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Abstract

Graph theoretical approaches have successfully revealed abnormality in brain connectivity, in particular, for contrasting
patients from healthy controls. Besides the group comparison analysis, a correlational study is also challenging. In studies
with patients, for example, finding brain connections that indeed deepen specific symptoms is interesting. The correlational
study is also beneficial since it does not require controls, which are often difficult to find, especially for old-age patients with
cognitive impairment where controls could also have cognitive deficits due to normal ageing. However, one of the major
difficulties in such correlational studies is too conservative multiple comparison correction. In this paper, we propose a
novel method for identifying brain connections that are correlated with a specific cognitive behavior by employing cluster-
based statistics, which is less conservative than other methods, such as Bonferroni correction, false discovery rate procedure,
and extreme statistics. Our method is based on the insight that multiple brain connections, rather than a single connection,
are responsible for abnormal behaviors. Given brain connectivity data, we first compute a partial correlation coefficient
between every edge and the behavioral measure. Then we group together neighboring connections with strong correlation
into clusters and calculate their maximum sizes. This procedure is repeated for randomly permuted assignments of
behavioral measures. Significance levels of the identified sub-networks are estimated from the null distribution of the
cluster sizes. This method is independent of network construction methods: either structural or functional network can be
used in association with any behavioral measures. We further demonstrated the efficacy of our method using patients with
subcortical vascular cognitive impairment. We identified sub-networks that are correlated with the disease severity by
exploiting diffusion tensor imaging techniques. The identified sub-networks were consistent with the previous clinical
findings having valid significance level, while other methods did not assert any significant findings.
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Introduction

The recent trend of the human brain research is modeling the

whole brain as a network, which consists of nodes, corresponding

to brain regions, and edges, representing relationship between any

pair of two brain regions. Graph theoretical approaches revealed

novel characteristics of brain organization, including small-world

topology [1–4], scale-free characteristics [4–6], global integration

[1,7–9], modular structure [4,10,11], and hierarchical organiza-

tion [12–14] of the brain networks. For this purpose, various

network topological measures have been suggested, which capture

global characteristics of the whole brain. Those measures have

been successfully exploited in contrasting patients with some

diseases from healthy subjects. For example, reduced network

efficiency of the structural connectivity was observed in patients

with schizophrenia [15,16], and a decrease in global clustering of

the functional connectivity was reported in patients with

Alzheimer’s disease [17]. Focusing on the global organization of

the brain network, the graph theoretical approaches have been

trying to understand how the complex interaction between brain

regions would moderate cognitive functions [18].

Localization of abnormal brain connectivity is another primary

research goal of the brain network analysis with regard to

deterioration of a specific brain function. A large number of the

Tract Based Spatial Statistics (TBSS) studies in clinical populations

showed wide interests in localized analysis of abnormal white

matter brain connectivity [19–23]. Furthermore, the disconnec-

tion hypothesis [24–26] provides a motivation for such a

connectivity comparison analysis, which states that abnormal

interaction between brain regions causes disease symptoms. It was

employed in the neuroimaging studies to explain abnormal

functional connectivity in patients with schizophrenia [27,28]

and developmental dyslexia [29] in the late 1990s, and expanded

to seeking abnormality of both structural and functional connec-

tivity in patients with various diseases [15,30–35]. A localized

analysis of brain connectivity that is responsible for a specific brain

function also helps to plan an effective neurosurgery. For example,

brain-tumor resection surgeries can minimize aphasia due to
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unintended excessive removal of the articulate fasciculus [36,37],

which plays an important role in lingual functions [38,39].

Besides the group comparison analysis of brain connectivity, the

identification of specific brain connections that lead behavioral

changes is also a challenging research problem. In studies with

patients, it would be interesting to understand which connections

indeed deepen specific symptoms, while for studies involving

subjects with normal cognition, a specific set of brain connections

can be associated with normal aging process. However, seeking for

connectivity correlated with specific behavioral measures has been

less studied compared to studies seeking for group differences in

connectivity between healthy and clinical populations. One of the

major difficulties of such correlational studies in connectivity is too

conservative multiple comparison correction. If we conduct a

correlational study between a single behavioral measures and a

certain global characteristic of the brain network, computing a

correlation coefficient and estimating its significance level is

enough to assert a statistically meaningful relationship between

them. For example, a significant correlation was observed between

global network properties such as global efficiency and behavioral

measures including severity scores in structural connectivity [15]

and functional connectivity [40], or intelligence quotients (IQ) in

structural connectivity [16,41] and functional connectivity [42].

However, if we performed a correlational study for numbers of

network connections (edges), multiple comparison correction over

independent hypotheses is necessary to assert statistically valid

local correlations. Since biomedical data generally have weak

correlations, too conservative multiple comparison correction

procedure may often invalidate most of the findings, leading a

large number of false negatives. As an example, if the network

consists of 90 nodes, the number of all the edges is 4005. The most

conservative correction method, Bonferroni procedure [43], will

reject null hypotheses only for the edges of which p values are

below the a-level divided by 4005; the corrected a-level is around

0.00001 for a traditional 5% a-level, which is difficult to attain in

the neuroimaging data. In this study, we propose a cluster-based

method for multiple comparison correction in connectivity analysis

with correlation coefficients, in order to report statistically valid

results while avoiding excessively conservative correction.

