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Abstract

Vaccination is a preventive measure against influenza that does not require placing restrictions on social activities. However,
since the stockpile of vaccine that can be prepared before the arrival of an emerging pandemic strain is generally quite
limited, one has to select priority target groups to which the first stockpile is distributed. In this paper, we study a
simulation-based priority target selection method with the goal of enhancing the collective immunity of the whole
population. To model the region in which the disease spreads, we consider an urban area composed of suburbs and central
areas connected by a single commuter train line. Human activity is modelled following an agent-based approach. The
degree to which collective immunity is enhanced is judged by the attack rate in unvaccinated people. The simulation results
show that if students and office workers are given exclusive priority in the first three months, the attack rate can be reduced
from 30% in the baseline case down to 1–2%. In contrast, random vaccination only slightly reduces the attack rate. It should
be noted that giving preference to active social groups does not mean sacrificing those at high risk, which corresponds to
the elderly in our simulation model. Compared with the random administration of vaccine to all social groups, this design
successfully reduces the attack rate across all age groups.
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Introduction

New influenza strains continuously appear via mutations and/

or reassortment. Once a new strain acquires stable human-human

transmissibility, a pandemic can easily arise since few people will

have immunity against that strain. Recently, we experienced the

2009 pandemic. Fortunately, the 2009 flu was low-pathogenic

strain, and its social impact was similar to that of seasonal

influenza [1], although the symptoms were more severe in young

children [2]. However, there is a highly pathogenic strain of avian

flu A (subtype H5N1), and sporadic cases of human infection with

this strain began to be reported in the late 1990s [3]. If this strain

were to acquire stable human-human transmissibility, the resulting

pandemic would have dire consequences.

Pioneering studies of the application of agent-based simulation

to influenza prevention were performed for Southeast Asia [4,5]

and the US and UK [6]. This research studied the feasibility of

containment, that is, preventing the spread from one small

population to another within a targeted region/country, as a

function of the global reproduction number. We here mention

similarity and difference between our model and the ones that

were used in these studies. In Ferguson et al., a household for each

individual, a single group to which each individual belonged, and

the community to which the individual belonged were included in

the calculation of the force of infection (FOI). The contribution

from the community was modelled by a gravity model, and the

corresponding FOI term decreased with the distance from

infectious individuals. Instead of the effect of the community,

Longini et al. allowed individuals to belong to multiple groups. In

our simulation model, the concept of belonging to a group was

implemented by the individuals’ daily schedule, and the disease

was transmitted inside these temporary groups. This approach

requires the time step of the simulation to be small (1 minute in

our simulation compared to 6 hours in Ferguson et al. and

24 hours in Longini et al.). We took this computationally

expensive approach in order to incorporate the effect of

individuals moving around the target city via trains.

The present study uses large-scale multi-agent simulations to

evaluate the effectiveness of vaccinations in suppressing an

influenza epidemic in an urban area. During epidemics inside a

city, trains (or other public transport systems) play an important

role in the increase in the number of infected people. Trains not

only transport people to their workplaces or schools, but also

gather them in high-density groups. One impractical approach for

suppressing the spread of epidemics is to suspend train services

and/or implement furloughs to prevent the concentration of

people in places where transmission would be high. However,

since these measures are obviously unacceptable due to decreased

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e72866



quality of life and economic impacts, other measures are desired

that can be applied without halting the activity of the city. The

administration of vaccines to enhance the collective immunity is

one means of suppressing the spread of influenza. Since we cannot

assume a long period of time from the discovery of the strain to its

arrival in any particular region (e.g., the 2009 pandemic strain

arrived in Japan two weeks after discovery) and since border

quarantine inspections cannot fully detect infected people [7], the

administration of vaccine to the residents of the region will be

simultaneous with the spread of the influenza. We were interested

in determining if the degree of collective immunity could be

enhanced if vaccines were distributed preferentially to some

selected groups rather than equally to all individuals. To

investigate this, we carried out simulations in which different

groups received priority for vaccination.

