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Abstract

Background: Cell specific states of the chromatin are programmed during mammalian development. Dynamic DNA
methylation across the developing embryo guides a program of repression, switching off genes in most cell types. Thus, the
majority of the tissue specific differentially methylated sites (TS-DMS) must be un-methylated CpGs.

Methodology and Principal Findings: Comparison of expanded Methyl Sensitive Cut Counting data (eMSCC) among four
tissues (liver, testes, brain and kidney) from three C57BL/6J mice, identified 138,052 differentially methylated sites of which
23,270 contain CpGs un-methylated in only one tissue (TS-DMS). Most of these CpGs were located in intergenic regions,
outside of promoters, CpG islands or their shores, and up to 20% of them overlapped reported active enhancers. Indeed,
tissue-specific enhancers were up to 30 fold enriched in TS-DMS. Testis showed the highest number of TS-DMS, but
paradoxically their associated genes do not appear to be specific to the germ cell functions, but rather are involved in
organism development. In the other tissues the differentially methylated genes are associated with tissue-specific
physiological or anatomical functions. The identified sets of TS-DMS quantify epigenetic distances between tissues,
generated during development. We applied this concept to measure the extent of reprogramming in the liver of mice
exposed to in utero or early postnatal nutritional stress. Different protocols of food restriction reprogrammed the liver
methylome in different but reproducible ways.

Conclusion and Significance: Thus, each identified set of differentially methylated sites constituted an epigenetic signature
that traced the developmental programing or the early nutritional reprogramming of each exposed mouse. We propose
that our approach has the potential to outline a number of disease-associated epigenetic states. The composition of
differentially methylated CpGs may vary with each situation, behaving as a composite variable, which can be used as a pre-
symptomatic marker for disease.
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Introduction

Animals develop from repeated division of a single cell (a

fertilized egg) as a result of precise spatio-temporal regulation of

gene expression. Combinatorial use of cis and trans DNA

regulatory elements permit commitment of cells to different

lineages. Once a differentiation path is chosen the trajectory of

gene expression is maintained through many cell generations. The

acquisition of this ‘‘cellular memory’’ is key for the assembly of the

different organized tissues, and is maintained largely by epigenetic

marks such as 5-methyl cytosine methylation [1–3]. During

development the genome is faithfully replicated millions of times

but the epi-genome varies with each cell type. Moreover, in

contrast to the genome, the epigenome is dynamic and sensitive to

the environment. Exposure to stress during critical stages of

development could cause subtle changes in the epigenome
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resulting in a small but time-cumulative effect on cellular

physiology [1,2,4–6]. Thus, small deviations in tissue-specific

methylation patterns could contribute to the developmental origins

of many adult diseases [7,8].

To understand the role of DNA methylation in the cell-type-

specification of the chromatin or in the onset of pathophysiological

mechanism, it is necessary to contrast the distribution of methyl-

marks across various tissues and different conditions. The ultimate

Figure 1. Identification of tissue differential methylated sites (T-DMS) led to the identification of tissue differentially methylated
regions (T-DMR). Averaged digestion frequencies were profiled for each tissue and depicted with the UCSC genome browser. The long RNA-seq
track generated by the transcriptome group at Cold Spring Harbor Laboratories and the Center for Genomic Regulation in Barcelona display the
density of mapped reads. Individual tissues were harvested from 8-month C57BL/6J mice. The UW ENCODE group generated the DNaseI
hypersensitivity track, the signal represent the density of reads mapped within a 150 bp sliding window. Tissues were harvested from mice of the
same strain and age as described above. A) region containing the entire Repin1 gene. B), C) and D) regions spanning the last exon of the Zfp467,
Zfp777 and Zfp618 genes respectively. E) scatter plot comparing digestion frequencies of liver replicates (upper panel) or different tissues (lower
panel). Data was collected for the ‘‘chr6: 48,537,207–48,558,557’’ interval. The solid lines represent the result of a linear regression; the dashed lines
defined the 95% interval of prediction. Data outside this interval could represent tissue differentially methylated CpGs. F) bisulfite sequencing analysis
confirmed the discovered tissue-specific differentially methylated region. Regions selected for this analysis are shown as black bars in the panels A, B
and C.
doi:10.1371/journal.pone.0072670.g001
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goal will be to identify tissue-specific regulatory loci controlled by

methylation. Most of the research done to address this problem

has focused on the function of promoters and their CpG islands

(CGIs), shaping the perception that the CGIs are the hotspots for

epigenetic regulation of tissue specific transcriptional activity [9]

[10–14]. However, technological advances in methylome analysis

have increasingly shown Tissue Specific Differentially Methylated

Regions (TS-DMR) as hypo-methylated loci existing outside

promoters and CGIs, [15–18]. We recently showed that most of

the hypo-methylated loci existing in the liver of an adult mouse are

located in introns or intergenic regions and do not meet commonly

accepted definitions of CGIs [15]. Indeed these CpG-poor un-

methylated loci showed the highest concentrations in DNA

regulatory sequences, many of which were liver specific [15].

We hypothesized that the epigenetic regulation of transcriptional

networks that specify tissues occurs primarily in CpG located

outside promoters.

Comparing the distribution of methylation sites in mouse gDNA

derived from liver, kidney, brain and testis we found 138,052

independent differentially methylated sites (DMS). One sixth of

them consisted of CpGs whose methylation levels were particularly

high or low in only one tissue, hence named tissue specific

differentially methylated sites (TS-DMS). Most of these are un-

methylated CpGs associated with tissue-specific expressed genes.

Functional profiles obtained from these genes suggest that relevant

aspects of tissue physiology would be epigenetically demarcated

during development. The distribution of methylation among a

minimal set of 23,270 CpG showed commonalities between

biological replicates and differences between tissues, suggesting

that these TS-DMS constitute unique epigenetic footprints created

during development. We detected further reprogramming of

methylation patterns drove by in utero and/or immediate postnatal

food restriction. We suggest that our approach can outline a

number of disease-associated epigenetic states. The composition of

DMS would be different for each situation representing highly

specific DNA methylation biomarker panels. Discovery of novel

epigenetic makers is an area of increasing interest in biomedical

research, however most of the newly discovered candidates have

been found by focusing on a small number of well-defined loci,

usually promoters and CGIs [19]. As these loci can be identified

either as methylated or un-methylated, they offer a limited

sensitivity or specificity for diagnosis, [20,21]. On the other hand,

a composite variable, such as the composition of CpGs in a set of

differentially methylated sites, can represent a larger number of

different situations covering wider applications.

Materials and Methods

Samples
Four tissues: brain (B), kidney (K), liver (L) and testis (T) were

obtained from each of three adult male C57Bl/6J mice. Fetal livers

were also derived from the same mouse strain. In addition, 16 liver

samples were used from three-week-old male ICR mice (Harlan,

Indianapolis, IN, USA) that were subjected to a study of

nutritional influences on diabetes and obesity risk [22,23]. This

study was carried out in strict accordance with the recommenda-

tions in the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health. Animal protocols ‘‘Proposal #
2009-0017 LN, DNA methylation in obesity and diabetes’’, were

approved by The National Institute of Environmental Health

Sciences Animal Care and Use Committee.

Genome-wide DNA methylation profiling using eMSCC
CpG tag libraries for eMSCC were prepared as described [15],

including the addition of equimolar amounts of un-methylated

lambda phage DNA (Promega, Cat.# D1521). All libraries were

sequenced by Expression Analysis (Durham, NC, USA) using an

Illumina Genome Analyzer IIx. Reads (30 to 50 million per

library) were aligned to the mouse reference genome (mm9) using

MOM [24].