Similar to the underlying insight of the cluster-based statistics in

voxel-based morphometry (VBM) [44–48], it is also valid that

abnormal sub-networks, clusters of multiple connected edges, are

responsible for abnormal behaviors than a single edge disrupts

normal behaviors [49]. On the line of this insight, the Network-

Based Statistics (NBS) [16,49,50] and the Spatial Pairwise

Clustering (SPC) [51] were proposed to detect a sub-network that

is significantly different between groups, and have been used

successfully in many clinical applications [16,52–54]. The essence

of the SPC and the NBS is estimating statistical significance levels

for abnormal sub-networks as a whole based on permutation

testing, instead of performing multiple comparison correction of

edges individually using the false discovery rate (FDR) procedure

[55,56]. Since the cluster-based statistics was first introduced to

neuroimaging fields in 1993 [47], its statistical validity has been

studied for voxels [57] and networks [49] using either the random

field theory or the permutation test [44–48,57–60]. Our approach

inherits the permutation-based cluster analysis.

Adopting the cluster-based approaches above, our method

identifies sub-networks of the brain connectivity that are signifi-

cantly correlated with behavioral measures by clustering network

connections. Specifically, our method captures direct correlation

with cognitive functions using a partial correlation coefficient for

each edge. As a result of group analysis, the NBS provides implicit

information on the correlation of brain connectivity with a

combination of several cognitive functions that are generally

deteriorated in a certain disease, rather than a specific cognitive

function. We emphasize that as correlating each edge directly with

a specific behavioral measures, our method does not require

healthy populations to contrast, and can identify sub-networks that

capture a specific change of cognitive functions in patients, not all

of their symptoms. Finding normal controls is often difficult,

especially for old-age patients with cognitive impairment where

controls could also have cognitive deficits due to normal ageing. It

is also worthy to note that correlation coefficients can easily resolve

the normality issue of the connectivity data. Because the general

linear model framework relies on the normality assumption of the

data, its application to the connectivity data could be less valid. In

order to resolve the problem, we employed the non-parametric

Spearman correlation coefficients. Use of partial correlation

coefficient is critical in order to reduce the effects of the other

compounding factors in the analysis. For example, cognitive

deficits in patients with cognitive impairment may be combined

with normal ageing.

Finally, we validated the proposed method using the brain

connectivity data for patients with subcortical vascular cognitive

impairment (SVCI). SVCI is a type of cerebrovascular disease,

which led lowered cognitive functions [61]. It is well-known that

deterioration in white matter nearby subcortical regions deepens

the disease symptom [61], and thus, the structural connectivity of

white matter also decreased. We compared our method to other

multiple comparison correction methods: Bonferroni correction

[43], FDR procedure [55,56], and extreme statistics [62]. Our

method was sensitive enough to identify sub-networks that deepen

the SVCI-related symptoms, while no other methods can provide

statistically significant results. We believe that the proposed

cluster-based statistics enables more powerful multiple comparison

correction in the brain connectivity correlational analysis, which is

also simple to use in clinical applications.

Methods

Overview
In this section, we present a cluster-based method for identifying

sub-networks of brain connectivity that are correlated with

behavioral measures. Similar to the NBS, our scheme aims to

control the family-wise error rate (FWER) when mass-univariate

testing is performed at every connection of the network. The

proposed method takes as inputs a set of connectivity matrices for

all subjects in a given group and their corresponding behavioral

measures. Our scheme is independent of a specific method for

constructing a connectivity matrix: both structural and functional

connectivity can be used according to the desired purpose.

Therefore, the main focus of this section is the identification

method for sub-networks of the brain connectivity matrix.

As shown in Figure 1, the proposed method consists of two

parts: correlation coefficient computation and cluster-based

multiple comparison correction. In the former part, a partial

correlation coefficient is calculated for each connection of the

brain network with the behavioral measures. In this step, several

compounding variables are taken as covariates in order to count

their effects on the correlation coefficients. In the latter part, we

perform cluster-based correction for the multiple comparison

correction of the correlation coefficients by adopting the supra-

threshold cluster size test [44,46]. In this approach, clusters are

constructed by grouping together neighboring supra-threshold

connections, and the p-values are estimated through permutation

testing, forming a null distribution of the maximum cluster extent.

The output of this step is a set of sub-networks consisting of
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neighboring connections that are significantly correlated with the

behavioral measures and the corresponding (corrected) p-values.

We implemented the proposed method using Matlab 8.0 (32bit

version, R2012b, Mathworks, Natick, USA), and uploaded both

the codes and the test data set at http://bia.korea.ac.kr/people/

c̃heolhan/software/.

Computing correlation coefficients
In the first step of our method, we compute partial correlation

coefficients between each edge and a behavioral measure of

interest independently, by taking other behavioral measures as

covariates. Either Pearson or Spearman correlation coefficients

can be employed, though we employed Spearman rank correlation

coefficient since distribution of the brain connectivity data is

unknown and often does not satisfy the normality condition. Based

on a permutation testing, we estimate the significance level of the

correlation coefficient by randomizing the order of the behavioral

measures [63]. Permutation testing has been popular in neuroim-

aging and brain network analysis due to unknown nature of

dataset distribution, which frequently violates normality assump-

tion (See Ludbrook and Dudley [64] for more discussion).