Method

Modelling of human activity
We employed a multi-agent simulation approach to describe

groups of people who are able to contact each other. Individuals

move around different kinds of places in an urban area according

to a role-dependent schedule. The disease (influenza) is stochas-

tically transmitted in these local groups, which are formed as a

consequence of the actions of individuals.

Our simulator contains several towns in an urban area that are

connected by a commuter train line, along which influenza can

spread. Each town consists of several types of places and residents.

The places include workplaces, schools, homes, and public places,

such as shops and parks. Residents are classified into employees,

students, and domiciliaries, where domiciliaries referes to individ-

uals who spend the majority of their day in their home (e.g. stay-at-

home caretakers, some elderly persons). The members of the first

two classes have a specific place where they visit every day and

relatively many opportunities to contact with other people. The

members of the third class (domiciliaries) spend most of the day in

their households and have fewer contacts. The types of places and

residents are related by the schedules followed by individuals. For

example, if an individual has the role of ‘‘employee,’’ then their

schedule requires that they go toward a particular ‘‘workplace’’ at

a randomly selected time each morning (for the other elements in

schedules, see Section S1.4 of File S1). As a consequence of the

evaluation of these schedules for the residents, temporary groups

are formed, such as ‘‘workplace,’’ ‘‘schools,’’ and so on. It is

assumed at any moment that the disease is transmitted only inside

such groups.

In this study, the model was constructed to render a simplified

Tokyo metropolitan area. The urban area has five towns

connected by a commuter train line. A schematic illustration of

the model city and the simulation is shown in Fig. 1. For the

numbers of residents and schools in towns A–E (Table 1), we used

data for the year 2005 as published by the Tokyo metropolitan

government [8]. However, the numbers of workplaces are

arbitrarily given so as to be concentrated at the central areas

(towns D and E) and their scale (the number of employees) is

assumed to follow a Pareto law (Fig. S3 in File S1). The bottom

three panels of Fig. 1 show how epidemic spread over workplaces.

It takes a fortnight or longer for most of workplaces to encounter

Figure 1. Schematic illustration of the simulator and the model city. Individual activities are explicitly described and infectious transmissions
are stochastically evaluated at local places according to the number density of infectious visitors. The bottom three panels show how influenza
spreads over many workplaces in a typical baseline simulation run, where the other places are blank due to a small number of patients there.
doi:10.1371/journal.pone.0072866.g001
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infectious persons (middle panel) and an epidemic peaks at around

the 75-th day (right panel; here a Pareto low distribution of

workplaces can be seen). We shall do two different scales of

simulations. In full-scale simulations, the numbers of places and

residents are the same as Table 1 (the number of agents is

1,246,732; see Fig. S2 in File S1 for age-specific population of each

role). In the scaled-down simulations, these numbers are reduced

by a factor of one-tenth, namely, the number of agents is 124,673.

Modelling of Transmission and Vaccine
In our simulation, the health state and the progression of the

disease are described in a manner similar to the traditional

Susceptible-Exposed-Infectious-Recovered (SEIR) model [9] ex-

cept that here the disease is stochastically transmitted in local

groups. The health status of any individual is described by one of

four states: s (susceptible), e (exposed; infected but not yet

infectious), i (infected; infected and infectious), and r (removed;

either recovered or dead).

For the stochastic transition of an individual in state s to state e,

the probability per unit time of the transition is proportional to the

density of individuals in state i in the same place and the

transmission efficiency assigned to that place. The transmission

efficiencies of the various types of places are shown in terms of the

basic reproduction number in Table 2. Further transitions of each

individual’s health status to state i and state r are made with

constant probabilities. The inverses of these probabilities are the

mean latent and infectious periods and are assigned typical values

[10] of 3.5 days and 3 days, respectively.