Figure 2. Co-occurrence of differential tissue gene expression and differential tissue methylation at 39 terminal exons of a set of
Zfp genes. A, paired comparisons of the digestion frequencies (somatic tissues vs. testis) tabulated in Table 1 under the column header:
‘‘methylation in 39 exon’’. B and C, distribution of linear fold change (somatic tissues vs. testis) values for gene expression and methylation
respectively. Box plots represent the data tabulated under FCh columns in Table 1. D, paired comparison of gene expression (somatic tissues vs.
testis), the somatic tissue with the highest raw signal was chosen for comparison in each pair.
doi:10.1371/journal.pone.0072670.g002
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Table 1. A set of tissue differentially expressed Zfp genes with TS-DMS in their 39 terminal exon.

Methylation in 39 exon1
Gene expression: RNA-
seq2

Gene List 59 CGI?3 39 exon CGI? DMR in 39 exon B K L T FCh4 B K L T FCh5

Zfp92 no yes chrX:70,667,009–70,668,669 1.8 1.8 2.4 15.8 7.8 25 1 1 5 5

Zfp787 yes yes chr7:6,083,186–6,085,905 6.7 8.3 4.0 30.8 4.9 343 814 550 181 4.5

Zfp775 no yes chr6:48,569,295–48,571,527 3.1 2.0 1.7 36.6 16.2 140 168 62 56 3

Zfp768 yes yes chr7:134,486,685–134,488,364 2.6 7.4 5.3 27.1 5.3 313 1425 462 782 1.8

Zfp689 yes yes chr7:134,587,450–134,589,790 6.3 9.6 4.4 31.1 4.6 148 138 43 412 22.8

Zfp647 yes yes chr15:76,741,187–76,743,420 1.0 0.8 1.5 23.9 21.7 80 34 15 9 8.9

Zfp64 yes yes chr2:168,751,178–168,753,416 7.5 2.3 1.3 21.9 5.9 289 249 159 46 6.3

Zfp629 no yes chr7:134,754,156–134,757,445 2.1 2.9 0.6 36.0 19.1 235 275 131 200 1.4

Zfp536 yes yes chr7:38,264,240–38,266,631 4.1 4.0 2.7 21.1 5.9 397 3 2 28 14.2

Zfp467 yes yes chr6:48,387,913–48,389,959 14.8 12.0 7.0 30.1 2.7 251 605 235 27 22.4

Zfp398 yes yes chr6:47,816,064–47,817,270 0.6 0.4 0.2 6.3 6.3 300 315 87 146 2.2

Zfp358 yes yes chr8:3,494,937–3,497,650 1.5 1.3 1.4 29.2 20.9 901 1187 329 47 25.3

Zfp324 yes yes chr7:13,555,845–13,557,613 3.0 4.1 2.6 36.6 11.4 97 212 108 14 15.1

Zfp282 yes yes chr6:47,853,767–47,857,203 8.9 8.0 4.3 19.1 2.7 279 159 49 28 10.0

Zfp275 yes yes chrX:70,599,182–70,599,994 1.0 0.3 0.3 7.2 7.2 125 105 52 58 2.2

Zfp213 yes yes chr17:23,694,614–23,695,442 3.1 4.3 2.3 12.7 3.9 123 256 124 62 4.1

Zfpm2 yes no chr15:40,933,302–40,935,151 1.1 1.0 1.5 23.5 19.6 108 12 4 39 2.8

Zfp94 yes no chr7:25,087,544–25,089,206 1.4 0.9 1.0 24.2 22.0 97 31 15 44 2.2

Zfp809 yes no chr9:22,043,700–22,045,660 0.2 0.3 0.2 19.8 19.8 239 180 158 52 4.6

Zfp804a yes no chr2:82,099,024–82,099,872 2.9 12.4 3.2 24.2 3.9 181 1 1 1 181

Zfp791 no no chr8:87,633,541–87,638,183 1.6 1.6 1.3 14.8 10.1 470 526 544 307 1.8

Zfp780b no no chr7:28,746,705–28,746,943 6.3 7.1 5.2 26.0 4.2 52 15 16 6 8.7

Zfp764 yes no chr7:134,548,323–134,549,900 2.7 2.8 1.4 23.4 10.2 104 154 46 6 25.7

Zfp691 no no chr4:118,842,688–118,844,133 2.9 4.3 2.3 20.1 6.4 120 379 230 479 21.3

Zfp69 yes no chr4:120,602,876–120,604,472 1.5 2.1 0.8 34.9 23.6 28 14 3 17 1.6

Zfp672 yes no chr11:58,129,068–58,131,818 7.9 6.1 2.9 35.7 6.3 545 1083 424 711 1.5

Zfp668 yes no chr7:135,009,556–135,012,952 1.9 1.8 0.9 16.2 10.6 188 74 55 42 4.5

Zfp619 yes no chr7:46,790,771–46,795,803 0.3 0.4 0.4 18.8 18.8 43 21 9 5 8.6

Zfp612 yes no chr8:112,612,925–112,614,371 0.3 0.3 0.3 19.0 19.0 350 31 19 56 6.3

Zfp608 yes no chr18:55,057,322–55,060,683 4.2 7.2 3.8 19.4 3.8 101 86 19 273 22.7

Zfp42 no no chr8:44,380,959–44,381,843 0.8 1.6 2.4 17.2 10.9 3 1 2 80 226.7

Zfp341 yes no chr2:154,471,197–154,472,435 4.8 5.1 2.0 30.9 7.8 131 53 41 19 6.9

Zfp27 no no chr7:30,679,004–30,681,841 0.1 0.1 0.0 11.0 11.0 198 46 36 32 6.2

Zfp248 yes no chr6:118,388,618–118,389,661 0.4 0.3 0.4 16.2 16.2 12 2 1 2 6

Zfp239 no no chr6:117,820,865–117,823,017 3.3 4.7 8.2 24.6 4.6 675 76 2 109 6.2

Zfp180 yes no chr7:24,889,403–24,892,210 1.8 2.0 2.1 19.0 9.7 448 203 88 84 5.3

Zfp112 no no chr7:24,902,263–24,904,868 4.6 3.2 2.7 18.7 5.3 36 6 2 4 9

Zfp365 yes no chr10:67,350,323–67,351,704 4.8 3.9 3.5 36.3 8.9 3983 8 1 3 1327.7

Zfp809 yes no chr9:22,043,950–22,044,900 0.2 0.3 0.2 19.8 19.8 239 180 158 52 4.6

1) The level of methylation in the 39exon of each Zfp gene was calculated for each tissue by adding the averaged digestion frequencies of triplicates at each CpG
identified in the exon, and dividing by the number of identified CpGs in the exon. A digestion frequency around 26 is typically found in un-methylated CGI (Figure S2E
in Supporting Information S1), where df,10 are associated to methylated CGI.
2) The numbers represent the raw signal for the density of mapped reads (wiggle format) in the CSHL Long RNA-seq track in the UCSC genome browser (NCBI37/mm9
assembly).
3) All 59 CGI were found un-methylated in all the tissues for each Zfp gene listed in this table.
4) Fold changes calculated as the ratio between df at testes and the avg df of the three somatic tissues.
5) Fold change is calculated as the ratio of somatic tissue vs testes. The somatic tissue with the highest RNA-seq signal or ‘‘df’’ was chose in each case. Abbreviation: CGI
for CpG Island, df for digestion frequency, B for brain, K for kidney, L for liver and T for testes.
doi:10.1371/journal.pone.0072670.t001
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Identification of TS-DMS
This procedure has four main steps: 1) For each of 12 samples