As shown in Figure 2, we first generate N permutation vectors

by randomly reordering the behavioral measures (Figure 2, the

upper-left corner). Suppose there are n subjects in the given group.

Then, the ith permutation vector PVi, i = 1,2,…,N, is the ith

random ordering of the n subjects’ behavioral measures. Note that

the last permutation vector PVN is constructed using the original

ordering of the behavioral measures as usual in any permutation

testing. Then, we compute a partial correlation coefficient between

an edge and the behavioral scores for every permutation vector.

We repeat this procedure for every edge, resulting rk
i , i = 1,2,…,N

and k = 1,2,…,m, where m is the total number of edges. We note

that because our main interest is observing the effect of the specific

behavioral measures, we only reordered the measure of interest,

while the covariates’ orders were kept.

For each edge, this repeated computation forms a null

distribution of its correlation coefficient. The null distribution

shows how the order of the behavioral measure affects its

correlation coefficient. When the measure in the original order

is highly correlated with the edge weight, the magnitude of the

edge’s correlation coefficient is larger than the correlation

coefficients generated using the other random orders. Thus, its

significance level is estimated as the proportion of entries whose

correlation coefficients are greater than the correlation coefficient

of the original order to the number of total entries, N. This p-value

highly correlates to the traditional p-value approximated by

transforming the correlation coefficient to t-statistics [65]. In our

experiment, for example, Spearman correlation coefficient

between the permutation-based p-value and the t-statistics-based

one was larger than 0.99 (see the Clinical Application section for

details). The resulting correlation coefficients for every random

ordering of the behavioral measures will be used in the second step

of our method (see the next section).

Cluster-based statistics
The second step of our method performs cluster-based multiple

comparison correction for correlation coefficients computed in the

previous step for all network edges. It is common to perform

thousands or millions of the same statistical tests in neuroimaging

research; in our case, we tested correlation with a behavioral

measure for 4005 edges. To avoid accumulation of Type-I error

due to multiple comparisons, the significance level of each test

could be corrected through either Bonferroni procedure [43] or

FDR procedure [55,56]. Otherwise, one can employ permutation

based methods for the multiple comparison correction: extreme

statistics [62] and cluster-based statistics [44]. Those two methods

generalize the randomization procedure to a family of tests,

forming a permutation distribution of a certain representative

statistic, which results in less conservative correction than the

others. Our method employed the cluster-based statistics among

them. Specifically, we use the maximal size of each cluster as a

representative statistic, where a cluster consists of connected supra-

threshold edges for an arbitrary initial threshold [44,49]. Then a

significance level of each cluster is estimated by its size on the null

distribution, capturing the cluster occurrence probability with the

score of the original ordering in our case. This cluster-based

statistics has been successful in neuroimaging with regard to voxels

[20,44,46,57,58,60], vertices of cortical surfaces [66–68], and

network edges [16,49,52–54] in group comparison.

Our method exploits the maximum size of the cluster as a

representative statistic (Figure 2). Specifically, we first extract sets

of network edges of which correlation coefficient is beyond the

initial threshold rinitial
h to form supra-threshold clusters using the

breadth first search algorithm of the Matlab Boost Graph Library

[69]. Denoted by cluster
j
i in Figure 2, the resulting cluster is

Figure 1. Overview of the proposed method. The method consists of two parts: correlation coefficient computation and multiple comparison
correction with cluster-based statistics. In the former part, a partial correlation coefficient is calculated for each connection of the brain network with
the behavioral measures. In this step, several compounding variables are taken as covariates in order to count their effects on the correlation
coefficients. In the later part, we perform cluster-based correction for the multiple comparison of the correlation coefficients by adopting the supra-
threshold cluster size test to our problem setting. In this approach, clusters are constructed by grouping together neighboring supra-threshold
connections, and the p-values are estimated through permutation testing, forming a null distribution of the maximum cluster extent. The output of
this step is a set of sub-networks consisting of neighboring connections that are significantly correlated with the behavioral measures.
doi:10.1371/journal.pone.0072332.g001
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corresponding to the jth cluster of the ith permutation vector PVi,

i = 1,2,…,N and j = 1,2,…ci, where ci is the number of identified

clusters for PVi. For a positive initial threshold, edges of which

correlations are larger than the threshold will form clusters, while

for a negative threshold edges of which correlations are smaller

than the threshold will do. Though the selection of an initial

threshold may affect the identified networks, the significance level

calculated by this procedure is always valid [20]. We employ the

maximum cluster extent for the null permutation distribution by

counting the number of edges in the largest connected sub-

network of each permutation. In Figure 2 (the upper-right corner),

ext
j
i represents the number of edges in cluster

j
i , and extmax

i

represents the maximum cluster extent for PVi. This representative

statistics form a null permutation distribution, which is shown as

the histogram in the bottom of Figure 2. Finally, we estimate the

significance level over the null distribution by computing the

proportion of the number of entries whose maximal cluster extents

are larger than the size of each identified sub-network, ext
j
orig, to

the number of entries, N. Precisely, pj, the significance level of

cluster
j
orig is given by

Figure 2. Cluster-based statistics of correlation coefficients for multiple comparison correction. The first step generates N permutation
vectors by randomly reordering behavioral scores (the upper-left corner). Suppose there are n subjects in the given group. Then, the ith permutation
vector PVi, i = 1,2,…,N, has n elements, the ordering of n subjects’ behavioral scores. Note that the last permutation vector PVN is constructed using
the original ordering of the behavioral scores as usual in any permutation testing. We compute a partial correlation coefficient between an edge and
the behavioral scores for every permutation vector. We repeat this procedure for every edge, resulting rk

