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Abstract

The identification of phenotype descriptions in the scientific literature, case reports and patient records is a rewarding task
for bio-medical text mining. Any progress will support knowledge discovery and linkage to other resources. However
because of their wide variation a number of challenges still remain in terms of their identification and semantic
normalisation before they can be fully exploited for research purposes. This paper presents novel techniques for
identifying potential complex phenotype mentions by exploiting a hybrid model based on machine learning, rules and
dictionary matching. A systematic study is made of how to combine sequence labels from these modules as well as the
merits of various ontological resources. We evaluated our approach on a subset of Medline abstracts cited by the Online
Mendelian Inheritance of Man database related to auto-immune diseases. Using partial matching the best micro-averaged
F-score for phenotypes and five other entity classes was 79.9%. A best performance of 75.3% was achieved for phenotype
candidates using all semantics resources. We observed the advantage of using SVM-based learn-to-rank for sequence label
combination over maximum entropy and a priority list approach. The results indicate that the identification of simple entity
types such as chemicals and genes are robustly supported by single semantic resources, whereas phenotypes require
combinations. Altogether we conclude that our approach coped well with the compositional structure of phenotypes in the
auto-immune domain.
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Introduction

Since the discovery of the relationship between genotype,

environment and phenotype, phenotype data has been used to

investigate disease–gene relations [1,2], drug repurposing [3] and

in evolutionary studies [4]. A diverse landscape of resources has

evolved harboring genotype–phenotype associations such as the

Mouse Genome Informatics database (MGD) [5] and the Online

Mendelian Inheritance of Man (OMIM) database [6]. This

landscape, shown in Figure 1, ranges from narrative descriptions

to ontological concepts. Only once we are able to integrate these

co-existing data reprentations will be able to fully understand the

biological content encoded by each.

While the integration of phenotype data on an ontological level

has been demonstrated to enable the prediction of novel gene–

disease associations or drug–disease associations [3], the integra-

tion of textual data, such as scientific literature, still lags behind.

To achieve semantic integration on an ontological level, there was

a shift from pre-composed, species-specific phenotype ontologies

(e.g. Mammalian Phenotype Ontology (MP) [7]) to a post-

composition of phenotype data using species-agnostic ontologies

(e.g. Gene Ontology (GO) [8] and PATO [9]). A post-composed

phenotype representation requires an entity that is further

described based on a quality, e.g. brown fur colour or decreased body

weight. Phenotype data extracted from textual content would have

to facilitate both, the normalisation to pre-composed phenotype

representations as well as the post-composition of a phenotype.

Furthermore, the data contained within model organism

database is obtained through curation of the scientific literature.

A need to support database curation work has been identified [10]

and current solutions have been found to be insufficient to support

the curation workflow [11]. While multiple studies have examined

the automatic annotation of genes, proteins and diseases in

scientific texts, there is a significant gap in our understanding of

how to identify and normalise phenotype mentions. This is

partially due to the complexity of the phenotype descriptions, but

can also be attributed to incompleteness of phenotype data [12]

and a consequent lack of comprehensive semantic resources

covering their full scope. Any progress in the automatic

identification of phenotypes in the scientific literature would drive

the scientific progress in the above mentioned research fields.

This paper presents novel techniques for identifying potential

complex phenotype mentions by exploiting a hybrid model based

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e72965



on machine learning, rules and dictionary matching. A systematic

study is made of how to combine sequence labels from these

modules as well as the merits of various ontological resources such

as the Human Phenotype Ontology (HPO) [13], the Foundation

Model of Anatomy (FMA) [14] and PATO. We evaluated our

approach on a subset of Medline abstracts cited by OMIM for

auto-immune diseases. After a review of related research we start

start by outlining a conceptual analysis of phenotypes.

Background

The task of identifying and classifying phenotype mentions in

text requires an understanding of the complex nature of their

semantics and syntactic structure. In contrast to simple entities such

as tissues and organs which have a clear structural and spatial

basis, the definition and rightful delineation of phenotypes appears

puzzling even to researchers and clinicians. This is partly due to

phenotypes cutting across both physical objects and processes but

also across levels of granularity from the molecular level to the

organism. The class of phenotypes is also viewed differently in the

clinical and biological data contributing for example to more

frequent disease terms in the HPO than in the MP. Phenotypes

may be defined experimentally or clinically according to a model

reference so that concepts include a notion of difference to reference

model, leading to a notion of abnormality [15]. In the approach that

we are taking, we argue that it is vital to annotate surface mentions

of phenotypes in a machine readable form that can then be linked

to pre-composed phenotype ontologies, and, at the same time,

makes explicit their internal dependencies and links their

substructures to species-agnostic ontologies to support logical

reasoning and hypothesis exploration through post-composition.

The automated recognition of biomedical terms in text has been

a highly active area for over two decades and is referred to

variously as terminology extraction’, term recognition’, entity

extraction’ and named entity recognition’ (NER). Most previous

NER research has focused on single rather than joint semantic

classes such as genes, proteins, cells, anatomical entities and

organisms in the experimental biology domain, e.g. [16], and

medication, dosage and symptom in the clinical domain, e.g. [17].

Common approaches include supervised machine learning [18–

21], active learning [22], semi-supervised learning [23], dictio-

nary-based approaches [24,25], rule-based approaches [26] and

hybrid approaches [27–30]. Open-source tools for NER include

BANNER [21], ABNER [20], LINGPIPE [31], the GENIA

tagger [32] and NERSuite, a named entity recognition toolkit

based on CRFSuite [33]. Recent community evaluations of state-

of-the-art tools for common entity types reported in the

BioCreative II [34] and CALBC [35] challenges show quite

widely varying F-score performance (see Matching metrics) when

trained and tested on the same corpus with the highest scoring

approaches generally achieving performance for entity detection

and classification of about 80% for genes/gene products,

chemicals and diseases and about 90% for organisms. For

anatomical entities a granular approach based on 11 levels such

as cell, organ and tissue achieved performance of about 71% F-

score [36]. In a recent evaluation [37], performance for state-of-

the-art NER taggers such as Banner [21], Abner [20] and

Lingpipe [31] have been found to offer between 41% and 61% for

genes when trained and tested on different corpora. The

evaluation in this study was carried out using the partially

overlapping annotation method; training was done on standardly

available corpora of abstracts such as BioCreative II, JNLPBA

[38], GENIA [39] and GeneTag [40] and testing on a newly

released full text corpus called CRAFT. We refer readers to the

overviews for BioCreative II and CALBC for further background

information.