(3 per tissue), we normalized the reads at each CpG by a factor

that is proportional to the total number of reads in the sample; 2)
We aligned all the reads in each sample to Takai-Jones CGIs (TJ-

CGIs) and generated the distribution of the average normalized

methyl-sensitive-counts (digestion frequencies) of TJ-CGIs. We

chose the value at the valley of the distribution as the cutoff to filter

out CpGs presumed heavily methylated in all four tissues; 3) For

each CpG that passed the filter in step 2, we performed all six

pairwise comparisons of the four tissues, i.e. B-K, B-L, B-T, K-L,

K-T, L-T; where B, K, T and L represent brain, kidney, testis and

liver respectively and B-K, B-L, etc., represent the pair wise

comparisons. For each CpG, the average and the standard

deviation of the reads were calculated using all samples. The

standardized residual for each sample was then calculated by

dividing the difference between the observed numbers of reads for

that sample and the corresponding average by the standard

deviation. We plotted the quantiles of the residuals against the

quantiles of standard normal distribution to see if it is reasonable

to assume that the data are approximately normally distributed; 4)
We applied the mdFDR method to identify DMSs based on the p

values of all six possible t-tests. The mdFDR procedure allowed us

to control the overall false discovery rate for all pairwise

comparisons as well as the directional errors when declaring more

or less methylated states [25]. In this manner, we identified the

preliminary DMS. We next removed the pairs of comparison with

average normalized read differences between two tissues that were

less than the cutoff value generated from step 2, to ensure that two

tissues had a different methylation state at that CpG. Last, for each

DMS we averaged reads of each tissue and identified the sites with

methylation levels significantly high or low in only one tissue.

These sites were called TS-DMS.

Identification of DMS associated with nutritional history
Previously, an experiment was reported in which pregnant mice

were subjected to undernutrition (U) during the last third of their

pregnancy and this feeding regimen was continued during

lactation generating the UU pups, alternative some mothers were

changed to a control diet (C) during lactation and generated the

UC pups. CC and CU protocols were also implemented to

generate the respective pups. All pups were euthanized and their

livers analyzed [23]. We used 16 liver samples derived from the

same experiment: CC (n = 4), CU (n = 5), UC (n = 2) and UU

(n = 5) to profile changes in methylation using the approach

described in previous section.

CpG distribution related to UCSC known genes
CpGs were classified according to their genomic location: 1)

TSS region (23 Kb to +2 Kb of the TSS); 2) gene body region; 3)

39 end region encompassing 3 Kb of DNA sequences downstream

of each transcriptional end; and 4) intergenic region. Coordinates

for the beginning and end of these regions were taken from the

mm9 building downloaded from the UCSC Genome Bioinfor-

matics browser (http://hgdownload.cse.ucsc.edu/goldenPath/

mm9/database/knownGene.txt.gz). The equally unmethylated

CpGs (497,547) were defined as the CpGs with the average

normalized df above the cutoff value of unmethylation in all four

tissues and excluding any overlapping with DMSs.

CpG distribution related to CGIs
CpGs were mapped to three regions relative to CGIs and their

2-kb flanking regions (shores), including inside CGI, in CGI

Figure 3. Summary of the findings of differential methylation
observed for the comparison of tissue. Of the 138,052 sites with
differentially methylated marks, called DMS, only 24,803 were also TS-
DMS, defined here as CpGs uniquely methylated or un-methylated in
one but not in the other tissues. The remaining 113,249 sites are just
DMS, meaning that methylation at these CpGs varies at a detectable
level among compared tissues.
doi:10.1371/journal.pone.0072670.g003

Figure 4. Distribution of TS-DMS relative to promoters, CGI,
CGI shores, experimentally determined un-methylated regions
(UMR) or shores of UMRs. A) Distribution of equally and tissue
differentially un-methylated CpGs relative to UCSC genes. B) Distribu-
tion of differentially un-methylated CpGs relative to CGIs and their 2-kb
shores. TJ-CGIs (Takai and Jones CpG islands), GGF-CGIs (Gardiner-
Garden and Frommer’s CpG islands), Epi-CGIs (epigenetically predicted
CpG islands), CGI clusters (CpG clusters), HMM CGI (Hidden Markov
Model predicted CpG islands).
doi:10.1371/journal.pone.0072670.g004
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shores, and outside of CGI and its 2 Kb shores. Five CGI

definitions were used for this analysis [26–30].

Measures of the association between TS-DMS and tissue-
specific expressed genes

We used the Gene Expression Barcode 2.0 browser to obtain a

list of genes expressed in brain, kidney, liver, and testis (http://

rafalab.jhsph.edu/barcode/index.php?page = tissuegene). The

original gene expression information in this database was extracted

from publicly available gene expression results of 9,652 samples

using the Mouse Genome 430 2.0 microarray [31]. In this set, a

gene is considered expressed in a specific tissue if it is expressed in

more than 95% of the samples of this tissue. We further extracted

tissue-specific expressed genes by collecting, those that are

expressed in only one of the four tissues. We considered a gene

to be tissue differentially methylated when it has at least one TS-

DMS within the region encompassing 63 Kb from its edges. To

standardize the different lists, all of them were converted to

DAVID identifiers using the Gene ID conversion tool in NIAID’s

DAVID Bioinformatics Resources 6.7 [26,27] website (http://

david.abcc.ncifcrf.gov/). Only genes with DAVID identifiers were

considered in this study. The odds ratio was calculated as the ratio

of the odds of tissue-specific un-methylation occurring in tissue-

specific expressed genes versus the odds of it occurring in non-

tissue-specific expressed genes. Four binary sets of data were

created to calculate the odds ratio (OR) in each tissue according to

the formula: OR = (a/c)/(b/d). Where ‘‘a’’ is the number of genes

tissue differentially methylated that were uniquely expressed in the

same tissue; ‘‘b’’ are genes not associated with TS-DMS but

uniquely expressed in the analyzed tissue; ‘‘c’’ is the number of

genes tissue-differentially-methylated but expressed in more than

one tissue; ‘‘d’’ is the number of genes not associated to TS-DMS

and expressed in more than one tissue. Both ORs and p-values

were calculated by using the logistic regression function in R

package with one degree of freedom.

Overlap between TS-DMS and published tissue-specific
cis-regulatory sequences

We downloaded a list of 32,266 mouse tissue-specific enhancers

in cortex, liver, kidney, and testis identified by H3K4me1 ChIP-

Seq study (http://chromosome.sdsc.edu/mouse/download.html)

[32]. We aligned our identified TS-DMSs and a total of 7 million

surveyed CpGs in the genome to the enhancers based on their

genomic locations. Enhancer was defined as being covered by our

eMSCC method if it has at least one TS-DMS. To quantify the

fold enrichment of TS-DMS in enhancers with respect to the

genome, we calculated the ratio between [number of TS-DMS

within enhancers/total number of TS-DMS] and [total number of

surveyed CpGs within enhancers/total number of surveyed CpGs

in the genome]. We estimated the significance of the enrichments

by simulation, which allowed us to assign p values based on the

distribution of the fold enrichments generated from simulation of

100,000 iterations. For each iteration we randomly generated a set

of genomic regions with the same number of enhancers and the

same size (bp) of each enhancer. In addition, we examined the

overlap of TS-DMS with 15,435 active enhancers, which were

defined by both H3K4me1 and H3K27ac marks.

Functional annotation of CpGs using NIAID’s DAVID
Bioinformatics Resources

We used the tool provided in NIAID’s DAVID Bioinformatics

Resources 6.7 [26,27] to analyze enrichments in five main

Table 2. Association of genes with TS-DMS and tissue specific gene expression in each tissue.