i , i = 1,2,…,N and k = 1,2,…,m, where m is the
total number of edges (the upper middle). In the second step, we extract sets of network edges of which correlation coefficient is beyond the initial

threshold rinitial
h to form supra-threshold clusters. Denoted by cluster

j
i the resulting cluster is corresponding to the jth cluster of the ith permutation

vector PVi, i = 1,2,…,N and j = 1,2,…ci, where ci is the number of identified clusters for PVi. For a positive initial threshold, edges whose correlations
were larger than it will form clusters, while for a negative threshold edges whose correlation is smaller than it will do. We employ the maximum

cluster extent for the null permutation distribution by counting the number of edges in the largest connected sub-network of each permutation. ext
j
i

represents the number of edges in cluster
j
i , and extmax

i represents the maximum cluster extent for PVi (the upper-right corner). This representative
statistic forms a null permutation distribution, which is shown as the histogram (the bottom). Finally, we estimate the significance level over the null
distribution by computing the proportion of the number of entries whose maximal cluster extents are larger than the size of each identified sub-

network, ext
j
orig , (black entries in the histogram) to the number of entries, N.

doi:10.1371/journal.pone.0072332.g002
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pj~
size(ext

j
origƒextmax

i )

N
~

size(blackentries)

N

where size(N) counts the number of entries.

In summary, given brain networks and behavioral measures, the

proposed cluster-based method identifies a set of sub-networks

consisting of neighboring brain connections that are strongly

correlated with the behavioral measures, and also provides the

corresponding p-values (corrected) for each sub-network.

Comparison to the other multiple comparison correction
methods

In order to show the efficacy of our method, we compare it with

other multiple comparison methods: Bonferroni correction [43],

false discovery rate (FDR) procedure [55,56], and extreme

statistics [44,46,60,62]. The Bonferroni correction method uses a

corrected a-level, which is simply divided by the number of

hypotheses. If we test for m edges, the corrected a-level will be a/

m: it rejects null hypotheses only for the edges of which p-values are

below the corrected a-level. The FDR procedure controls the ratio

of false positives to all findings (positives). Specifically, we sort the

p-values in an ascending order and find the largest p-value which is

not greater than ak/m where k is the order of the p-value in the

sorted list. Then, any edge of which p-value is not greater than the

largest p-value is asserted as a significant finding.

In order to perform the permutation-based extreme statistics,

the greatest magnitude of the correlation coefficients were used as

a representative statistic for each permutation vector [62]. To

identify positively correlated connections, we collected the

maximum of correlation coefficients for each permutation vector,

while for negatively correlated connections, we used their

minimum values. More precisely, in figure 2, we used maxk (rk
i )

or mink (rk
i ) as a representative statistic for PVi, i = 1,2,…,N and

k = 1,2,…,m, instead of maxj (ext
j
i). Then, we selected a single

global threshold, ra
h,ext to control the experiment-wise a-level [46].

A significance level of each supra-threshold connection was

estimated by locating observed correlation coefficients on the null

distribution.

Because Bonferroni correction and FDR procedure are

performed for p-values which do not carry the sign information

of the edges’ correlation coefficients, comparison of those methods

with either our method or extreme statistics may be unfair, which

only use one-side of the correlation coefficients. Thus, we

performed Bonferroni correction and FDR procedure for edges

with negative and positive correlations separately. We note that

this is already less conservative than using all edges of which

correlation coefficients are real-valued by reducing the number of

edges to around half.

Clinical Application

Objectives
In this experiment, we aim to validate the efficacy of the

proposed method using clinical data of patients with subcortical

vascular cognitive impairment (SVCI). Specifically, we constructed

a structural brain connectivity matrix for each patient by

employing the diffusion tensor imaging technique, and we tested

if each edge weight (strength) is correlated with severity of the

disease. As a severity measure, we used the CDR-SOB score for

each patient. The expected output of our method is a set of sub-

networks consisting of neighboring connections that are signifi-

cantly correlated with the disease severity. We further compared

our method with Bonferroni correction, FDR procedure, and

extreme statistics.

Subject recruitment and MR image acquisition
We recruited 36 patients with subcortical vascular mild

cognitive impairment (svMCI) and 41 patients with subcortical

vascular dementia (SVaD). All subjects had been clinically

diagnosed at Samsung Medical Center between October 2007

and August 2010. Patients with SVaD met the diagnostic criteria

for vascular dementia as determined by the Diagnostic and

Statistical Manual of Mental Disorders–Fourth Edition (DSM-IV).