Compared to other entity classes there are very few studies that

focus on capturing phenotypes [30,41–43]. Chen and Friedman

[41] adapted a rule-based system called BioMedLEE by writing

specialised grammatical rules and importing vocabulary from the

Unified Medical Language System (UMLS) and the Mammalian

Ontology [5]. In a recent study, Khordad et al. [42] applied a

staged rule-based system on the UMLS, HPO and MetaMap. In

our earlier study [30] we provided a comparison of Conditional

Figure 1. Representation of phenotypes in textual narratives and as pre-composed and post-composed terms. Imagine Mus
musculus courtesy of George Shuklin published at Wikimedia Commons.
doi:10.1371/journal.pone.0072965.g001
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Random Fields (CRFs), Hidden Markov Models (HMMs) and a

hybrid approach against Khordad’s method in the domain of

human auto-immune diseases. On a two class corpus, performance

for phenotypes was 77% F-score for the hybrid system, 65% for

the next best performing model CRF, 61% for Khordad’s

approach and 36% for the HMM. The results indicated the

importance of applying a range of resources that can capture

phenotypes in experimental papers. [43], Groza et al. [44] took a

different approach by trying to explicitly model the internal term

structure according to qualities and the anatomical entities to

which they apply. This is aimed at reducing problems associated

with disjoint mentions such as irregular flared metaphyses… with streaky

sclerosis by normalising to irregular flared streaky sclerosis metaphyses.

They tested their technique on a corpus of HPO terms under

Abnormality of the skeletal system (HP:000924).

From these studies we consider the following conclusions to be

important: (a) Intuitions about phenotypes are highly variable

among experts and therefore good annotation guidelines are

necessary for consistency [41], (b) Rule based approaches

bootstrapped with ontologies and tools such as the UMLS, HPO

and MetaMap are all valuable [41,42] but their combination with

corpus-based approaches can lead to improvements [30], (c)

Performance is considered to vary depending on whether

phenotypes include both objects and processes [30,41], (d) Surface

term variation remains a key issue [43].

In our approach, rather than solve the problem of identifying

free-text phenotypes in one stage, we have divided the task into

two stages. (Stage 1) is the identification of candidate terms and,

(Stage 2) is candidate confirmation by compositional analysis

through grounding to ontologies such as PATO and the FMA,

used for the post-composition of phenotype data. The study we

report here contributes to both stages of our task, even though

Stage 2 is not finished yet. With the work presented in this

manuscript, we highlight future directions to be taken in order to

enable the identification of the internal structure of phenotypes

and their relation to species-agnostic ontologies.

Our previously reported study [30] showed the benefits of a

hybrid approach to phenotype candidate recognition. This model

combined a state-of-the-art sequence labelling model (Conditional

Random Fields) trained on lexical features, with a rule-based

MetaMap module and dictionary matching. The target classes

were phenotypes and gene/gene products. Hypothesis resolution

used a small set of heuristic rules. However, it seemed unlikely that

we had reached optimal performance since the domain resources

employed and the method we used to combine alternative

sequence labeling hypotheses were limited in scope. The study

we present here seeks to extend this in a number of important

ways:

N We explore additional semantic resources including 320,000

chemical terms from the Joint Chemical Dictionary (Jochem),

9,000,000 gene terms from the National Library of Medicine

gene list, 120,000 human anatomy terms from the FMA,

275,000 terms from the UMLS related to diseases and

abnormalities, 9,900 phenotype terms from the HPO with

15,800 synonyms, 8,800 phenotype terms from the Mamma-

lian Phenotype Ontology (MP) with 23,700 synonyms, 1400

quality terms from PATO with 2,200 synonyms, species terms

from the Linnaeus tool [45] and 5,400 anatomy terms from the

Brenda Tissue Ontology [46] with 9,600 synonyms. This is

exemplified in Figure 2.

N We evaluate several alternative approaches for hypothesis

selection in the merge module by comparing our previous

priority list approach to a Maximum Entropy model with

beam search (ME+BS) and a Support Vector Machine with

learn to rank (SVM+LTR). The full experimental system is

illustrated in Figure 3 highlighting the modules where we make

our contribution.

N We incorporated four new entity types in our evaluation.

We base our results on the previous study’s 122 abstract corpus

in order to show a comparison against our earlier methods using

phenotype entities.

Materials and Methods

Concept analysis
Given the complexity of phenotypes, one important factor we

see for achieving automated annotation accuracy is to avoid

conceptual inconsistencies in the coding scheme. In this respect

principles from formal ontology might be beneficial [47] such as

rigorous definition of markable classes as well as semantic linkage

to extant standards within the biomedical community. The de facto

quality assurance standard in NER has been to empirically

validate annotation schemes through Cohen’s kappa coefficient (k)

score (e.g. see [48] for a broad discussion). Properly applied this

can provide valuable evidence about expert intuition. However if

the corpus is not balanced across entity classes then any inferences

drawn from agreement on the whole coding scheme becomes

weakened. Since it is in practice often difficult to create balanced

corpora for NER, if k is applied in this way, any changes to

systems that improve agreement with the unbalanced corpus may

actually move models further away from part of their actual goal

which should be to maximise agreement across all classes. Whilst

we do not neglect the fact that k is an important tool for schema

development, we also note that empirical studies have pointed to

the benefits of formal conceptual analysis techniques such as

OntoClean [49]. This is based on an understanding that a failure

to clearly define the entities is at least partly responsible for

inconsistencies in annotating mentions leading to modeling error.

Here we base our named entities on a formal analysis of

biological concepts related to disease by Scheuermann et al. [50]

and Beisswanger’s BioTop [47]. The entity types we annotate are

given in abbreviated upper case form, i.e. GG, CD, AN, PH, DS

and OR which we now define.

Figure 2. Example tagging of phenotypes along with features
from external vocabularies and ontologies.
doi:10.1371/journal.pone.0072965.g002
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Definition: A a gene/gene product (abbreviated as
GG) entity is a mention of one of the three major
macromolecules DNA, RNA or protein.

Examples include: [cryoglobulins], [anticariolipin antibodies],

[AFM044xg3], [chromosome 17q], [CC16 protein].

Definition: A chemical or drug entity (abbreviated as
CD) entity is a mention of a chemical part or family
other than genes and gene products (DNA, RNA and
protein).

Kim et al. [51] indicate in the GENIA encoding manual that

chemical entities contain element chemicals and compound

chemicals, where the later can be either organic or inorganic.