Tissue TS-DMS associated genes TS-expressed genes1 Overlaps Odds Ratio2 p-value3

Brain 1,035 1,080 160 3.18 7.42E-36

Kidney 940 434 52 2.55 7.41E-10

Liver 2,090 878 339 5.5 4.64E-118

Testis 2,700 2,393 438 1.31 1.97E-06

1) Taken from the Gene Expression Barcode 2.0 database (http//:rafalab.jhsph.edu/barcode/).
2) The ratio of the odds of tissue-specific un-methylation occurring in tissue-specific expressed genes.
3) p-values calculated using the logistic regression function in R package with one degree of freedom.
doi:10.1371/journal.pone.0072670.t002

Table 3. Overlap between TS-DMS and tissue-specific enhancers derived from ChIP-Seq H3K4me1 peaks (poised and active
enhancers).

Tissue TS-enhancers TS-DMSs Overlaps1 # CpG2 Fold Enrichmen3 P-value4

Cortex-Brain5 8,138 1,149 60; (5.2%) 64,512 5.63 ,1.0 E-5

kidney 5,976 1,115 147 (13.2%) 44,549 20.58 ,1.0 E-5

liver 8,701 2,933 792 (27.0%) 63,053 29.79 ,1.0 E-5

testis 9,451 8,865 3,314 (37.4 3,314 (37.4%) 164,862 15.77 ,1.0 E-5

1) Number of TS-DMS within TS-enhancer regions.
2) Number of surveyed CpGs within TS-enhancer regions.
3) The quotient of two ratios (TS-DMS within TS-enhancer regions/total number of TS-DMSs) and (total number of surveyed CpGs within TS-enhancer regions/total
number of surveyed CpGs in the genome).
4) p-value calculated according to the distribution of the fold enrichments generated from simulation of 100,000 iterations.
5) While these enhancers are derived from cortex the TS-DMS are derived from whole brain.
doi:10.1371/journal.pone.0072670.t003
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categories: biological process, cellular component, molecular

function, KEGG pathway, and tissue expression. We used the

Bonferroni-corrected P value of 0.05 as the threshold to identify

significantly enriched categories, which were sorted by -fold

enrichment over the background frequency in the human genome.

We focused on genes associated with CpGs uniquely unmethylated

in one of the four tissues, using gene names derived from the Gene

ID conversion tool within DAVID. A gene was defined as being

associated with a CpG if the CpG was within 3 Kb upstream to

3 Kb downstream of the gene.

Functional enrichment analysis
The functional annotation tables usually display a rank-order

with broader general term at the top, and most specific terms

toward the bottom. Although the upper terms have greater

statistical support (largely enriched, o lower p-values), they are

usually less to almost no informative, but generally are the

reported terms when the main output of the enrichment tool is

based on functional enrichments tables. DAG graph facilitates the

systematic set up of thresholds to select relevant terms based on the

structure of the results. We used Gene Ontology enRIchment

anaLysis and visuaLizAtion tool (GORILLA) [33] which allows to

identify the most informative terms that are significant enriched.

Unsupervised hierarchical clustering analysis
Unsupervised hierarchical cluster analysis was performed with

Cluster 3.0 and displayed using TreeView [34,35].

Results

Identification of Tissue-Specific Differentially Methylated
Sites (TS-DMS)

Brain, kidney, liver and testis were dissected from three C57BL/

6J mice and genomic DNA was isolated from every specimen.

Each sample was treated with four methylation-sensitive restriction

enzymes to compare the extent of digestion at approximately 7

million CpGs. Briefly, twelve CpG-tag libraries were prepared

according to our previously published method [15], and deep

sequenced to generate 37.5 to 51.4 million aligned reads per

sample, Table S1 in Supporting Information S1, Data Set S1.

These reads contain ,27-bp sequences located adjacent to

CCGG, ACGT, GCGC, CCGC and GGCG digested sites.

Digestion frequencies (df ) were calculated by counting the number

of reads aligned to each site in the genome. A site with low df may

indicate either a need for deeper sequencing or that the site is

highly methylated. Three observations support the idea that most

poorly digested sites were associated with high levels of methyl-

ation, rather than with poor coverage or random sampling of

CpG-tags during sequencing: 1) Of the approximately 7 million

CpGs tested across this study, 5,283,360 were represented in the

libraries suggesting an effective coverage; 2) To a large extent, sites

that were resistant to the enzymatic digestion, were arranged in

tandem within the body of genes, repetitive sequences and

intergenic regions. All these places are known to harbor most of

the genomic methylation marks; 3) Digestion frequencies for

poorly identified sites were consistently low in all the tissues and in

all the replicates, which is not expected as a result of random

sampling. Figure 1 illustrates these observations. Each digestion

profile represents the averaged frequencies of three replicates.

Highly digested sites segregate from those resistant to the enzymes.

The majority of sites located in the 59 regions of genes and in CGIs

scored high digestion frequencies, whereas sites in intergenic regions,

repetitive DNA or gene bodies, scored low. Figure 1 shows tissue

specific differentially methylated regions (TS-DMR) spanning the

entire intragenic CGIs in the last exon of several Zinc finger

proteins, Table 1. All these differentially methylated CGIs

distinguish somatic tissues from testis. Indeed, this epigenetic

dichotomy seems to reflect a transcriptional dichotomy, Figure 2.

For instance, the CGI located in the 59 region of the Repin 1 gene

is un-methylated and coincides with DNAse hypersensitivity in all

the somatic tissues, whereas, the intragenic CGI located in the 39

region of the gene is hyper-methylated, and insensitive to DNase I.

Whilst these results uphold the effectiveness of Methyl-Sensitive

Cut Counting (MSCC) to profile methylation [15,36,37], we

harnessed the power of this method to perform a multiple testing

procedure to detect differentially methylated sites (DMS), [38]. By

implementing MSCC in a multiple pairwise comparison design,

we controlled site-specific biases, Figure S1 in Supporting

Information S1. In addition, the variability introduced by random

errors is weighed in the denominator of the equation used to

calculate the t-statistic; this allows us to ascribe the differences in

the digestion frequencies to differences in methylation levels.

Although our experimental design allows for comparisons across

the dynamic range, we contrasted only those sites that are highly

supported by sequencing data. To conduct this selection we first

normalized the libraries to reach similar sequencing depth Figure

S2E in Supporting Information S1. The average df was computed

for every CGI defined by the Takai and Jones algorithm [26]. For

each library, the 21,246 computed scores were organized in a

frequency histogram, Figure S2E in Supporting Information S1.

The figure shows a bimodal distribution that is consistent with the

bimodal pattern of methylation found in CpG islands [39]. As

such the frequency histogram has been used to directly determine

the methylation status of individual CGIs [15], but here we used

Table 4. Overlap between TS-DMSs and active enhancers (H3K27ac and H3K4me1 marks).

Tissue TS-enhancers TS-DMSs Overlaps1 # CpG2 Fold Enrichment3 p-value4

Cortex-Brain5 4,128 1,149 43; (3.7%) 33,010 7.89 ,1 E-5

kidney 3,721 1,115 115 (10.3%) 29,187 24.58 ,1 E-5

liver 4,941 2,933 561 (19.1%) 38,697 34.38 ,1 E-5

testis 2,645 8,865 758 (8.6%) 50,783 11.71 ,1.E-5

1) Number of TS-DMSs within enhancers with H3K27ac marks.
2) Number of surveyed CpGs within enhancers with H3K27ac marks.
3) The quotient of two ratios, (number of TS-DMS within H3K27ac enhancers/total number of TS-DMS) and (total number of surveyed CpGs within H3K27enhancers/total
number of surveyed CpGs in the genome).
4) p-value calculated according to the distribution of the fold enrichments generated from simulation of 100,000 iterations.
5) While these enhancers are derived from cortex the TS-DMS are derived from whole brain.
doi:10.1371/journal.pone.0072670.t004
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them to derive an unrefined estimate of the relationship between

digestion frequency and rate of methylation at each surveyed CpG. The

sites with a df of 10 or less were considered heavily methylated and

sites not reaching the cut-off in any of the libraries were excluded.