The effect of the vaccine is controlled by two parameters: m,

which indicates whether a vaccine enhances the immunity of a

dosed person, and n, the degree to which their immunity is

enhanced. If a vaccine is given, the immunity of the target person

is enhanced with probability m, and the degree of immunity is

enhanced and the symptoms relaxed by a factor of n. Suppose that

P is the probability that an unvaccinated susceptible person

transitions into an exposed state. If the person is vaccinated and

the vaccine is effective, then the probability is reduced to nP and

the average latent period c is shortened to nc. The parameter n
takes a value between 0 (perfect protection) to 1 (useless vaccine).

For further details of the implementation, see Section S1.2 of File

S1 (Fig. S1 in File S1).

In general, it is not known in which place, households or

workplaces/schools, there is a higher likelihood of transmission.

We thus considered three representative cases while keeping the

resultant global attack rate (AR) around 30%: (A) household

dominant, (B) workplace/school dominant, and (C) all three places

being equal. In order to inform relative importance, we show the

number of transmission in each kind of places in Table 3. Previous

studies [4,5,11,12] devoted to agent-based influenza simulations

assigned 33% to the AR; this was derived from a retrospective

analysis of the 1957–1958 pandemic. It would be useful to

compare the value we used for the transmissibility with the values

used in previous works. Because we used a different transmission

model, however, we need to first examine the corresponding

model parameters. Let us consider a situation in which a person

remains stationary and receives N visitors, I of whom are

infectious. In these studies, the transmission process is governed by

two parameters, the transmission probability x per contact and the

number c of persons with whom a person has contact on a given

day. The probability P with which the person transfers to the

exposed state is given by

P~cx
I

N

� �
:

In our model, the counterpart of P is given by

P~cRt
I

N

� �
,

where R is the site-specific transmission efficiency in terms of the

reproduction number and t is the time spent visiting that location.

Table 1. Places and Population in the model city.

town school workplace park population shop

A 70 100 2 571,641 100

B 20 100 2 176,866 100

C 12 100 2 138,684 100

D 29 2000 2 314,861 100

E 8 2000 2 44,680 100

doi:10.1371/journal.pone.0072866.t001

Table 2. Transmission efficiencies of each place type in terms
of basic reproduction number.

place train school workplace household park shop AR

case A 1.5 2.0 2.0 2.0 1.0 0.6 0.30

case B 1.0 2.5 2.5 2.0 1.0 0.6 0.29

case C 1.0 2.0 2.0 4.0 1.0 0.6 0.28

doi:10.1371/journal.pone.0072866.t002

Table 3. Number of transmissions in each place type in
baseline simulations.

place train school workplace household park shop

case A 13498 2558 12623 10537 85 413

case B 8736 2816 15330 10052 51 395

case C 7777 2145 10597 12663 93 363

doi:10.1371/journal.pone.0072866.t003

Table 4. Comparison of our transmission efficiencies with
those of Cooley et al. [12].

place train 1 train 2 workplace household

P (this paper) 0.1667 0.3333 0.3333

R 3 2 2

t 2 hr 12 hr 12 hr

P (Cooley et al.) 1.9481 0.0324 0.2116 0.3688

x 0.0575 0.0048 0.0575 0.4

c 33.88 6.75 3.68 0.922

Cooley et al. assigned different values of c and x to commuter passengers (train
1) and noncommuter ones (train 2). The value of x assigned to adult-adult
contact in households is used here, while different values were assigned to
adult-children and child-child contacts in the original work.
doi:10.1371/journal.pone.0072866.t004
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Comparing the two forms for P, we obtain the formula cx~cRt
to relate the parameters of previous studies with ours. Table 4

compares the transmission efficiencies of case A in Table 2 with

those of Cooley et al. [12], which studied the importance of

transmission in subways in New York City. Our values for

transmission in workplaces and households are comparable to the

estimations of Cooley et al.; their values for commuter and

noncommuter passengers differ greatly, and it is difficult to say

anything beyond that our value is between these two.