Here we apply a granular cut off to organic chemicals, considering

that proteins and nucleic acid compounds are a separate entity

class called GG. Small biomolecules are included within the scope

of CD.

Following Corbett et al. [52] and the CALBC challenge

guidelines [53] we include chemical compounds, molecular

formulas, IUPAC nomenclature and drug names within scope.

Examples include: [Panadol], [antibiotic], [calcium], [3-ethyl-2-

methylhexane] and [C6H12O6].

Definition: An anatomy entity (abbreviated as AN) is a
mention of an anatomical structure or other physical
component within or on the surface of the human or
mouse body, including organs, cells, portions of bodily
substances such as blood, body fluids, tissues and their
combinations.

The definition here follows on from that in Scheuermann et al.

[50] except that (a) we apply a granular cut off at the level of cell

(but include cell internal structures such as nucleus). Units smaller

than a cell may be included in either CD (chemical or drug) or GG

(gene/gene product), and (b) we apply AN only to the morphology

of human and mouse organisms.

Examples include: [endothelial cells], [liver], [nervous system],

[HeLa cells], [left collar bone], [both kidneys].

Definition: A phenotype entity (abbreviated as PH) is a
textual mention that describes an observable and
measurable characteristic of an organism. Phenotype
entities can be further broken down into an affected
entity and a describing quality for that entity.

Examples include: [differences in the levels of the protein],

[airway inflammation], [absent ankle reflexes].

Our definition of phenotype require two caveats (a) in contrast

to Khordad et al. [42] we did not apply a granular cut off at the

level of cell, and (b) because of the diversity of phenotypes across

organisms we took a decision to focus our definition of this entity

on mouse as a model organism and human as the most important

species. Following the discussion of phenotypes as processes in

physiology [3] we include some mentions of processes within the

scope of our annotation schema.

Definition: A disease entity (abbreviated as DS) is a
mention of a disposition to undergo pathological
processes in an organism because of one or more
disorders in that organism.

Examples include: [Felty’s syndrome], [rheumatoid arthritis],

[heterozygous C2 deficiency], [Paget’s disease], [inherited skeletal

dysplasia].

Definition: An organism entity (abbreviated as OR) is
mention of a type of living biological system which
functions as a stable whole.

This definition is adapted from Beisswanger et al.’s [47] concept

for living organism (BioTop ID LivingOrganism). In common with

both BioTop and the GENIA ontology [54] we include both

multi-cellular and mono-cellular organisms within this definition.

For simplicity we also include viruses within this definition.

Figure 3. The stages of our experimental phenotype candidate system.
doi:10.1371/journal.pone.0072965.g003
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Our definition of an organism entity encompasses both

mentions of names of species as well as individuals of those

species. Individuals can be named or in some cases described.

Examples include: [Hepatitis type B virus], [food sanitation

inspectors], [cholera cases], [hypergammaglobulinaemic patients],

[45-year-old male], [asthmatics].

We should not however ignore the important lexical and

syntactic considerations about how to annotate mentions in text.

Within the annotation guidelines we developed we further describe

whether specific, generic, underspecified and negatively quantified

mentions qualify. This is summarised in Table 1. We follow [55] in

differentiating between (a) specific mentions with specific reference to

objects or group of objects, (b) generic mentions which refer to the

kind of entity, (c) underspecified mentions which have non-generic non-

specific reference, e.g. everyone, and (d) negative mentions which refer

to the empty set of the kind of entity.

Data preparation
The Phenominer A corpus (available as Data S1 or on request

from the first author) contains 122 abstracts selected from

Medline. 19 auto-immune diseases were selected from OMIM

and from these records citations were then chosen. Citations were

only selected for the corpus if they contained the auto-immune

disease term and at least one term from either OMIM’s clinical

synopsis field, the HPO [56] or the MP [57]. This strategy is

designed to ensure that the abstracts have some association to

phenotypes or anatomical entities in addition to the disease itself.

Table 2 shows the 19 diseases and the corresponding affected

organism. Descriptive statistics are shown in Table 3. Despite

being small, the number of annotated entities is consistent with

several previous specialised studies, e.g. [18,42,58].

Corpus annotation was carried out by a single experienced

annotator who had previously worked on the GENIA corpus and

the BioNLP shared task corpus. The annotator is not one of the

authors and is independent from the experiments. Tool support

was provided by the BRAT annotation tool (http://brat.nlplab.

org). Entities were annotated using the commonly used Begin In

Out annotation scheme, so for example between airway responsiveness

would be annotated with the sequence O B-PH I-PH where ‘O’

denotes a word outside an entity, ‘B’ a word at the beginning of an

entity, and ‘I’ as a word inside an entity.

Experimental system
Our experiments were divided into two stages. In the first stage

we wanted to find the optimal combination of external resources

for the range of entity types described above. The hypothesis

resolution approach used in these experiments was the same as our

previous method in [30], i.e. a priority list. After this we froze the

Table 1. Referential semantics and scoping of mentions by entity type.

specific generic underspecified modifiers conjunctions processes negation

reference reference reference disjunction

GG Yes Yes No No Yes1 No No

DS Yes Yes No No4 Yes1 No No

CD Yes Yes No No Yes1 No No

OR Yes2 Yes No No Yes1 No No

AN Yes Yes No Yes3 Yes1 No No

PH Yes Yes No Yes3,7 Yes1 Yes5 Yes6

Notes on annotation:
1Where there is elision of the head, e.g. [IA/H5 virus], then annotate the whole expression. Otherwise annotate each expression separately, e.g. [IA virus] and [H5 virus].
2Markable expressions include specific people, e.g. [Jane] as well as definite noun phrases such as, the [24-year-old man].
3Quantitive modifers are included, e.g. [both kidneys] as well as spatial modifiers, e.g. [left collar bone].
4When modifiers are considered to be part of the disease name they are included, e.g. [highly pathogenic avian influenza], [end-stage renal disease].
5We exclude however finite verb forms, infinite verb forms with to’, verbs in a progressive or perfect aspect, verb phrases, clauses or sentences and any phrase with a
relative clause or complement clause.
6If the negation appears in a noun phrase with an anatomical entity then we generally allow it, e.g. [absent ankle reflexes], [no left kidney].
7Qualitative modifiers are included. For example, physical components: [black hair], underspecified ranges: [normal height], locational modifers: [low set ears], and level
modifiers: [quite small fingers].
doi:10.1371/journal.pone.0072965.t001

Table 2. Auto-immune diseases from OMIM represented in
the Phenominer A corpus.