For the identification of DMS multiple pairwise Welch t tests were

performed. The null hypothesis was stated as no difference between

the averages of the triplicates. Based on the differences detected by

the Welch t-test further directional decisions were made to sort the

means according to their values. This allowed the identification of

sites whose rate of digestion was unusually high or low in only one of

the tissues. These sites were called TS-DMS. The test was designed

to control for errors associated with wrong rejections of the null

hypothesis and also for assigning wrong inequality patterns. A

mixed directional false discovery rate (mdFDR) of 10% was chosen

in this analysis [25]. Mouse gDNA samples were spiked with lambda

gDNA (lDNA) to achieve an equimolar ratio between both

genomes. In this way, for each one of the 1,202 completely un-

methylated sites present in the lambda genome, 12 replicates were

obtained, Data Set S2. Figure S2 A and C in Supporting

Information S1 suggest that df computed for these replicates are

approximately normally distributed with very slight departures in

the tails of the distribution. Comparison of digestion frequencies among

l-gDNA replicates reveals that 10% of the 1,202 l-sites were found

to have significant differences in their digestion frequencies. Although

no differences were expected between the 12 un-methylated lDNA

replicates, our results show that these empirical values for false

discovery rate were very close to the theoretical value of 10%

selected for this study.

Applied to CpGs from the mouse genome the comparative

differences reveals 150,428 sites where the methylation varies to

the same extent among the analyzed four tissues. Furthermore,

retaining only the sites whose digestion frequencies differed by a

minimum of 10 resulted in a final count of 138,052 DMS (Data

Set S3). Only 24,803 of these DMS were TS-DMS, i.e. sites that

were hypo or hyper-methylated in only one tissue, Figure 3.

Notably, 23,270 (94%) of these TS-DMS are un-methylated CpGs

in one of the four tissues, of which 57% were in the testis.

Distribution of TS-DMS in relation to Genes and CpG
Islands

An overwhelming number of genome-wide methylation studies

focused on CGIs and promoter regions have proposed them as hot

spots for epigenetic control of gene expression through CpG

methylation [40]. To investigate if our results are consistent with

this concept, we compared the distribution of sites having a

comparable methylation level among the four tissues with the

distribution of TS-DMS. Almost all the sites identified as DMS or

TS-DMS were found in introns or intergenic regions which are

remote from promoters, Figure 4A. Recently, it has been proposed

that intergenic and intragenic CGIs function as alternative

promoters which can be repressed in a tissue specific manner

through methylation of their CpGs [11,12,14]. However we found

that only 5 to 25% of TS-DMS were parts of CpG islands. The

fraction of TS-DMS in CGIs increased proportionally to the

number of island in each set, Figure 4-B.

Most recently, CGI shores, not CGI, have been proposed to be

the targets of tissue-specific epigenetic regulation [41,42]. We

found that the fraction of TS-DMS mapping to CGI shores (2000

base pairs from the edge of a CGI) follows the same trend and

proportions than those mapping to CGIs, Figure 4B. The different

CGI sets used in this study represent efforts to improve predictions

of functionality on GC-rich genomic sequences, mainly promoter

activity and un-methylated status. Notably the Gardiner- Garden

and Frommer’s set (GGF-CGI), which is the oldest, biggest and

considered the less rigorous in term of functional prediction, is the

one that collects the biggest number of TS-DMS. Approximately

60% of the tissue specific un-methylated CpGs are equally

distributed between GGF-CGI and their shores. Conversely, the

GGF-CGI-derived more stringent sets, such as those produced

applying the Takai and Jones criteria [26] or with an epigenome

prediction pipeline [28], are the ones containing the smallest

fractions of TS-DMS in their CGIs or shores, Figure 4b. Thus the

main characteristic in a set correlating with the proportion of TS-

DMS is their number of predicted CpG rich loci, suggesting that

the effort done to improve the prediction of epigenetically

regulatory sequences in a genome failed to capture the DNA

features that guide tissue-specific epigenetic mechanisms.

Association between TS-DMS and tissue-specific
expressed genes

The Gene Expression Barcode browser contains a list of genes

whose levels of expression, in 89 murine tissues, were represented

as binary calls (expressed or not-expressed) [31]. These lists were

made from 9,652 publicly available gene expression results

Figure 5. DAG graphical representation of the functional profiles extracted from genes associated to liver specific un-methylated
sites. 2500 genes directly linked to liver specific TS-DMS were input in the Gorilla tool. Enriched GO terms are depicted using a direct acyclic graph
with color code reflecting the statistical support of their enrichment. Most significant branches whit not redundant nodes are shown separately for
enhanced detail.
doi:10.1371/journal.pone.0072670.g005

Table 5. Enrichment of tissue-specific gene expression annotations performed with the DAVID Bioinformatics Resources.

TS-DMS1 TS-DMS in genes2 Genes with TS-DMS TS-genes3 % p-value4

Brain 2382 1402 1098 575 52 5.6 E-36

Kidney 2177 1250 999 170 17 7.6 E-8

Liver 5626 3326 2218 702 32 1.1 E-79

Testes 13058 5848 3042 598 20 3.8 E-5

1) Number of CpGs that were identified as uniquely un-methylated.
2) Number of TS-DMS located in the region spanned from 63 kb of the gene edges.
3) Genes annotated as tissue-specific expressed.
4) Adjusted p-values (Bonferroni correction for family-wise error rate).
doi:10.1371/journal.pone.0072670.t005
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Table 6. Gene Ontology enrichment results on the list of genes associated to liver specifically un-methylated CpG.

GO Term1 Description P-value FDR q-value Enrichment B2 b3

Liver

GO:0042632 cholesterol homeostasis 1.79E-13 4.42E-11 5.31 48 25

GO:0008203 cholesterol metabolic process 5.52E-13 1.14E-10 3.94 88 34

GO:1901606 alpha-amino acid catabolic process 2.17E-10 3.05E-08 4.11 62 25

GO:0007169 transmembrane receptor protein tyrosine kinase signaling
pathway

3.30E-10 4.56E-08 2.39 243 57

GO:0007584 response to nutrient 3.64E-08 3.56E-06 4.27 43 18

GO:0070328 triglyceride homeostasis 4.60E-08 4.35E-06 6.11 20 12

GO:0006633 fatty acid biosynthetic process 4.94E-08 4.60E-06 2.91 105 30

GO:0046889 positive regulation of lipid biosynthetic process 1.08E-07 9.55E-06 3.71 55 20

GO:0090207 regulation of triglyceride metabolic process 1.26E-07 1.10E-05 5.3 25 13

GO:0033344 cholesterol efflux 1.95E-07 1.61E-05 5.56 22 12

Brain

GO:0007399 nervous system development 1.30E-08 2.26E-06 2.69 307 40

GO:0007411 axon guidance 1.71E-08 2.76E-06 3.66 141 25

GO:0007409 axonogenesis 1.98E-08 3.11E-06 3.75 132 24

GO:0007169 transmembrane receptor protein tyrosine kinase signaling
pathway

8.11E-08 1.07E-05 2.81 242 33

GO:0070588 calcium ion transmembrane transport 7.17E-07 7.43E-05 3.87 96 18

GO:0071902 positive regulation of protein serine/threonine kinase activity 1.20E-06 1.20E-04 2.81 198 27