In a crowded train, one passenger may approach very close to

another, and there is then a higher probability than usual that the

disease will be transmitted. In order to incorporate this effect, we

allowed the transmission efficiency on trains to increase with the

mean person-person distance, which is calculated from the

number of passengers. Based on studies of epidemics [13] and

aerosol dynamics [14,15], droplet transmission is very effective at

distances of up to 1 meter, but may still be possible up to a

distance of 3 meters [16]. Based on this, we employed a

transmission efficiency function that has a cutoff at 3 meters.

The reproduction number in trains thus takes the value of 1.0 at

this cutoff and increases up to 1.93, as shown in Table 2 (see File

S1, Section S1.3 for further details).

Baseline epidemic simulation
As a baseline for the later evaluation of vaccination programs,

we calculated the pattern in which influenza spread in the model

urban area when there was no intervention (See Table S1 in File

S1 for a complete list of parameters to configure simulation). This

area was an abstraction of the towns along a commuter rail in the

Tokyo metropolitan area. We assumed the initial number of

infected people was 600 to ensure an outbreak would arise, that is,

we did not consider cases in which the introduced strains became

extinct. Figure 2 shows the spread pattern for a typical simulation

run of case A. The epidemic peak occurs on approximately the 75-

th day (left panel). We modelled that office workers and students

remained at home on nights and weekends. This effect was

reflected in the small daily but large weekly oscillations in the

number of patients. The proportion of residents who are

eventually infected is called the illness attack rate (AR). The

cumulative number of infected people, shown in the middle panel,

indicates that the AR is *30% in the baseline simulation.

Calibration of vaccine strength
Prepared vaccines vary greatly in effectiveness depending on the

target virus. Here, we calibrate the effect of the vaccine in

simulations to reproduce an efficacy value estimated by retrospec-

tive studies for real seasonal influenza [17,18,19]. The efficacy is

defined in terms of the ARs of the vaccinated and unvaccinated

groups [20],

Efficacy~1{
AR in vaccinated population (ARV)

AR in unvaccinated population (ARU)
:

In real investigations, the ARV and ARU are calculated for

different populations that satisfy the definitions, whereas in the

simulations these can be calculated from two simulation runs, with

vaccination and without vaccination, respectively, for a chosen

small population that does not affect the collective immunity of the

entire city (we set this to be 0.4% of the city residents).

Table 5 shows the efficacy calculated in this manner for

different settings of vaccination strength. In this table, nn{m

denotes the value of n for people aged n to m years. In this

experiment, the age-based values mn{m of the probability m were

chosen to be m0{5~0:6, m5{65~0:8, and m65{~0:5. Based on

studies [17,18,19] that state that the efficacy is approximately 60%

in adults, we set n0{5~0:4, n5{65~0:2, and n65{~0:4.

Figure 2. Baseline (without vaccination) simulation run. Variation of the numbers of residents in states e is shown for cases A, B and C of
transmissiblity.
doi:10.1371/journal.pone.0072866.g002

Table 5. Values of vaccination strength and resultant
efficacies.

n1–5 n5–65 n65– efficacy illUnc illVac

0.2 0.1 0.2 0.7264 0.5338 0.1460

0.4 0.2 0.4 0.6073 0.5338 0.2096

0.8 0.4 0.8 0.4533 0.5338 0.2918

0.9 0.5 0.9 0.3844 0.5338 0.3286

Attack rates in the unvaccinated and the vaccinated populations are denoted
by illUnc and illVac, respectively.
doi:10.1371/journal.pone.0072866.t005
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Results

We studied the performance of vaccination programs for the

enhancement of collective immunity. Each program was defined

by the target group and the coverage of the population of the

urban area. The performance of each program was evaluated by

the reduction in the AR of the unvaccinated population. For target

groups, we considered arbitrarily chosen residents (Arb), employ-

ees (Emp), students (Stu), the combined group of students and

employees (StuEmp), domiciliaries (Dom), train passengers (Tr),

and the subset of StuEmp who use trains to get to their offices or

schools (TrStuEmp). For each target, we carried out simulation

runs in which 16%, 32%, and 48% of the chosen group were

vaccinated. We assumed that vaccines could be distributed to 48%

of the residents in three months; we also considered half and twice

this reference rate. In all three cases, we assumed for simplicity

that the vaccine stockpile was uniformly distributed. This reference

speed was chosen according to the 2009 vaccination schedule in

Japan [21]. In this schedule, domestic production covers 45% of

the Japanese population in six months, from October to March.