Disease Organism

Auto immune thyroid disease human

Auto immune skin diseases human

Immune mediated diseases human

Immuno-mediated gastrointestinal diseases human

Celiac’s disease/Caliac disease human

Grave’s disease/Grave disease human

Hashimoto’s disease/Hashimoto disease human

Crohn’s disease/Crohn disease human

Addison’s disease/Addison disease human

Type 1 diabetes human

Rhematoid arthritis human

Multiple sclerosis human

Systemic lupus erythematosus human

Asthma human

Familial psoriasis human

Auto immune encephalomyeliti mouse

Inflammatory arthritis mouse

Histamine sensitization mouse

Mouse lupus mouse

doi:10.1371/journal.pone.0072965.t002
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external resource features and proceeded to compare hypothesis

resolution strategies. Three approaches were evaluated.

Figure 3 shows the complete system. The pre-processing stage

collects the abstracts from the source provider (PubMed), splits the

text into sentences and tokenises using the OpenNLP library with

a Maximum Entropy model. This is then followed by abbreviation

expansion using BioText [59]. Abbreviations are replaced using

their full forms if they are given in the abstracts.

Three distinctive classification modules are applied within the

NER system. The first of these Rule matching’ follows a similar

approach to Khordad’s use of MetaMap (UMLS) with staged rules

for post-processing [42] and a modifier list derived from HPO (85

terms) and PATO. We also added the Gene dictionary from NCBI

to this module in line with our original experimental system. The

second module is Dictionary matching’. This uses a longest string

matching approach to identify term candidates for each entity

class in the relevant ontology. For example, FMA and the Brenda

tissue ontology for AN entities, Jochem for CD entities, PATO/

MP/HPO for PH entities and so on. A precise list of the resources

and term counts is given in the Introduction. Finally the third

module is a Maximum Entropy with Beam Search (ME+BS)

supervised sequence labeler using multiple linguistic features

associated with the training corpus. Features include the focus

word, surrounding context words, part of speech labels. Addition-

ally we added semantics tags from a ME+BS model trained on the

JNLPBA corpus [38] and Linnaeus [45]. The JNLPBA corpus

contains 2000 Medline abstracts selected by a search using terms

human, blood cell, transcription factor and then hand annotated for 5

NE classes including RNA, DNA and protein which we merge to

form our GG class.
Experiment 1: Rule-based hypothesis resolution with

multiple ontologies. Based on our best performing approach

from [30] we applied a hybrid method to entity recognition across

the six classes. For the variable component we wanted to test the

influence of each standard ontology and so used ablation to knock

out’ each resource in turn, thereby measuring its contribution to

the accuracy for each class.

A Maximum Entropy model with Beam search (ME+BS) [60]

was selected as the machine learning method using the Java-based

OpenNLP toolkit (http://opennlp.apache.org/) with default

parameters. At this stage we treat NER assignment of tags as a

sequence labeling problem. This is implemented through a sliding

window of features around the target word being classified and by

optimisation of the sequence of tag assignments during the

decoding phase, i.e. through the beam search algorithm.

The Resolution module for deciding the final class of the entity

based on competing hypotheses used a ranked priority list of hand

built rules as described in our previous experiments. In summary

this gives priority to labels in the following order:

DSwPHwGGwCDwANwOR. This judgment was based on

introspective analysis of terms, e.g. that phenotypes usually contain

an anatomy or a gene component (pannus formation, elevated serum

levels of cartilage oliomeric matrix protein), and that genes sometimes

contain a organism name (mouse H19 gene, mouse ABcg2/Breast cancer

resistance protein (BCRP) gene). However organism names never

contain a gene name and anatomy names.

In contrast to straightforward supervised learning our system

combines the traditional machine learning based approach to

NER, with its advantage of context sensitivity and compensation

for lexical variation, with other approaches that bootstrap extant

domain vocabularies. For example, the Mammalian Phenotype

Ontology contains the term skull anomaly, congenital but in the text

this may appear as the more general mention congenital anomalies. A

number of string matching algorithms have been adapted for

identifying synonyms and related terms such as [25] whilst others

have tried to normalise external resources to a standard format

[61]. As we might expect, performance has been found to vary

considerably across resources and entity types. Here we use a

simple longest string matching strategy between the text and the

term in the external resource but normalising for plurals. As noted

previously, hypothesis resolution is conducted sentence by

sentence using a staged set of rules, given here from [30]:

1. We combine the putative entity labels by collecting any entity-

specific result that has been proposed by at least one module.

This is intended to maximise recall. The O tag (non-entity

label) has the least priority.

2. Based on our ontological analysis of PH and GG it is often

possible for a GG to form a fully embedded part of a PH

mention. For example, [high [IgE]GG levels]PH. We therefore

apply a longest span rule and give priority to PH over GG

giving [high IgE levels]PH.

3. If there is a boundary conflict, we merge neighbouring entity

mentions that share parts of their token sequence. For example,

if we have [AB]GG and [BC]PH then we merge them into one

phrase [ABC] and label it with the highest priority tag, i.e. PH.

Although this appears rare in GG and PH we included this rule

for expandability when we want to introduce further entity

classes.

The testing framework was 10-fold cross validation using the

Phenominer A corpus described in Data Preparation, i.e. the

corpus is partitioned in 10 rounds so that 9 equal parts are used for

training the models and the remaining 1 equal part of unseen data

is used for testing. Results are collected from each of the 10 testing

partitions and the accuracy is calculated against the reference

standard.

Our primary purpose in these experiments is to focus on the

contribution made for phenotype candidate recognition but at the

same time to take into consideration the effects that resources have

on the recognition performance of other entity types.

Experiment 2: Alternative hypothesis resolution stra-

tegies. The baseline method we chose used the priority list

approach used in Experiment 1. This is shown as a flow diagram

in Figure 4. We have outputs from 7 labelers: Rule matching, PH

dictionary matching, DS dictionary matching, CD dictionary

matching, AN dictionary matching and GG dictionary matching

and a ME+BS tagger. Outputs from these labelers were screened

using an Unambiguous/Ambiguous case detection module. Where

we detected a labeling conflict, i.e. an ambiguous case, we used the

priority list approach to resolve this and chose only one output,

otherwise, the agreed output was considered as the final output.

Table 3. Descriptive statistics for entities in the Phenominer
A corpus.