GO:0007163 establishment or maintenance of cell polarity 2.00E-06 1.89E-04 3.98 83 16

GO:0006813 potassium ion transport 2.18E-06 2.04E-04 3.21 135 21

GO:0007626 locomotory behavior 2.94E-06 2.56E-04 2.97 160 23

GO:0050772 positive regulation of axonogenesis 3.47E-06 2.95E-04 4.95 50 12

Testes

GO:0071805 potassium ion transmembrane transport 1.63E-08 5.94E-06 2.82 86 32

GO:0006816 calcium ion transport 3.98E-07 1.05E-04 2.08 175 48

GO:0007156 homophilic cell adhesion 5.06E-07 1.30E-04 2.78 71 26

GO:0007411 axon guidance 5.15E-07 1.30E-04 2.21 141 41

GO:0007126 meiosis 1.89E-06 3.95E-04 2.47 89 29

GO:0070192 chromosome organization involved in meiosis 2.27E-06 4.67E-04 3.67 31 15

GO:2000310 regulation of N-methyl-D-aspartate selective glutamate receptor
activity

3.17E-06 6.09E-04 6.07 10 8

GO:0060079 regulation of excitatory postsynaptic membrane potential 4.53E-06 7.89E-04 3.22 40 17

GO:0032673 regulation of interleukin-4 production 8.87E-06 1.34E-03 3.96 23 12

GO:0007283 spermatogenesis 7.38E-05 7.66E-03 2.05 267 58

Kidney

GO:0030029 actin filament-based process 9.49E-05 8.38E-03 2.35 232 24

GO:0006820 anion transport 6.78E-05 6.33E-03 2.16 316 30

GO:0022610 biological adhesion 3.49E-07 9.86E-05 2.03 639 57

GO:0007167 enzyme linked receptor protein signaling pathway 6.11E-05 5.81E-03 2.06 376 34

GO:0046847 filopodium assembly 4.26E-07 1.18E-04 8.53 24 9

GO:0016570 histone modification 5.33E-05 5.33E-03 2.39 238 25

GO:0042490 mechanoreceptor differentiation 2.55E-05 2.98E-03 6.27 29 8

GO:0030512 negative regulation of transforming growth factor beta receptor
signaling pathway

1.05E-05 1.47E-03 5.41 42 10

GO:0009887 organ morphogenesis 5.03E-06 7.89E-04 2.2 393 38

GO:0035335 peptidyl-tyrosine dephosphorylation 5.82E-05 5.68E-03 4.99 41 9

GO:0043065 positive regulation of apoptotic process 3.30E-05 3.80E-03 2 443 39

1) GO terms at the terminal nodes of the DAG, p-values,0.0001 and enrichments bigger than 2 are displayed in the table.
2) ‘‘B’’ is the total number of genes in the background dataset annotated with GO term in row.
3) ‘‘b’’ is the number of genes in the ‘experimental set’ that are associated with the GO term in row.
doi:10.1371/journal.pone.0072670.t006
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obtained with the Mouse Genome 430 Array 2.0. Genes detected

above threshold in more than 95% of samples of a specific tissue

are considered expressed in that tissue. We considered a gene to be

expressed in a tissue-specific manner when it is expressed in only

one of the four organs included in our study. In addition we

created a list including all the genes with at least one TS-DMS in

the region extending from -3 Kb to +3 Kb of the edges of the

gene. We found that genes associated with TS-DMS are more

likely to be expressed in a tissue specific manner. The strength of

this association varies across the different tissues, Table 2.

TS-DMS are more frequently found at CpGs inside tissue
specific cis-regulatory sequences

A map of cis-regulatory elements for the mouse genome has

recently been published [32]. The map includes 53,834 putative

promoters and 234,764 potential enhancers, many of which are

tissue specific. These enhancers were defined according to the

presence of ChIP-Seq peaks for histone H3 lysine 4 mono-

methylation marks (H3K4me1) outside promoters. We obtained

the coordinates for 24,128 tissue-specific enhancers that are

divided between liver, kidney and testis (http://chromosome.sdsc.

edu/mouse/download.html). We compared the relative number of

TS-DMS and surveyed CpG sites inside and outside of these

enhancer-DNA sequences. We found that the percentage of TS-

DMS within enhancers is up to 30 times higher than outside

enhancers Table 3 (p-value,1025, simulation of 100,000

iterations), with enrichment varying across tissues. Next we

examined the overlap of TS-DMS with active enhancers, as

defined by acetylation marks (H3K27ac), [32] (Table 4). A

comparison of the results (Table 3 with Table 4) shows that most of

the TS-DMS derived from somatic tissues are localized in active

enhancers, while the opposite is true for the case of the TS-DMS

derived from the testis. For example, of the 792 TS-DMS marking

enhancers in liver, 561 (70%) are in active enhancers.

Genes associated with TS-DMS are enriched in functional
annotations specific to the corresponding tissue

We created two lists representing different levels of association

between the TS-DMS and their corresponding genes, Data Set S4.

If a TS-DMS is outside the region occupied by the gene

63,000 bp it was assigned to the nearest TSS (weak association).

If a TS-DMS is inside the region occupied by the gene 63,000 bp

it was directly assigned to that gene (strong association). Gene

annotation enrichment analyses using these gene lists were mainly

based on the Gene Ontology data base (GO) [43]. To obtain the

functional profiles we used DAVID Bioinformatics Resources

[44,45] and Gene Ontology enRIchment anaLysis and visuaLi-

zAtion tool (GORILLA) [33]. Genes associated with TS-DMS

were significantly enriched in tissue-specific expression annotation

in each of the four tissues, (Table 5). Table 6 tabulates the

functional enrichment results for biological processes in the

context of a directed acyclic graph (DAG) structure created using

the GOrilla tool, e.g. Figure 5. The table includes all the terms at

terminal nodes of the DAG describing the most specific and

informative biological processes that showed significant enrich-

ment. Terms described in these sets matched distinct attributes of

the physiology and biochemistry of each particular tissue, Figures 5

and Figures S3and S4 in Supporting Information S1, also Table 6.

Interestingly, genes physically linked to TS-DMS are mostly

associated with typical activities of the respective adult organ,

whilst many genes with TS-DMS distal to their promoters are

associated with embryonic development, Table 6 and Figure S4 in

Supporting Information S1. Finally, we scored and ranked the

genes according to the number of TS-DMS associated with them,

and used the GOrilla tool to discover GO terms that are

significantly enriched at the top of a ranked gene list. In the case

of liver, we found very high enrichments for genes involved in lipid

metabolism and homeostasis, particularly for processes including

synthesis, transport and cellular response to cholesterol, Table 7.

Table 7. Significantly enriched GO terms at the top of a ranked gene list1.