The priority groups included pregnant women, individuals with

diseases, children, and elderly persons. The rest of the population

was covered by the remainder of the domestic vaccine, and

supplemented by imported vaccine. We note here the discrepancy

between the plan mentioned above and the estimation [22] of the

actual number of vaccines. Looking at Table 6, we see that the

planned rate and the actual rate are similar until the middle of

December, after which the actual rate is less than the planned rate.

According to reports of a learned discussion [23], 2009 flu may

influence people hesitate to be vaccinated and so there was an

oversupply after January.

Figure 3 shows the AR in the unvaccinated population as a

function of the number of vaccinated people. In the top panels, the

denominator of the AR is the unvaccinated population (hereinafter

Table 6. Schedule of domestic vaccine supply for Japan in the 2009/2010 season and estimation of actual consumed courses.

Month 2009–10 11 12 2010–01 2 3 Total

Period I II I II I II III I II I II I II

Plan(6104) - 118 134 364 452 572 515 459 659 649 557 349 560 5,388

Actual(6104) - 158 303 142 418 627 227 162 170 - - - - 2,207

doi:10.1371/journal.pone.0072866.t006

Figure 3. Dependence of the illness attack rate (AR) on the target selection. The abscissa denotes the proportion of vaccinated people and
the ordinate denotes the AR in the unvaccinated population (left panel) or of all residents (right panel). For each target, the coverage is chosen to be
16%, 32%, or 48% in terms of whole the residents, and the speed of administration of vaccine is chosen so that 16% of the residents are distributed in
30 days.
doi:10.1371/journal.pone.0072866.g003
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this rate is called the unvaccinated AR), and the denominator in

the bottom panels is the population of the entire city (hereinafter

this rate is called the total AR). For each different vaccination

program, we carried out eight runs, each with a different random

initial distribution of infected individuals. Administration of the

vaccine to employees was the most effective way to reduce the AR,

followed by vaccinating students and domiciliaries. This is

reasonable since office works are the most active residents.

Targeting office workers was advantageous for all the different

cases of transmission efficiencies, including case C, which assumed

that households have higher transmission rates than do workplac-

es. If office workers, corresponding to 32% of the entire

population, are vaccinated, the total AR is reduced to 2%.

Observing the number of infected individuals over time, we find

that transmissions are suppressed and become sporadic. When

other groups are targeted instead, there is some reduction in

transmission but not to this extent.

Vaccination of domiciliaries produced a very limited effect. The

total AR was almost the same as that of the baseline. Note that the

unvaccinated AR was larger than the baseline AR, and it even

increased with increased vaccine coverage due to changes in the

denominator. As the number of vaccinated domiciliaries increases,

the proportion of office workers in the unvaccinated group

increases. This increases the unvaccinated AR.

Targeting students had a slightly better effect, but it did not

bring benefits to unvaccinated individuals. When students making

up 16% of the city residents were vaccinated, the total AR was

reduced to 20–25%, depending on the efficiency of transmission.

The transmission rate in the different types of location provides

Figure 4. Number of transmissions in each place type in simulations with vaccination.
doi:10.1371/journal.pone.0072866.g004

Table 7. Age-based AR for each vaccination target in case A.