All SVaD patients exhibited signficant ischemia as determined by

MRI scans, defined as a cap or band $ 10 mm as well as a deep

white matter lesion $ 25 mm (a modification of the Fazekas

ischemia criteria [70]). The 41 SVaD patients have been

previously described regarding clinical characteristics and [11C]

PiB-PET findings [71]. Patients with svMCI were diagnosed using

the Petersen criteria [72] with the inclusion of the following

modifications: 1) subjective cognitive complaints by the patient or

his/her caregiver; 2) normal Activity of Daily Living 3) objective

memory decline assessment below the 16th percentile on neuro-

psychological tests, 4) absence of dementia; and 5) presence of a

subcortical vascular feature defined as both a focal neurological

symptom/sign and significant ischemia on MRI, as for SVaD. We

confirmed that no patient had territory infarctions or high signal

abnormalities on the MRI due to radiation injury, multiple

sclerosis, vasculitis or leukodystrophy. We included only patients

with pure subcortical vascular cognitive impairment, by excluding

patients who showed positive Pittsburgh compound-B (PiB) in

PET scans [73], where patients were considered PiB-positive if

their global PiB retention ratio was over 1.5 from the mean of the

normal controls [71].

The study was approved by the Institutional Review Board of

the Samsung Medical Center. We obtained written informed

consent from all the participants. Structured written consent

procedures were used by research staff when approaching

participants with cognitive impairment. The assent of ‘‘next of

kin’’ was required for participation of people with cognitive

impairment who were unable to provide informed consent.

Severity of all patients was evaluated with a widely-used clinical

dementia rating sum of boxes (CDR-SOB) score. It measures

cognitive functions as a sum of six categories: memory, orientation,

judgment and problem solving, involvement in community affairs,

involvement at home and in hobbies, and personal care with the

scale of 0, 0.5, 1, 2 and 3 for each item [74–77]. CDR-SOB is well

matched with the global staging score, and varies enough to be

treated as a quantitative score for a statistical test [76,78]. It is also

beneficial for evaluating mild cognitive impairment [79] due to its

nature of higher resolution than the global staging score. We also

measured the mini mental state examination for Korean (K-

MMSE) [80,81].

T1 and diffusion weighted images (DWI) were acquired from all

77 subjects at Samsung Medical Center using the same 3.0 T MRI

scanner (Philips 3.0T Achieva). T1 weighted MRI data was

recorded using the following imaging parameters: 1 mm sagittal

slice thickness, over-contiguous slices with 50% overlap; no gap;

repetition time (TR) of 9.9 ms; echo time (TE) of 4.6 ms; flip angle

of 8u; and matrix size of 2406240 pixels, reconstructed to

4806480 over a 240 mm field of view. In the whole-brain

diffusion weighted MRI examination, sets of axial diffusion-

weighted single-shot echo-planar images were collected with the

following parameters: 1286128 acquisition matrix,

1.7261.7262 mm3 voxels; reconstructed to 1.7261.7262 mm3;

Correlational Network Analysis with Behaviors
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70 axial slices; 2206220 mm2 field of view; TE 60 ms, TR

7383 ms; flip angle 90u; slice gap 0 mm; b-factor of 600 s/

mm2.With the baseline image without diffusion weighting (the

reference volume), diffusion-weighted images were acquired from

45 different directions. All axial sections were acquired parallel to

the anterior commissure-posterior commissure line.

Image preprocessing and network construction
We used the automated anatomical labeling (AAL) template

[82], which contains 78 cortical regions and 12 sub-cortical

structures. For correspondence between the AAL template and

every subject’s diffusion weighted image, we nonlinearly registered

the AAL template to their diffusion weighted images separately.

For each subject, we first linearly registered the T1-weighted

image to the reference volume of the diffusion image using the

FSL Linear Registration Tool (FLIRT) [83,84] and nonlinearly to

the ICBM152 T1 template in the MNI space where the AAL

template are defined using the FSL Nonlinear Registration tool

(FNIRT) [85,86]. An expert neuroanatomist (Dr. Sang Won Seo,

one of the coauthors of this paper) visually validated this

registration procedure. We mapped the AAL atlas to individuals’

diffusion spaces using the inverse of the nonlinear transformation

from T1 spaces to the MNI space, and the linear transformation

from T1 to diffusion spaces, with the nearest neighbor interpo-

lation method to preserve the discrete labels of the AAL atlas. For

diffusion weighted images, we corrected the eddy current

distortions and the head motions by registering volumes with

non-collinear diffusion directions to the reference image using

FSL.

In order to quantify edge weights (strengths), we employed a

deterministic tractography algorithm [87] implemented on the

DTI-studio [88]. We initiated fiber tracking from voxels whose FA

values are greater than 0.2, with following stopping criteria: 45

degree angle threshold and 0.2 FA threshold [89]. After finishing

the whole-brain tractography, we counted the number of

streamlines between any pair of regions defined by the AAL atlas,

resulting in a 90690 connectivity matrix for each subject. We

discarded too weak edges whose number of streamline is below 3

to reduce artifact of tracking [90].