Entity # Entities # Unique Entities Average length of entity

PH 472 393 3.0

OR 764 402 1.8

DS 875 270 1.9

GG 1611 885 1.7

AN 188 132 2.2

CD 48 31 1.4

doi:10.1371/journal.pone.0072965.t003
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Figure 5 illustrates a possible scenario for an unambiguous and

an ambiguous case. Labelers 1 to 5 represent the different modules

providing alternative hypotheses. In the unambiguous case two

label sequences are proposed as PH for X Y and GG for W Z but

there is no conflict and the final labelling will be B-BF I-BF O B-

GG I-GG under the BIO scheme. In the ambiguous case there are

multiple alternative hypotheses suggested for the first token A with

the labelers suggesting PH, GG, O and AN.

Whilst our priority list approach seemed to perform adequately

we wanted to investigate other hypothesis resolution strategies

based on machine learning using the 10-fold validation framework

we employed in Experiment 1.

Maximum entropy model with beam search. The first

alternative that we explored was a Maximum Entropy Model

[60,62] with beam search (ME+BS) as shown in Figure 6. The

maximum entropy estimate is the least biased estimate possible on

the given information, i.e. it is maximally noncommittal with

regard to missing information.

The original Maximum Entropy model for named entity

labeling used the Viterbi algorithm for decoding, a dynamic

programming technique. Instead of Viterbi we used beam search

decoding. Beam search is a variant of breadth first search using a

parameter k to decrease the search space (in our model, we set

k = 3). The advantage of using beam search is that it allows the

tractable use of maximum entropy for each labeling decision but

forgoes the ability to find the optimal label sequence using

dynamic programming techniques. The computational complexity

of beam search decoding is O(kT) compare to O(NT ) for Viterbi

decoding (in which, T is the number of words, N is the number of

labels). To implement ME+BS, we used the Java-based OpenNLP

toolkit (http://opennlp.apache.org/) with default parameters.

The outputs from the machine learning (ME+BS) labeler, rule

based labeler and dictionary based labelers were used as features

to train the ME+BS resolution model, then, we used this model to

choose the final output. Note that in contrast to the other two

hypothesis resolution methods, this approach did not apply

Figure 4. Hypothesis resolution using a priority list.
doi:10.1371/journal.pone.0072965.g004

Figure 5. Handling ambiguous versus unambiguous cases.
doi:10.1371/journal.pone.0072965.g005

Figure 6. Hypothesis resolution using maximum entropy with
beam search (MS+BS).
doi:10.1371/journal.pone.0072965.g006
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screening for unambiguous or ambiguous cases since it resolved

the conflict with the sequence labeling technique. The features we

employed are shown in Table 4.

Support vector machine with learn-to-rank. With an

appropriate scoring function it is possible to consider the choice of

alternative named entity labels from the various modules and

dictionaries as a ranking problem. This means that each source is

scored against certain criteria and the scores are then compared

with the highest one being chosen. We implemented this using the

SVMrank software from Thorsten Joachims at Cornell University

(http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html).

The experimental system is shown in Figure 7. Essentially

processing proceeds token by token through the sentence. When

an ambiguous token is discovered - one in which there is more

than one alternative label being proposed by the labelers - SVMrank

is used to decide on the named entity tag.

In the first stage we applied the same screening technique as the

priority list approach for unambiguous/ambiguous case detection.

Unambiguous cases are considered as the final output labels with

no further processing. For ambiguous cases, three rules were used

to create the ranked lists. Through the feature extraction module,

these ranked lists were used to trained an SVM learn-to-rank

model. Then we used this model to choose the final output if

conflict appeared in the test set.

In training ranking was decided by the following three heuristic

rules:

1. Candidates having the same label with the training annotation

receive the highest rank. Among these, candidates matching

closer to the left hand side of the annotated sequence have a

higher rank than candidates which match further to the right

since we process the sequence in a left to right order.

2. Candidates having a partial overlap in tag assignment with the

training annotation receive the second rank. Among these,

candidates matching closer to the left hand side of the sequence

have a higher rank than candidates which match further to the

right. Again this is because we process the sequence in a left to

right order.

3. Candidates that have no overlap in tag assignment with the

training annotation receive the lowest rank.

SVMrank is trained using these heuristics and compared against

the ME+BS and priority list methods.

Matching metrics
We follow standard metrics of evaluation for the task using F1,

i.e. the harmonic mean of recall and precision. This is calculated

as follows:

F1~
2|Precision|Recall

PrecisionzRecall
ð1Þ

where precision indicates the percentage of system positives that

are true instances, and recall indicates the percentage of true

instances that the system has retrieved. More formally this is

shown by the following two equations and Table 5.

Precision~
TP

TPzFP
ð2Þ

Recall~
TP

TPzFN
ð3Þ

Different applications require a different approach to defining a

true positive. In these experiments we consider a correct match to

be recorded when a partial matching occurs, i.e. when the span of

text that is manually annotated in the gold standard corpus and

the span of text output as an entity by the NER tagger partially

overlap. For example a system annotation of [median cleft lip]/palate

would be judged correct for a gold standard annotation of median

[cleft lip/palate]. Various authors in the biomedical NER domain

such as [63] have offered a reason for why this or other methods

such as sloppy left boundary matching might be preferred to strict

matching for genes and proteins. In summary it is thought that

with partial matching, for the entity types examined so far, the

core part of the entity was in most cases correctly found. In

contrast, strict matching places too much faith on possibly

arbitrary annotation choices as well as corpus selection, meaning

that system performance might not be repeated on new texts

outside the narrow domain of the gold standard. However whilst

our focus is on partial matching we have included results for exact

matching for comparison purposes.

Significance tests
Based on [64,65], we compared performance across different

systems using an approximate randomization approach for testing

significance. In order to calculate significance for two different

systems (system A and system B) on the Phenominer corpus (with i

sentences), we performed the following steps:

N (1) Compute micro-average F-scores using 10 fold cross

validation from each system and note the difference in

performance f = fA2fB;

N (2) Generate set S (with 2|i sentences) by taking the outputs

from the 10 fold validations on the two systems;

N (3) Obtain i sentences randomly from set S to create set Aj , the

remainder of S is set Bj (Aj is used for system A and Bj is used

for system B);

N (4) Calculate fj = fAj
2fBj

(in which, fAj
and fBj

are micro-

average F-scores using 10 fold cross validation for set Aj and Bj

respectively).

Table 4. Features used by the Maximum Entropy model for
hypothesis resolution.