GO Term Description P-value FDR q-value Enrichment B2 b3

GO:0071396 cellular response to lipid 5.33E-07 3.36E-03 18.49 37 7

GO:0042592 homeostatic process 3.14E-06 9.88E-03 6.52 165 11

GO:0048878 chemical homeostasis 4.75E-06 9.97E-03 7.29 134 10

GO:0032844 regulation of homeostatic process 6.01E-06 9.46E-03 45.26 38 4

GO:0033993 response to lipid 6.62E-06 8.34E-03 10.29 76 8

GO:0034383 low-density lipoprotein particle clearance 8.32E-06 8.73E-03 27.74 5 4

GO:0055088 lipid homeostasis 1.40E-05 1.26E-02 15.85 37 6

GO:0009755 hormone-mediated signaling pathway 2.15E-05 1.70E-02 4.02 23 13

GO:0034381 plasma lipoprotein particle clearance 2.45E-05 1.72E-02 17.34 10 5

GO:0030301 cholesterol transport 2.55E-05 1.61E-02 13 16 6

GO:0015918 sterol transport 2.55E-05 1.46E-02 13 16 6

GO:0055092 sterol homeostasis 2.70E-05 1.42E-02 13.95 25 6

GO:0042632 cholesterol homeostasis 2.70E-05 1.31E-02 13.95 25 6

GO:2000021 regulation of ion homeostasis 4.76E-05 2.14E-02 71.67 18 3

GO:0043691 reverse cholesterol transport 4.97E-05 2.09E-02 61.43 7 3

GO:0065008 regulation of biological quality 7.28E-05 2.87E-02 4.04 290 12

1) 4,265 genes were ranked according to their contain in TS-DMS. The Gorilla web-based application was used to identify enriched GO terms at the top of the ranked list
of genes.
2) ‘‘B’’ is the total number of genes in the background dataset annotated with GO term in row.
3) ‘‘b’’ is the number of genes in the ‘experimental set’ that are associated with the GO term in row.
doi:10.1371/journal.pone.0072670.t007
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Figure 6. Epigenetic distances between tissues and biological
replicates are assessed with unsupervised cluster analysis. The
length of the branches in the hierarchical dendrogram measures the
person correlation distances between digestion frequencies scored by
CpGs identified as spot of tissue differential methylation. Shown are
heat maps of the log2-transformed digestion frequencies (red: more than
50 reads per CpG, i.e., un-methylated; black: 0 reads per CpG, i.e.,
methylated). Rows represent the first 40 CpGs in the final cluster; each
column represents one of the 12 tissue samples. A) 138,052 T-DMS. B)
23,270 TS-DMS (only the tissue specific un-methylated sites were
clustered). C) MSCC data produced from livers of 16 outbred mice were

combined with MSCC data of the 12 tissue samples. D) MSCC data
produced from a liver of a C57BL/6J 12.5 d embryo was combined with
MSCC data of the 12 tissue samples.
doi:10.1371/journal.pone.0072670.g006

Figure 7. Epigenetic distances between livers of mice exposed
to in utero or postnatal food restriction. The length of the
branches in the hierarchical dendrogram measures the person
correlation distances between digestion frequencies scored by CpGs
identified as spot of epialleles. Shown are heat maps of the log2-
transformed digestion frequencies (red: more than 50 reads per CpG, i.e.,
un-methylated; black: 0 reads per CpG, i.e., methylated). Rows represent
the first 40 CpGs in the final clusters; each column represents one of the
16 tissue samples from this study. Only the field with the first 40 TS-
DMS in the cluster are depicted A) Design of mouse feeding experiment
(Joslin feeding protocol; adapted from [23]) B) MSCC data produced
from livers of the CC, CU and UU groups. 16 outbred mice were
combined with MSCC data of the 12 tissue samples. D) MSCC data
produced from a liver of a C57BL/6J 12.5 d embryo was combined with
MSCC data of the 12 tissue samples.
doi:10.1371/journal.pone.0072670.g007
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TS-DMS constitute a unique epigenetic signature of an
adult mouse liver

We performed an unsupervised hierarchical clustering analysis

to visualize the TS-DMS structure between and within tissue

samples as a hierarchical dendrogram where the branch lengths

represent the degree of epigenetic similarity between samples.

Samples from the same tissues were grouped together regardless of

whether DMS or TS-DMS dataset was used (Figure 6 A and B).

These results suggest that the DMS identified among 6,955,111-

surveyed CpGs have the potential to function as tissue-specific

methylation fingerprints.

We next tested if the liver specific DMS can be used as a unique

epigenetic signature of the adult mouse liver. We combined the

DMS found in the four-tissue dataset with similar data obtained

from livers of 16 outbred mice and also the liver from a E11.5

C57BL/6J embryo. Despite the differences in the genetic

background among these samples, the livers from all 19 mice

co-clustered separately from brain, kidney, and testis, Figure 6C. A

sample derived from embryonic liver (E11.5) was most similar to

the adult liver samples than those from other organs, but still

clustered separately from adult-stage liver, Figure 6D.

A set of DMS derived from mice livers can trace
nutritional history

Given the critical role of the liver in controlling whole-body

metabolism, and the high frequency of TS-DMS in genes that

control key aspects of the hepatic lipid homeostasis Figure S3 in

Supporting Information S1, we analyzed the impact of prenatal

and postnatal nutrient availability on liver methylation patterns.

Differentially methylated sites (DMS) were isolated from mice

whose mothers had been subjected to four different feeding

protocols [23]: CC, prenatal and postnatal control diet; CU,

prenatal control diet and postnatal food restriction; UU, prenatal

and postnatal food restriction; UC, prenatal food restriction and

postnatal control diet (for details see [23]). Comparison of CC, CU

and UU liver samples led to the identification of 5,574 DMS

(mdFDR 15%), Data Set S5. Practically all these DMS were hypo-

methylated in mice that were exposed to a control diet during the

whole experiment (CC) but hyper-methylated in those mice

exposed to any of the diets including food restriction (UC, CU or

UU). Out of these 5,574 DMS induced for food restriction, 533

were previously identified as differentially methylated sites in the

comparisons among the four tissues (vide supra). Remarkably genes

associated with these 533 DMS were highly enriched (between 4 to

15 times) in annotations related to SMAD protein signal

transduction, steroid and fatty acid metabolic process.

We examined to what extent these DMS can function as

epigenetic signatures of each nutritional exposure. Unsupervised

clustering of MSCC data obtained from 4 CC, 5 CU, and 5 UU

samples regrouped experiments according to the treatment,

Figure 7B. When data from a different treatment was included

(UC) the samples clustered outside the previous defined groups,

Figure 7B. We inferred that these DMS constitute epialleles that

traced the nutritional history of mice during the in utero and/or

immediate postnatal stages.

Discussion

Based on our expanded methyl-sensitive cut counting (eMSCC)

method [15], we screened for differential methylation in gDNA

samples derived from liver, kidney, brain and testis. We detected

138,052 differentially methylated sites, of which 24,803 were

uniquely methylated or un-methylated in one but not in the other

tissues (Figure 3). Strikingly, 23,270 (93%) of these TS-DMS were

hypomethylated, suggesting that un-methylation rather that

methylation is the epigenetic state highlighting developmentally

active loci.

In agreement with previous results obtained by Restriction

Landmark Genomic Scanning (RLGS) or Methylated DNA

Immunoprecipitation (MeDIP), we found that most TS-DMS

represent differences between the testis and somatic tissues

[17,18,46–48]. Interestingly and more often in testis, many TS-

DMS co-localize in CpG islands or CpG clusters to form testis-

specific un-methylated regions within gene bodies or gene deserts.