Network Analysis
We performed permutation testing with 10000 permutations in

order to identify connections that are correlated with the disease

severity. Specifically, we computed a Spearman partial correlation

coefficient between each edge weight and the severity score, CDR-

SOB, by taking age and gender as covariates. The cognitive

deficits of patients could be the combination of disease-related

symptoms and cognitive changes due to normal ageing. The total

number of streamlines could be affected by the gender. Thus the

effects of age and gender need to be corrected by taking them as

covariates. In this experiment, we observed that the CDR-SOB

scores were not normally distributed (Lilliefors’ test for normality

[91], p,0.01). We therefore employed Spearman correlation for

computing correlation coefficients.

In our cluster-based method, we systematically searched the

initial threshold, rinitial
h , within the range between 20.5 and 0.5

with 0.01 step-size. The results were then reported with

empirically selected thresholds, which provided stable clusters

over multiple runs with different permutation vectors and

disturbance of the initial thresholds. We used both 5% and 10%

a-level for Bonferroni correction and the extreme statistics, and q-

values of 0.05 and 0.1 for the FDR procedure to compare with our

method.

For all tables and figures, we used abbreviated labels of the

AAL90 atlas (Table S1). To denote the left and the right

hemisphere, we attached L and R at the end of each abbreviated

name. For figures, we used in-house Matlab codes, which show

nodes of the AAL90 and significant edges over a transparent

cortical mesh surface of the freesurfer’s average subject [92,93]. All

analysis and visualization were performed using Matlab 8.0 (32 bit

version, R2012b, Mathworks, Natick, USA).

Demographic result
We recruited 36 svMCI and 41 SVaD patients (Table 1).

Because our primary concern is not comparing brain connectivity

between two groups but finding network connections correlated

with the severity scores in each group independently, two groups

do not have to be age and gender matched. However, for

comparison of the identified sub-networks from each group, we

controlled age, gender, and education duration between two

groups. Specifically, age (two-sample t-test, t = 0.88, p = 0.38),

gender (Chi-square test, x2 = 1.94, p = 0.16) and education

duration (Wilcoxon’s ranksum test, z = 0.19, p = 0.85) of two

groups were not different each other. SVaD patients had

significantly lower cognitive functionality (KMMSE, ranksum test,

z = 5.30, p,0.0001), and significantly higher severity (CDR-SOB,

ranksum test, z = –6.65, p,0.0001) than those with svMCI. We

note that other measures except age were not normally distributed

(Lilliefors’ test for normality, [91]): education duration (svMCI,

p = 0.0036; SVaD, p = 0.0116), KMMSE (svMCI, p = 0.0382;

SVaD, p = 0.0174), and CDR-SOB (svMCI, p = 0.0092; SVaD,

p = 0.0028). Thus, we used non-parametric Wilcoxon’s ranksum

test for group analysis. We confirmed that CDR-SOB itself was

not correlated with age (Spearman, svMCI, r = 0.25, p = 0.15;

SVaD, r = 0.09, p = 0.58), and gender (Spearman, svMCI, r = 0.10,

p = 0.57; SVaD, r = –0.02, p = 0.92).

Clinical result: svMCI study
The number of edges negatively correlated with the disease

severity score (CDR-SOB) is more than double of the number of

edges positively correlated with the severity score (1356 edges were

negatively correlated with the severity score, and 526 edges were

positively correlated with the severity score). We employed

Bonferroni correction (a= 0.05 and 0.1), FDR procedure

(q = 0.05 and 0.1) and extreme statistics (5% and 10% a-level)

for multiple comparison correction, and no connection was

significant after the corrections. We employed the Bonferroni

correction and the FDR procedure for 1356 edges negatively

correlated with the severity score for fair comparison.

Table 1. Demography of participants.

Group svMCI SVaD Comparison

The number of subjects 36 41

Age (years) 73.2265.91 71.8867.36 t = 0.88, p = 0.38

Gender ratio (F/M) 11/25 20/21 x2 = 1.94, p = 0.16

Education duration
(years)

8.4465.13 8.1564.89 z = 0.19, p = 0.85

KMMSE 26.7562.01 21.806 4.33 z = 5.30, p ,0.0001*

CDR SOB 1.2160.71 5.9363,71 z = –6.65, p
,0.0001*

*: significant, We used a 2-sample t-test for group difference in age, Chi-Square
test for gender ratio difference, and Wilcoxon’s ranksum test for the others.
doi:10.1371/journal.pone.0072332.t001
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On the contrary, the proposed cluster-based correction method

provides a sub-network containing 38 connections (p = 0.0079,

Figure 3, Table 2) with the initial threshold rinitial
h = –0.39. We

empirically selected the initial threshold, which provided stable

clusters over multiple runs with different permutation vectors and

small perturbation of the initial thresholds. Small changes in the

initial threshold did not alter the result much. The results were

significant when the initial threshold is located in between 0 and –

0.408. No significant result was observed with a positive initial

threshold.