No. Feature Example

1 Current word wi

2 Context words wi{2,wi{1,wiz1,wiz2

3 ME+BS labels mli : B{GG,mli{1 : B{PH,mliz1 : I{PH,mliz2 : O

4 Rule matching
labels

rulei : B{PH,rulei{1 : I{PH,ruleiz1 : O

5 PH dictionary
labels

dm1
i : B{PH,dm1

i{1 : I{PH,dm1
iz1 : O

6 DS dictionary
labels

dm2
i : B{DS,dm2

i{1 : I{DS,dm2
iz1 : O

7 CD dictionary
labels

dm3
i : B{CD,dm3

i{1 : I{CD,dm3
iz1 : O

8 AN dictionary
labels

dm4
i : O,dm4

i{1 : B{AN,dm4
iz1 : O

9 GG dictionary
labels

dm5
i : B{GG,dm5

i{1 : I{GG,dm5
iz1 : O

doi:10.1371/journal.pone.0072965.t004
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Steps 2–4 were repeated n times (we set n = 1000 as in [64]).

The number of times that fj2f ƒ0 in n loops divided by n is the p-

value between system A and system B.

Results and Discussion

Results
Resources contribution. Table 6 shows the contribution by

each external resource by comparing F-scores for each NE class

when it is removed from the system. As noted above, a partial

matching metric was used. For comparison we include the same

evaluation using exact matching in Table 7. Performance for PH is

notably lower using exact matching, indicating the challenge

caused by their high variability and length (see Table 3). The last

row is the result when applying all resources; the hypothesis

Figure 7. Hypothesis resolution using support vector machine and learn to rank (SVM+LTR).
doi:10.1371/journal.pone.0072965.g007

Table 5. Defining the test metrics.

Gold standard class

True False

System True TP FP

(Type 1 error)

class False FN TN

(Type 2 error)

doi:10.1371/journal.pone.0072965.t005
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resolution module used the priority list method. All external

resources help to increase the F1, but the contribution varies among

them. Some resources help to increase the result greatly whereas

others just bring minor improvements; some resources seem to be

important for only one NE class but others affect many entities.

Using the ME+BS model trained on the JNLPBA corpus brings

much better results for GG (85.2% compared to 71.0%) whereas

using Gene Dictionary from NCBI helped GG to gain from 82.7%

to 85.2%. Both the HPO as well as the MP help PH to increase

from 61.8% and 54.4% to 74.9% respectively. The use of PATO

allows the PH score to increase only slightly (from 74.7% to

74.9%). Linnaeus seems to play an important role in recognizing

OR; when removing Linnaeus, OR’s result is down significantly

from 75.4% to 49.9%. Similarly, removing the FMA results in a

drop in performance for AN from 77.1% to 59.0%, but removing

the Brenda Tissue Ontology just makes AN’s result drop slightly to

76.0%. Jochem’s dictionary focuses on CD, resulting in a very

large increase of 38.8% (from 41.6% to 80.4%). Using UMLS and

MetaMap helps increase results for both PH (from 68.3% to

74.9%) and DS (from 61.4% to 74.3%).

Using the approximate randomization approach we calculated

significance scores for these results. These are shown in Figure 8

and highlight resource contributions with the rows and columns

showing which resource was not used in the system (e.g. J means

the system did not use JNLPBA trained ME+BS model feature, AR

means all resources are used). The corresponding cell shows

entities which have a significance test value for difference in

performance between two systems with p, = 0.05. For example,

the cell in row AR and column H marked with PH, means there

was a significant test value for PH for difference in performance

when a system without HPO (H) was compared to a system with

All Resources (AR) with p, = 0.05. Hyphen (-) stands for No

significant difference’, meaning that there is no entity which has

significant test value with p, = 0.05. The significance scores

highlight the contribution of UMLS to three NE classes (BG,GG

and DS), the MP to phenotype candidates (PH) and GG, as well as

the ineffectiveness of PATO for our corpus.

Resolution methods. In the resolution module we used

three separate method for resolving conflict: a rule-based method

(priority list), Maximum Entropy with beam search decoding and

SVM learn-to-rank. The results are shown on Table 8. Maximum

Entropy has the worst results with F-score of 74.9. F-score for the

Priority list approach is 79.2% and SVM learn-to-rank has the

best result with 79.9%. SVM learn-to-rank shows its advantage

compared to the Priority List approach across almost all entity

classes, included PH, GG, CD and AN with the exception of OR

and DS. Table 9 shows the significance test results for the

resolution module.

Because the difference between results of SVM learn-to-rank

and Priority List is quite small (0.7%), we try to investigate the

results in more detail in the Discussion section below to get an

understanding behind the complex contributing factors.

In order to obtain and understanding about how the model

performed on unique mentions, i.e. those that did not appear in

the training set, we provide a side by side comparison in Table 10.

The table shows a relatively large fall in performance for

phenotypes from 75.3% to 62.8%. The drop in performance for

each class appears proportional to the rate of unique entities.

Discussion
Our first impression was that the use of all resources had

contributed to increasing the results. Examples of mentions in the

corpus where we noticed a gain in recall with each of the resources

are given in Table 11.

The greatest contributions we observed came from Jochem’s

dictionary for CD (+38.8%) and Linnaeus for OR (+25.5%). We

interpret this result as reasonable because of the referential

semantics and scoping of our entity mentions as well as the

completeness of these resources: OR contains many generic

references which are very hard to recognize for the machine

learning labeler or the rule-based labeler (such as [family], [case],

[cohort], etc.), Linnaeus helped to resolve these cases; Jochem’s

dictionary is a very large and comprehensive resource which

combines information from UMLS, MeSH, ChEBI, DrugBank,

KEGG, HMDB, and ChemIDplus.

Both HPO and MP affect PH’s results in a positive way.

However although the two resources both look at phenotypes,

what they contribute is quite different because of their structures.

Table 6. Performance of named entity recognition using using partial matching for ME+BS in machine learning labeler and priority
list in resolution module.

