5 0.7 0.9 0.7 0.5 22 0.5 0.7 0.9 0.7 0.5

% (13.1) (22.8) (39.7) (18.1) (8.1) % (11.5) (25.6) (40.1) (17.7) (7.4)

# (11.3) (21.8) (27.4) (18.9) (8.8) # (10.5) (21.6) (28.9) (19.2) (7.6)

11 0.5 0.9 0.7 0.5 0.7 0.9 23 0.9 0.7 0.5 0.7 0.9

% (39.2) (18.3) (7.1) (13.2) (24.4) % (38.5) (22.1) (9.4) (13.4) (21.1)

# (29.1) (19.7) (8.9) (18.6) (23.2) # (29.4) (21.1) (7.3) (16.2) (19.7)

12 0.5 0.8 0.8 0.8 0.8 0.8 24 0.8 0.8 0.8 0.8 0.8

% (20.8) (20.7) (19.4) (19.7) (19.1) % (28.3) (24.5) (21.7) (15.2) (12.7)

# (14.1) (14.0) (13.7) (13.9) (13.7) # (27.8) (25.2) (24.8) (20.5) (16.9)

Note: In each scenario, the first row of number in parentheses corresponds to the dose selection percentage at every dose combination, the second corresponds to the
average number of patients allocated to every dose combination.
doi:10.1371/journal.pone.0073060.t003
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response rates for dose levels d1 to dD are denoted by q1 to qD,

respectively.

Adaptive allocation procedure has the feature of assigning the

patients to the most efficacious dose. The mechanism of allocation

of patients is the essential part of an adaptive randomization

approach. There are several approaches that have been proposed

in recent years ([1], [16], [17]). One traditional approach is to let

the assignment probability for dose j be proportional to its

response rate qj evaluated by the accumulative information so far.

This approach does not perform well when the sample size is

small. However, small sample size characterizes in every early

phase studies. The problem is that the estimated values of qj is not

reliable and stable. A Bayesian approach is to compare the

response rates with a target rate, say q, and let the allocation

probabilities be proportional to the posterior probabilities

qj~Pr½qiwqDdata�. Nonetheless, as pointed out in [15], adaptive

randomization may not work well with this approach when all of

the true response rates are much higher or lower than q. In our

design, we adopt the approach proposed by [15], named as

Bayesian moving-reference adaptive randomization(MAR) ap-

proach. Peculiar to MAR is that the set of treatments in

comparison is continuously reduced and one can achieve a high

resolution to distinguish various treatments thereby. In the

following, we explicate the MAR approach. Firstly, Let �AA and A

denote the set of indices of the treatment arms that have or have

not been assigned randomization probabilities. One starts with
�AA~f:g an empty set, and A~f1,2, � � � ,Dg;secondly, compute the

average response rate for the arms belonging to the set A,

�pp~
P

j[A pj=
P

j[A 1, and use �pp as the reference to determine

Rj~Pr(pjw�ppDD), for j[A. Identify the arm that has the smallest

value of Rj , Rl~minj[ARj ; then assign arm l a randomization

probability of pl , pl~
RlP
j[A

Rj
(1{

P
j’[�AA pj’), and update A and �AA

by removing arm l from A into �AA; lastly, repeat the first two steps

and keep spending the rest of the randomization probability until

all of the arms are assigned randomization, (p1, � � � ,pD), and then

randomize the next cohort of patients to the j-th arm with a

probability of pj . This approach can overcome the disadvantage

mentioned above. The detailed description of this approach is

refereed to [15].

We propose the following rules that are applied to the

accumulating data for each dose arm.

N Rule1:Futility rule (dose dropping): Calculate the posterior

probability R1~Pr(qjvq0Ddata), where q0 is the placebo

arm’s response rate. Stop accruing patients at this dose level j

whenever R1wk.

N Rule2:Graduation rule(dose expansion): If the dose arm’s posterior

probability R1 k in Futility rule, compute R2~Pr(qjwq0zD),
where, D is a physician-specified superiority treatment margin.

If R2wk, graduate this dose to phase II.

In sum, our proposed design is schematized as follows:

Trial initiation. Patients of the first cohort are treated at the

lowest dose level.

Onset of phase I. Phase I dose-finding starts after the first

cohort is enrolled. Dose escalation proceeds based on the hybrid

mTPI design.

Dose expanding. If an adjacent higher dose arm is opened

for safety testing, we simultaneously expand the current admin-

istered dose to phase II.

Onset of phase II. Once a dose graduates, phase II starts.

Patients will be randomized to the graduated doses or a placebo

arm. For arm j, the randomization probability is proportional to

the probability computed by the MAR approach.

Trial termination. The trial is terminated when either of the

two conditions is met: 1) no dose is left in both phases; or 2) the

prespecified maximum sample size is reached.