Clinical result: SVaD study
The number of edges negatively correlated with the disease

severity score (CDR-SOB) is 50% more than the number of edges

positively correlated with the severity score (954 edges were

negatively correlated with the severity score, and 601 edges were

positively correlated with the severity score). We employed

Bonferroni correction (a= 0.05 and 0.1), FDR procedure

(q = 0.05 and 0.1) and extreme statistics (5% and 10% a-level)

for multiple comparison correction, and no connection was

significant after the corrections. We employed Bonferroni correc-

tion and the FDR procedure for 1012 edges negatively correlated

with the severity score for fair comparison.

On the contrary, our method identified a sub-network

containing 45 connections (p = 0.0432, Figure 4, Table 3) with

the initial threshold rinitial
h = –0.32. We empirically selected the

initial threshold, which provided stable clusters over multiple runs

with different permutation vectors and small perturbation of the

initial thresholds. Small changes in the initial threshold did not

alter the result much. The results were significant when the initial

threshold is in the range of –0.325 # rinitial
h # –0.318 and –0.444 #

rinitial
h # –0.416 No significant result was observed with a positive

threshold.

Reproducibility
In order to show reproducibility of our results, we repeated the

same procedure for 10 randomly generated sub-sets of each group

data. Specifically, we generated 20 age, gender, education

duration, KMMSE, and CDR-SOB matched sets by randomly

removing 10% of the subjects from each group. We then

performed the proposed cluster-based statistics for the sub-sets

separately. The results were compared to those of the original

experiment: statistical significance and the identified sub-networks

were reported for the comparison purpose. For the svMCI group,

the reproducibility experiments showed that the results were

statistically significant for all 20 random sets and the identified sub-

networks contained more than 96% of the network connections

extracted from the original experiment in average. For the SVaD

group, 18 among 20 different random sets showed significant

results, which contained more than 80 % of the network

connections identified by the original experiment in average.

Discussion

Methodological issues
Our cluster-based analysis method identifies sub-networks of the

brain connectivity associated with a specific cognitive function

represented by a behavioral measure. A partial correlation

coefficient is calculated for each edge with the behavioral score

by taking other measures as covariates. The computation is

repeated for randomly generated reordering of the behavioral

scores. With a certain initial threshold, we then extract sub-

networks of the brain connectivity by clustering supra-threshold

connections. Finally, significance levels of the identified sub-

networks are estimated using the permutation distribution of

maximal cluster extents computed from each ordering of the

behavioral measures.

Table 2. The identified sub-network correlated with the disease severity in patients with svMCI (rinitial
h = –0.39, p = 0.0079).

Connections r p-value{ Connections r p-value{

PoCG.R - STG.R –0.5517 0.0005 PreCG.R - SFGdor.R –0.4276 0.0107

IFGtri.L - SFGmed.L –0.5394 0.0012 PCUN.R - PUT.L –0.4224 0.0131

PCUN.L - PAL.L ` –0.5119 0.0015 MTG.L - TPOmid.L –0.4214 0.0126

SFGmed.L - DCG.L ` –0.5116 0.0023 INS.L - SPG.R ` –0.4203 0.0017

SMA.L - SMA.R –0.5006 0.0025 DCG.L - PoCG.L –0.4199 0.0014

PreCG.L - PoCG.L –0.4983 0.0036 INS.L - AMYG.L –0.4145 0.0109

PreCG.R - PoCG.R –0.4894 0.0029 INS.L - SOG.L ` –0.4133 0.0162

INS.R - PoCG.R –0.4763 0.0045 ORBmid.L - SFGmed.L –0.4113 0.0123

SFGmed.R - PUT.L –0.4740 0.0041 SPG.R - PUT.L –0.4105 0.0123

ACG.L - PCUN.L ` –0.4700 0.0058 THA.L - TPOmid.L –0.4102 0.0182

MOG.L - TPOmid.L ` –0.4671 0.0066 ROL.R - IPL.R –0.4081 0.0144

MTG.L - ITG.L –0.4660 0.0052 SMA.R - PAL.L –0.4080 0.0186

SFGdor.R - IFGoperc.R –0.4626 0.0058 PCUN.L - STG.R –0.4039 0.0169

IPL.L - MTG.L –0.4602 0.0069 SFGdor.R - CAL.R ` –0.4006 0.0152

ANG.R - STG.R –0.4579 0.0065 SOG.L - SPG.L –0.3990 0.0221

SMA.L - PCL.L –0.4488 0.0093 STG.L - STG.R –0.3987 0.0167

IPL.R - ANG.R –0.4449 0.0097 ORBmid.L - SFGmed.R –0.3986 0.0211

MOG.L - STG.L –0.4446 0.0096 TPOmid.L - ITG.L –0.3968 0.0190

SPG.R - PCUN.L –0.4314 0.0134 SFGmed.R - PAL.L –0.3956 0.0186

{: uncorrected, `: the anterior-to-posterior connectivity
doi:10.1371/journal.pone.0072332.t002
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The proposed method was validated using clinical data

involving patients with both svMCI and SVaD. In the experiment,

we observed that our method was more sensitive in multiple

comparison correction than other methods: Bonferroni correction,

FDR procedure and extreme statistics. Bonferroni correction with

a-level of both 0.05 and 0.10, and FDR procedure with q of both

Figure 3. The identified sub-network correlated with the disease severity: subcortical vascular mild cognitive impairment. The figure
shows in the lateral view of the left hemisphere (A), the transverse view of both hemispheres (B), and the lateral view of the right hemisphere (C). The
identified connection was shown as an orange line, whose thickness represents the magnitude of its correlation coefficient between its edge weight
and CDR-SOB. The identified node was shown with a colored sphere, whose color represents the lobe to which it belongs: frontal (cyan), limbic (blue),
central (magenta), temporal (green), parietal and occipital (red).
doi:10.1371/journal.pone.0072332.g003

Table 3. The identified sub-network correlated with the disease severity in patients with SVaD (rinitial
h = –0.32, p = 0.0443).