External resources Named entity classes

J U H M G L F P C B PH OR AN GG CD DS ALL

2 + + + + + + + + + 73.7 75.6 76.2 71.0 78.9 74.2 68.8

+ 2 + + + + + + + + 68.3 72.1 76.8 83.2 78.7 61.4 73.1

+ + 2 + + + + + + + 61.8 74.0 77.1 84.8 80.4 73.6 73.7

+ + + 2 + + + + + + 54.4 75.2 75.6 85.0 80.4 73.2 72.1

+ + + + 2 + + + + + 74.6 75.4 77.1 82.7 80.4 74.3 78.9

+ + + + + 2 + + + + 73.2 49.9 76.7 85.2 79.3 73.8 77.4

+ + + + + + 2 + + + 74.9 75.4 59.0 85.2 80.4 74.3 77.1

+ + + + + + + 2 + + 74.7 75.4 77.1 85.2 80.4 74.3 79.1

+ + + + + + + + 2 + 74.9 75.4 77.1 85.2 41.6 74.3 75.2

+ + + + + + + + + 2 74.9 75.4 76.0 85.2 80.4 74.3 79.1

+ + + + + + + + + + 74.9 75.4 77.1 85.2 80.4 74.3 79.2

Each horizontal row shows a combination of features and the associated F-scores for each class on test data. ALL shows micro-averaged F-score. Key to external
resources: J: JNLPBA model, U: UMLS and MetaMap, H: Human Phenotype Ontology, M: Mammalian Phenotype Ontology, G: Gene Dictionary from NCBI, L: Linnaeus, F:
Foundation Model of Anatomy, P: Phenotypic Trait Ontology, C: Jochem’s dictionary, B: Brenda Tissue Ontology.
doi:10.1371/journal.pone.0072965.t006

Learning to Recognize Phenotype Candidates

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e72965



Note that we estimated the overlap between HPO and MP using

approximate string matching giving an estimate for overlap of

about 481 root terms, or 4.9% of the HPO root terms and 5.5% of

the MP root terms. The phenotype mentions in our corpus appear

to be more similar to MP than HPO (MP increase PH’s results by

+20.5% while HP increased PH’s results by +13.1%). It is worth

noting that some PH mentions are not recognisable directly in

either resource although with transformation and the application

of semantic functions such as generality matching this should

improve. For example, serum total immunoglobin as a PH would

match to the MP entry abnormal serum level of immunoglobin/increased

serum level of immunoglobin G. To avoid an unacceptable increase in

false negatives this requires deeper semantic analysis than we have

provided here, to decompose the term into entity and quality

parts. We will focus more on this in future work.

Table 7. Performance of named entity recognition using exact matching for ME+BS in machine learning labeler and priority list in
resolution module.

External resources Named entity classes

J U H M G L F P C B PH OR AN GG CD DS ALL

2 + + + + + + + + + 36.0 61.3 58.0 48.5 71.3 55.3 50.1

+ 2 + + + + + + + + 35.3 60.4 58.0 57.1 71.2 49.4 52.2

+ + 2 + + + + + + + 33.5 58.2 58.0 56.4 71.3 54.3 53.0

+ + + 2 + + + + + + 30.0 57.4 57.4 58.7 71.3 53.7 52.7

+ + + + 2 + + + + + 36.0 61.3 58.0 58.2 71.3 55.3 54.4

+ + + + + 2 + + + + 35.4 35.6 57.6 59.2 70.8 55.0 53.2

+ + + + + + 2 + + + 36.3 61.3 39.2 59.2 71.3 55.3 54.5

+ + + + + + + 2 + + 35.5 61.3 58.0 59.2 71.3 55.3 55.4

+ + + + + + + + 2 + 36.3 61.3 58.0 59.2 38.4 55.3 55.3

+ + + + + + + + + 2 36.3 61.3 56.9 59.2 71.3 55.3 55.3

+ + + + + + + + + + 36.3 61.3 58.0 59.2 71.3 55.3 55.4

Each horizontal row shows a combination of features and the associated F-scores for each class on test data. ALL shows micro-averaged F-score. Key to external
resources: J: JNLPBA model, U: UMLS and MetaMap, H: Human Phenotype Ontology, M: Mammalian Phenotype Ontology, G: Gene Dictionary from NCBI, L: Linnaeus, F:
Foundation Model of Anatomy, P: Phenotypic Trait Ontology, C: Jochem’s dictionary, B: Brenda Tissue Ontology.
doi:10.1371/journal.pone.0072965.t007

Figure 8. Statistical significance tests for differences in performance using approximate randomization on resources contributions.
The entries in cells indicate that the two systems are significantly different in F-scores. AR: All resources, J: JNLPBA model, U: UMLS and MetaMap,
H:Human Phenotype Ontology, M: Mammalian Phenotype Ontology, G: Gene Dictionary from NCBI, L: Linnaeus, F: Foundation Model of Anatomy, P:
Phenotypic Trait Ontology, C: Jochem’s dictionary, B: Brenda Tissue Ontology, -: No significant difference. Significance is decided at p, = 0.05.
doi:10.1371/journal.pone.0072965.g008
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With regard to anatomical entities it is clear that the FMA has

greater coverage on the Phenominer A corpus than the Brenda

Tissue Ontology which focuses on tissue. This results in the FMA

gaining AN +18.1% whereas using the Brenda Tissue Ontology

only gave +1.1%. For genes and proteins, using a sequence labeler

trained on the JNLPBA corpus resulted in GG’s result increasing

by +14.2% but using the NCBI Gene Dictionary only gave an

increase of +2.5%.

Table 8. Performance of named entity recognition using Priority List (PL), ME plus beam search (ME+BS)and SVM learn-to-rank
(SVM+LTR).

PL ME+BS SVM+LTR

NE class P R F P R F P R F

PH 73.7 76.1 74.9 73.3 68.2 70.7 74.3 76.4 75.3

GG 87.0 83.5 85.2 84.7 84.0 84.4 86.8 85.0 85.9

OR 72.8 78.1 75.4 62.1 65.9 63.9 70.2 77.2 73.5

CD 79.6 81.3 80.4 74.2 71.6 72.9 80.5 81.4 80.9

AN 72.4 82.5 77.1 69.4 71.6 70.5 75.6 80.1 77.8

DS 75.8 72.9 74.3 71.9 70.4 71.1 73.2 71.6 72.4

ALL - - 79.2 - - 74.9 - - 79.9

Each horizontal row shows Precision, Recall and F-score performance for a class using alternative methods. ALL shows micro-averaged F-score.
doi:10.1371/journal.pone.0072965.t008

Table 9. Statistical significance tests for differences in
performance using approximate randomization on Resolution
methods.

Priority list ME+BS

SVM LRT GG, OR PH, GG, OR, AN, DS

Priority list PH, GG, OR, AN, DS

The entries in cells indicate that the two systems are significantly different in F-
scores. CD has no significant difference for all tests. Significance is decided at
p, = 0.05.
doi:10.1371/journal.pone.0072965.t009

Table 10. Performance of named entity recognition using
SVM learn-to-rank (SVM+LTR) for all entities in the cross-
validation test and unique entities only.