Target Age 0–5 Age 5–65 Age 65–

coverage 16%

Arbitrary 0.205 (0.014) 0.240 (0.018) 0.076 (0.006)

Domiciliary 0.301 (0.007) 0.347 (0.006) 0.106 (0.005)

Student 0.142 (0.008) 0.276 (0.007) 0.083 (0.004)

Employee 0.100 (0.037) 0.086 (0.031) 0.029 (0.011)

coverage 32%

Arbitrary 0.103 (0.037) 0.118 (0.043) 0.036 (0.015)

Domiciliary 0.295 (0.014) 0.340 (0.006) 0.094 (0.003)

Student 0.124 (0.007) 0.268 (0.008) 0.080 (0.003)

Employee 0.029 (0.015) 0.020 (0.009) 0.007 (0.003)

coverage 48%

Arbitrary 0.079 (0.032) 0.087 (0.035) 0.025 (0.010)

Domiciliary 0.290 (0.008) 0.335 (0.004) 0.089 (0.003)

Student 0.146 (0.011) 0.282 (0.012) 0.085 (0.006)

Employee 0.038 (0.013) 0.028 (0.010) 0.009 (0.003)

*All data are given as average and standard deviation (in paren.) of 64
simulation runs.
doi:10.1371/journal.pone.0072866.t007
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information about the extent of benefit to unvaccinated individ-

uals, as shown in Fig. 4. Vaccinating students somewhat reduced

transmissions in schools, comparable to the effect in offices when

office workers were targeted. The number of transmissions in

other locations, however, remained near the baseline level.

Vaccinating arbitrarily chosen people provided an intermediate

effect. Unlike with students, the AR can be further reduced by

extending the coverage. Targeting random train passengers for

vaccination was slightly better than a fully random program. This

is because the proportion of office workers is larger in the train

passenger group than in city as a whole.

Prioritizing active members, as suggested by the simulation

results, is contrary to conventional approaches, which prioritize

high-risk individuals (e.g., the elderly and people with disease)

followed by medical practitioners. One may wonder if prioritizing

office workers would disadvantage high-risk individuals, but as we

show in Table 7, prioritizing active members results in a smaller

attack rate of the elderly than does random vaccination.

We have shown the results of vaccinating a single group. We

demonstrated that, with the same distribution speed (96% of

residents are covered in 180 days), targeting offices workers for

vaccination resulted in the greatest reduction in the AR, followed

Figure 5. The dependence of e on the onset of vaccination. To show the effect of the selection of initial patients and the stochasticity of
transmission, 64 runs (8 different choices of initial patients and 8 different random seeds) are carried out in each case. The administration covers all
residents in 180 days and vaccinations are carried out in the order of TrStuEmp, the rest of StuEmp, and finally Dom.
doi:10.1371/journal.pone.0072866.g005

Enhancement of Collective Immunity for Influenza
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by targeting students and then domiciliaries. Through this same

demonstration, we also evaluated the degree to which the

collective immunity would be degraded due to a delay in the

design or manufacture of a vaccine. Figure 5 shows the number of

patients over time for three different transmission efficiencies and

for the 0-th, 30-th, and 60-th day as the start date of the

administration of vaccine. Each panel corresponds to 64

simulation runs (8 different choices of initial patients and 8

different random seeds). The differences among the three cases is

small. A small epidemic occurred (AR is 0.3–0.4%) and about 90

days were needed for extinction of the transmission chains, even if

the administration of vaccine was begun at the start of the

simulation. If the initiation of vaccination was delayed, the scale of

the outbreak increased: AR was 1–2% and the extinction was

delayed until the 150-th day. This reduction of the AR to a small

value despite a delay indicates that vaccination is sufficient to

protect against low-pathogenic strains, whereas aggressive inter-

vention (e.g., school closure and traffic blockades) should be

combined with vaccination against highly pathogenic strains, since

vaccination alone will not lead to early extinction.

Discussion

We have showed that the AR can be reduced to *5% or less if

students and employees are intensively vaccinated in the first 90

days. This is the result of an intervention program that relies solely

on vaccinations, and the AR can be further reduced by individual

protection efforts (e.g., wearing masks and avoiding crowded

places). If the encountered virus is not highly pathogenic, this value

is acceptable. In this case, the goal of intervention is to avoid an

excess of patients going to medical practitioners. However, early

extinction of transmission chains is required in highly pathogenic

cases, and vaccination alone is not sufficient. To achieve early

extinction by using only the collective immunity induced by

vaccinations, administration of the vaccine would need to be

carried out at least three times as fast as the typical speed.