The transcriptional landscape around these loci seems inconsistent

with the notion that they may represent alternative promoters

(Figure 1) [11,12,14]. A particularly interesting result is that tissue-

specific differential methylation at intragenic CpG clusters

correlates with tissue-specific differential expression of zinc finger

protein genes (Zfp), We found 39 Zfp genes with a differentially

methyled region in the 39 terminal exon that is invariably

methylated in somatic tissues and hypomethylated in testis,

(Table 1). Remarkably, most of them follow a similar inverse

relationship between the level of methylation at the 39 terminal

exon and gene transcriptional activity, Figure 2. It is intriguing

why their TSSs remain largely un-methylated in all tissues but

their intragenic CGIs seem to be preferential sites for de novo

methylation in somatic tissues during development. The lack of

differential methylation at the promoter CGIs suggests a limited

role for these loci in the epigenetic transcriptional regulation,

however aberrant methylation marks in the promoters of a Zfp

correlates with cervical cancer [49]. Probably, the 39 exons start

the developmental program as un-methylated regions, acquiring

methyl-marks as the embryo develops into adult. For instance,

spatio-temporal and cell-specific methylation of these exonic-

CpGs could avoid the binding of a gene repressor. Most of Zfp

genes described in Table 1 belong to the C2H2 Zf family, which

are enriched in KAP 1 repressor target sites. Interestingly ChiP-

chip experiment detected most of the KAP1 binding sites towards

the 39 transcribed regions of these Zf-genes, [50]. Alternatively, the

exonic-DNA methylation could turn the chromatin in to a Pol II

elongation-permissive state. For example it has been recently

shown that H3K79, H4K20, H2BK5 and H3K36m3 mark

nucleosomes wrapping exonic-DNA. The tri-methylation of

H3K36 is the most prominent mark and correlates positively with

increased gene expression levels and stimulated transcriptional

elongation [51–53]. In agreement with the positions of TS-DMS

we found in the Zfp genes, H3K36me3 is primarily found in

downstream exons, [53]. The co-occurrence of H3K36me3 and

DNA hypermethylation has been recently shown in the bodies of

zinc finger genes along chromosome 9, [54]. When all genes

covered by this study were considered, these authors found that

the co-occurrence between H3K36me3 and hypermethylation was

more frequently observed at last exons or at highly expressed

genes. Overall the data suggest that differential methylation of Zfp

genes at 39 exons constitutes a developmental epigenetic signature.

Some of these same genes have been already identified as playing

key roles in cell fate specification, [55]. It will be interesting to

follow the dynamics of gene expression and methylation at these

loci during embryonic development.

We observed intriguing differences in the methylation pattern of

DNA derived from testis. Firstly, the largest numbers of TS-DMS

were observed in testes. However, testis showed the weakest

association of TS-DMS with active enhancers or tissue-specific

gene expression (Tables 2, 4, and 5). Secondly, testis TS-DMS

were localized at loci encoding genes involved in the embryonic

development of multiple organs and anatomical structures, Figure

S4 in Supporting Information S1 and Table 6. Whilst we
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recognize that testis includes both gametes and somatic cells, our

data suggest that part of the epigenetic information involved in

development would be pre-coded in the sperm genome.

The presence of differentially methylated CGIs is rarer in

somatic tissues, by contrast most TS-DMS are located far from

promoters, in loci with scarce CpGs and in many overlapping

regions reported as tissue-specific enhancers. Indeed we found that

local DNA hypomethylation highlighted active enhancers

(H3K4me1 and H3K27me3) in a tissue-specific manner. Indeed,

it has recently been shown that transcription factors (TF) can

actively induce open chromatin spots and local de-methylation of

low CpG density sequences, which ultimately constitute a footprint

for DNA regulatory elements [16,56]. Despite the scarcity of

methylable sites in these elements, the methylation of critical CpGs

was sufficient to prevent the TF-DNA interaction, [56].

Not only did we find active enhancers highly enriched in TS-

DMS, but we also found that genes spotted with TS-DMS are

expressed in a tissue-specific manner, (Tables 2 and 5) with their

functional profiles matching specific functions of the correspond-

ing tissues. Considering all our data we suggest that most of the

sequences having TS-DMS must be cis-acting elements for tissue-

specific trans-acting factors.

To assess the extent to which the TS-DMS could demarcate

tissue-specific physiological aspects, we performed annotation

enrichment analysis in the set of genes associated with these

epigenetic marks. We found that the position of the TS-DMS in

relation to genes defines two types of functional profiles. When

TS-DMS are found in intergenic regions and distant from gene

boundaries, there is a notable enrichment in processes related to

embryonic development Figure S4 in Supporting Information S1.

In the instance where TS-DMS are within or very near to the

borders of the gene, most of the biological processes describe

physiological and organ-specific functions, (Table 6). A remarkable

observation is that genes involved in specific liver functions such

as, hepatic cholesterol homeostasis, response to nutrients, response

to peptide hormones, plasma clearance of lipoproteins and

metabolic control of xenobiotic, are distinguished in the liver

genome by the presence of TS-DMS, (Figure 5 and Figure S3 in

Supporting Information S1. Indeed, by ranking genes according to

the number of TS-DMS and querying for enriched GO terms at

the top of a ranked list, we found a selective increase in functional

specificity towards lipid homeostasis, especially hepatic cholesterol

management, Table 7.

We speculate that the high incidence of TS-DMS demarcating

key genetic aspects of hepatic physiology could account for many

of the findings that report associations between epigenetic

alterations and metabolic disorders. Multiple studies have dem-

onstrated that the nutritional state during sensitive developmental

periods, including the intrauterine life and lactation periods, can

‘‘program’’ developmental trajectories to improve the ability of the

fetus to survive in similar postnatal environments. Unfortunately,

these adaptations may also modulate risk for metabolic disease in

adult life. An attractive hypothesis is that these effects of nutritional

exposures are mediated by altered epigenetic regulation of

transcription. Whether methylation is the primary triggering

event, or mediated by histone modification or effects of noncoding

RNAs, remains unclear. However, our data suggest that differen-

tial methylation may mark key developmental loci, which are

susceptible to nutritional or other environmental insults.

We identified thousands of sites whose differentially methylated

status generated epialleles in the offspring of mothers subjected to

different feeding protocols (Figure 7, Data Set S5). We used

correlation distances to look for comparable variations in the

magnitude of digestion frequencies in the sites detected as

differentially methylated. Unsupervised cluster analysis shows that

this set of epi-alleles characterize the nutritional history of each

mouse.

In summary, in the present work we extended our previous

observation that outside of CGIs and promoters there are a large

number of regions with hypomethylated CpG, at low density.

These regions not only outnumber the CGI but also are the loci

with the greater enrichment in regulatory sequences, [15,16]. Here

we show that CpGs that are part of TS-DMS are also typically

found far from promoters and outside of CGIs. TS-DMS are

enriched in sequences recognized as tissue-specific enhancers and

associated with tissue-specific expressed genes. Genes associated

with these sites fulfill roles in the development of the corresponding

tissue but also in their specific physiological functions. The

identification of loci with aberrant DNA methylation marks has

been largely extended during the last 5 years. Our results agree

with the idea that epi-mutation rather than mutations better

explain the developmental origin of diseases [57]. Most of the

work on disease-related DNA methylation has focused on

hypermethylation of CGI in cancer. Thus, the relevance of

aberrant methylation marks outside CGI in human disease has not

been well studied. Here we show that during development

methylation of CpGs outside promoter or CGI seemed to be far

more dynamic than commonly appreciated. We propose that the

catalog of TS-DMS presented in this work, particularly those

linked to the hepatic function could constitute a comprehensive

epi-panel for detection and diagnosis of metabolic diseases.
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Figure S1–Figure S4. Table S1, which is a summary of the results
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mouse reference genome; Figure S1, showing the influence of

random sampling and systematic bias are canceling out during the

pairwise site-by-site comparisons; Figure S2, Validating of the

assumption of normality for the distribution of digestion

frequencies (methyl sensitive cut counts) in CpGs from both

lambda and mouse replicates; Figure S3, detailing the biological

regulation branch showed in Figure 5 and Figure S4, showing the

functional enrichment analysis results for genes proximal to TS-

DMS located at intergenic regions. A description of the column

headers in Data Sets S1 to S5 is provided in tables at the end of the
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