All mentions Unique only Unique

NE class P R F P R F Rate

PH 74.3 76.4 75.3 65.4 60.3 62.3 26.2

GG 86.8 85.0 85.9 80.2 79.4 79.8 14.6

OR 70.2 77.2 73.5 67.3 69.3 68.3 22.9

CD 80.5 81.4 80.9 74.3 71.0 72.6 41.3

AN 75.6 80.1 77.8 71.3 72.6 72.0 19.2

DS 73.2 71.6 72.4 70.1 69.2 69.7 12.3

ALL - - 79.9 - - 73.2 -

Each horizontal row shows Precision, Recall and F-score performance for a class
using alternative methods. Unique Rate shows the percentage of unique entity
mentions seen in the cross-validation test for each class. ALL shows micro-
averaged F-score.
doi:10.1371/journal.pone.0072965.t010

Table 11. Examples of mentions in the corpus where we
noticed a gain in recall with each of the resources.

No. Resource Entity example
Named entity
class

1 JNLPBA ME+BS [human gammaglobulin] PH

corpus [eukaryotic elongation factor 1A-1] PH

[high-affinity human mAb] PH

2 UMLS & [disorder of the Steroidogenic Acute PH

MetaMap Regulatory Protein]

[Dermatitis Herpetiformis] DS

[uveitis] DS

3 HPO [immunoglobulin abnormality] PH

[asthma phenotype] PH

[autoimmunity] PH

4 MP [oxidative stress pathway] PH

[intestinal inflammation] PH

[insulitis] PH

5 Gene [CEACAM6] GG

dictionary [COL29A1] GG

[Slc30A8] GG

6 Linnaeus [adenoviruses] OR

[murine] OR

[adherent-invasive E. coli] OR

7 FMA Ontology [lung] AN

[multiple organ systems] AN

[central nervous system] AN

8 PATO [high IgE levels] PH

9 Jochem [S Jnitrosoglutathione] CD

dictionary [histamine] CD

[dapsone] CD

10 Brenda Tissue [ileal mucosa] AN

ontology

Named entity class is the correct results.
doi:10.1371/journal.pone.0072965.t011
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Finally, the UMLS and MetaMap have been shown to be

effective cross-class resources, using them increased results for both

PH by +6.6% and DS by +12.9%.

In Table 12, we show several examples of errors by the Priority

List and SVM learn-to-rank. Examples 1 and 2 show where the

Priority List disagreed with the gold standard annotation about a

mistaken disease mention but SVM learn-to-rank agreed. In exam-

ple 3, the Priority List is correct but SVM learn-to-rank is incorrect.

The Priority List method appears in a minority of cases to be

too strict where there is ambiguity in making a choice. These

include systematic ambiguities between DS and PH, OR and DS,

PH and OR, etc. For example, the Priority List gives a higher

priority to DS over PH. This rule is correct in the case of diseases

included in the HPO (e.g. [asthma]DS, [allergy]DS) but it is incorrect if

entities have the form: phenotype of disease’ (e.g. [addison disease

only (ADO) phenotype]PH, [asthma-related phenotypes]PH, [pathogenesis of

early-onset persistent asthma]PH). Similarly, the rule giving DS priority

over OR is correct if a disease appears in human or mouse ([human

autoimmune disease]DS) but incorrect if a particular individual has a

disease (e.g. [lupus patients]OR, [non-obese diabetic (NOD) mouse]OR). For

these ambiguities, SVM learn-to-rank shows its advantage, as it is

more flexible than the Priority List and can choose the final label

based on many factors.

However, in many cases the Priority List is still a strong choice

of resolution method. For example, based on our ontological

analysis of PH and GG it is often possible for a GG to form a fully

embedded part of a PH mention. Non-conforming examples seem

to be very rare. Thus, the rule that PH takes priority over GG may

bring correct results in the majority of cases while SVM learn-to-

rank’s flexibility is unneeded.

Finally, it is important to mention that our resolution module

only affects the final output if ambiguity is detected. Rows 4–6 in

Table 12 show examples of where both the Priority List and SVM

learn-to-rank disagreed with the Phenominer A annotation.

Because there isn’t any labeler output conflict, the incorrect final

results come from the incorrect results of input modules.

Conclusions

In this article we have presented a systematic study of how to

combine sequence labels from various ontological resources and

methods in an attempt to address the task of phenotype candidate

recognition. The study is the first we believe to evaluate such a rich

set of features for the complex class of phenotypes. Our system

achieved the best micro-averaged F-score for the six entity classes

of 79.93 with 75.31 for phenotype candidates in the auto-immune

domain. We observed the advantage of using SVM learn-to-rank

for hypothesis resolution and using all resources. We conclude that

selected semantic types such as chemicals and genes are well

covered by single semantic resources whereas phenotype candi-

dates require combinations. In this respect key roles were observed

for the Mammalian Phenotype Ontology, the Human Phenotype

Ontology and the UMLS.

Our approach has coped well with the compositional structure of

phenotype representations. We note though that so far we have used

these ontologies as terminology resources and there will undoubtedly

be potential to exploit the structures within their hierarchies in ways

that can extend performance further. Beyond this, the next step is to

take the phenotype candidates and decompose them according to

domain concepts, i.e. to ground them. This will allow free text

articles to be linked through community vocabularies, streamlining

phenotype vocabulary and enabling the systematic investigation

of disease-gene relationships through textual data integration.
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Table 12. Errors by resolution module using Priority List (PL) and SVM learn-to-rank (SVM LTR).

No. Entity CA ML RB DB Merge module

PH GG DS CD AN PL LTR

1 [susceptibilities to PH PH - - - DSa - - DS PH

autoimmune disease]

2 [asthma and PH PH - PHb - DSc - - DS PH

atopy phenotypes]

3 [IgE levels] PH GG - PHd - - - - PH GG

4 [Toll-like receptor/ PH GG - - GGe - - - GG GG

IL-1R pathways]

5 [MyD88-deficiency] PH GG - - - - - - GG GG

6 [allergen-induced PH DS - - - - - - DS DS

bronchial

inflammation]

CA: Corpus annotation. Key to labeler: ML: Machine Learning labeler, RB: Rule-based labeler, DB: Dictionary-based labeler. PL: Priority list, LTR: SVM- Learn to rank. The
resources which the dictionary-based labelers used to recognize the entity are as follows:
aUMLS C0004364,
bHP 0002099,
cUMLS C0004096,
dMP 0002492 and HP 0003212,
eNCBI Gene dictionary.
doi:10.1371/journal.pone.0072965.t012
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