It would be worthwhile to interpret our simulation results along

with the situation of the 2009 pandemic (2009pdm) in Japan.

Inaida et al. [24] studied the 2009 pandemic geographically and

temporally in four metropolitan areas of Japan, analysing time

courses obtained from about 5,000 sentinel observation points.

The 2009pdm spread similarly in four metropolitan areas and the

growth of the number of patients is relatively rapid compared to

the surrounding rural areas. However, a correlation between the

AR and the rate of large families was recognized in Tokyo and

Nagoya, but not in Osaka and Fukuoka. Different transmission

models of households for central and suburb areas may need to be

introduced into the simulation, since such large families mainly

exist in suburban areas.

Our simulations indicate that a two-month delay in vaccination

retains an effect on the enhancement of collective immunity to a

certain extent. Retracing the timeline of the 2009pdm, we know

that this delay is allowable. The analysis of Inadia et al. [24]

showed that 2009pdm spread sporadically in Japan during its early

stages. The pandemic virus landed during the end of April to the

middle of May. The number of reported cases per sentinel site

exceeded unity, which is used as a working definition of the onset

of an epidemic, in the beginning of August and exhibited further

slow growth for more than 6 weeks. The distribution of vaccines

began in October. Therefore, the delay of vaccine distribution

from the onset of the epidemic was around one month.

Nonetheless, the sporadic transmission was perhaps due to the

onset in summer, which is unlike seasonal influenza.

The vaccination plan [21] in 2009/2010 season gave a higher

priority to certain groups including pregnant women, individuals

with underlying diseases, children, and elderly persons. The rest of

the population was intended to be covered by the remainder of the

domestic vaccine, and supplemented by imported vaccine. The

estimated numbers of courses distributed to respective groups [22]

in November and December indicate that the distribution of

vaccines in the early stage was actually focused on the elderly and

high-risk persons as had been planned. In November, the number

of distributed courses was 920,000 to people with underlying

disease, 1,335,000 to people without underlying diseases and

1,011,000 to the age group above 65, respectively. In December,

these numbers were 1,468,000, 3,956,000 and 2,224,000, respec-

tively, where distribution to small children (#8 years) contributed

to a large number of people without underlying disease receiving

the vaccine in December. The distribution to the age group of 9–

65 is almost the same in these two months (73 and 82.6 thousands,

respectively). From this document, we also know that the planned

rate and the actual rate are similar until the middle of December,

after which the actual rate is less than the planned rate. According

to reports of a learned discussion [23], 2009 flu may have

influenced people to avoid vaccination, resulting in an oversupply

after January.

Supporting Information

File S1 Enhancement of collective immunity by selec-
tive vaccination against an emerging influenza pandem-
ic. Contains Figure S1, Figure S2, Figure S3, and Table S1.

Figure S1. Pseudo code of a single step of the simulation.
All information on the simulated urban area is contained in the

structure instance city, which is located in shared memory.

Iterations and branches are in a Fortran-like code, but the

structure name and its field are split by a dot. Simulations are

carried out in parallel based on OpenMP, and iterations marked

by !OMP DO are adequately split by the compiler and carried out

in parallel. Calculation of the transition probability places

{key = v}.pr is implemented to conform to the diagram of Eq.

(2). Figure S2. Age-specific distribution of the population
of Tokyo in 2005. We sampled from this distribution to obtain

the ages of individuals, and their roles were assigned according to

their ages. The proportions of roles in the simulation are

represented by different colors (blue: students, red: employees,

and yellow: domiciliaries). Figure S3. Distribution of corpo-
ration sizes. The rank in the corporation size versus the number

of employees. Table S1. List of parameters configuring
simulation.

(PDF)
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