Simulation Studies

Simulation settings
For the purpose of fair comparison, we use the simulation

scenarios identical to Xie([7]), whose study consists of two sets of

toxicity situations: equal toxicity rates, with tj~0:05 for

j~1, � � � ,5, and increasing toxicity rates(tjs) with

(0:03,0:06,0:09,0:12,0:15) for all dose levels. Two control

response rates(q0) used in the simulation are 0.2 and 0.5. The

true treatment response rate(qj ) used in simulations intends to

encompass the various scenarios occurred in the real practice,

namely, null, increasing, decreasing, n-shaped, u-shaped and equal

(please refer to Table 1 for details).

In the simulations, the parameters are selected with exploratory

simulation studies by computing the competing designs to achieve

the similar type I error rate: 0.05. The maximum sample size for

the trial is 180 and, the maximum sample size for each dose arm

or placebo arm is 30 patients. D is 0.2, and the cutoff k is set as

0.90 by calibration. For each of the 24 scenarios, the proposed

design was compared to both the XJT design and the three-stage

design varied in terms of the average total sample size, optimal

dose selection percentage, average patient numbers on various

dose levels and toxic rates.

Simulation results
Sample size reduction. When toxicity pattern is either equal

or increasing, the average number of patients using the XJT

design is 135 or 129 for j~1, � � � ,5. Compared to the XJT design,

the average sample size of our proposed design is vastly saved

across all scenarios, approximately 25% sample size reduction on

average; besides as against the three-stage design, the average

sample consumption is also saved dramatically, approximately

12% sample size reduction on average. (See Table 2 for details). As

is obvious from the above results, the proposed design is very

competitive in terms of cost, with the implication of shorter drug

development duration and higher ethics due to smaller sample

size. The good performance is traceable to the fact that our

proposed design adopts the efficient hybrid mTPI design in phase I

and an adaptive randomization procedure in phase II.

Optimal allocations. The dose selection percentages and

average numbers of patients treated upon various doses are

presented in Table 3. With toxicity and efficacy increasing,

scenarios 14 and 20 are the most encountered situations in clinical

practice. It is easy to see, in two cases, the dose selection

percentages for doses d1, � � � ,d5 are increasing from 13.7 to 28.9

and from 12.4 to 25.6 respectively, and the average number of

patients assigned to the various doses is increasing from 8.3 to 15.1

and from 11.1 to 23.1 correspondingly. To examine the net effect

of the number of patients assigned to an increasing dose response,

for instance, in scenario 2, the toxic rates are constant across the

various doses, while the response rates exhibit an increasing trend

from 20% to 60%. As shown in Table 3, the number of patients

assigned to various doses ranges from 7.9 to 19.3, or 11.4 to 34.2

in percentage. The above results show that the proposed design

efficiently assigns more patients to the most effective dose levels.

The Scenario 8 shows the similar results. When it comes to the net

effect of increasing toxic rates as in scenario 13, the response rates

remain unchanged, while the toxic rates vary between 3% and
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15%. From Table 3, the average sample size consumed by doses

decreases from 17.3 to 9.9, or from 26.4 to 14.1 in terms of

percentage. The Scenario 19 also exhibits similar results.

In brief, the proposed design saves a lot sample size and, in all

scenarios, the optimal doses are to be selected with high

probability and a large proportion of patients can be assigned to

the efficacious and safe dose levels.

Discussion

Early phases in clinical trials, like phase I and II, play a vital role

in drug development. The success of phase III confirmatory trials

is contingent on phase I and II. However, the traditional

procedures separate the early phases into two distinct phases

and fail to borrow the information across phases I and II.

Therefore, a design that could efficiently integrate information

accumulated in phases I and II would be especially beneficial and

necessary to drug development, with reference to the current

situation of high risk and cost. The design described in this paper

intends to provide an upgraded version based on the three-stage

design. The highlights of our proposed design in this paper

embrace adoption of a novel phase I bayesian design - the hybrid

mTPI design and the MAR randomization procedure. Extensive

simulation studies are conducted to ascertain the claimed good

performances.

Readers may wonder why we did not choose a hybrid CRM in

phase I stage. Basically, the CRM approach requires one to select

a group of skeletons prior to a trial, but how to choose the

skeletons remains an unsolved academic problem, despite that one

method has been proposed ([13]). In fact, we have done the study

using the hybrid CRM in phase I stage, yet not present them in

tables. The findings, actually, lead to the same results as the hybrid

mTPI. Accordingly, we believe that the hybrid mTPI approach

would be much easier and more user-friendly to be adopted in real

practice.

In the final analysis, the design proposed in the paper is more

ethical with more patients assigned to the optimal doses, can

expedite the clinical procedures, and can save the cost of drug

development due to small sample size. The design structure is easy

to understand and practice of this design is free from calibration of

design parameters.
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