Connections r p-value{ Connections r p-value{

SFGdor.L - IFGtri.L –0.5040 0.0009 SPG.R - PUT.R ` –0.3555 0.0302

ORBinf.R - PUT.R` –0.4919 0.0022 SFGdor.R - IFGtri.R –0.3540 0.0243

SFGdor.L - IFGoperc.L –0.4901 0.0018 ACG.L - PCUN.L ` –0.3517 0.0281

ANG.L - MTG.L –0.4787 0.0023 SFGdor.R - PUT.L –0.3493 0.0263

ORBsupmed.R - PAL.R` –0.4492 0.0031 CUN.R - SPG.R –0.3444 0.0353

IFGoperc.L - IPL.L ` –0.4438 0.0045 PreCG.R - MTG.R –0.3396 0.0353

ROL.L - IPL.L –0.4345 0.0050 PCUN.L - PAL.L ` –0.3382 0.0309

SPG.L - PUT.L ` –0.4268 0.0064 SMG.L - PUT.L –0.3353 0.0328

TPOsup.L - MTG.L –0.4239 0.0066 MOG.R - SPG.R –0.3337 0.0383

PoCG.R - PAL.R –0.4137 0.0098 CUN.R - SOG.L –0.3335 0.0383

ORBinf.L - INS.L –0.4098 0.0123 SPG.R - MTG.R –0.3330 0.0386

INS.L - CAL.L ` –0.4085 0.0081 INS.R - PUT.R –0.3327 0.0400

STG.L - TPOsup.L –0.4071 0.0126 LING.R - SPG.R –0.3322 0.0338

PoCG.L - PAL.L –0.4064 0.0116 IOG.L - MTG.L –0.3306 0.0388

ORBmid.R - IFGtri.R –0.3818 0.0137 SMA.L - INS.L –0.328 0.0387

ROL.R - PoCG.R –0.3804 0.0174 IFGtri.R - PUT.R –0.3279 0.0447

SFGdor.L - SMA.L –0.3778 0.0189 FFG.R - MTG.R –0.3266 0.041

LING.R - TPOsup.R ` –0.3753 0.0189 ACG.L - CAL.L ` –0.3253 0.0436

MOG.L - TPOsup.L ` –0.3744 0.0169 PoCG.R - MTG.R –0.3228 0.046

CAL.R - IOG.L –0.3673 0.0181 SFGdor.L - DCG.R –0.321 0.0425

LING.R - IOG.L –0.3659 0.0130 INS.L - IOG.L ` –0.3209 0.0444

SFGdor.L - MFG.L –0.3642 0.0241 MFG.R - PUT.R –0.3201 0.0442

IPL.L - MTG.L –0.3576 0.0270

{: uncorrected, `: the anterior-to-posterior connectivity.
doi:10.1371/journal.pone.0072332.t003
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0.05 and 0.10 did not assert any statistically significant findings.

Their thresholding p-values were smaller than the largest p-value

of the connections in the sub-network identified by our method

(Figure 5 A&B, svMCI, p = 0.0221, SVaD, p = 0.0460). Though

the extreme statistics is less conservative than Bonferroni

correction and FDR procedure, it is still more conservative than

the cluster-based correction (Figure 5 C&D). The magnitude of the

selected initial threshold in the proposed method is smaller than

that of the global threshold in the extreme statistics even with the

a-level of 0.10 (svMCI, r0:10
h,ext = –0.59; SVaD, r0:10

h,ext = –0.56). This

superior sensitivity of the cluster-based statistics is consistent with

previous studies that compared cluster-based statistics with FDR

[49,50,60]

Though our method shares the fundamental concept with that

of the NBS, it is different from the NBS in three aspects. First, our

method is for the correlational study not for group comparison.

Thus, it captures direct correlation with cognitive functions

without the healthy control group. Second, we can resolve the

normality issue of the connectivity data by employing non-

parametric Spearman correlation coefficients. Third, our method

is simpler to use since we employ partial correlation coefficients for

observing the effect of a certain cognitive measure controlling

other effects. The current NBS toolbox can perform the regression

study using the general linear model (GLM). The partial

correlation coefficient counts the effects of the compounding

factors, similar to the GLM. Since the GLM with the all factors

only provides the overall goodness-of-fit with the all factors, to

evaluate the sole effect of the factor of interest (in our clinical

application, disease severity), we need to fit the GLM twice: with

the factor of interest and without it.

Our method can be employed in various applications for

identifying sub-networks correlated with a certain cognitive

function. Task-specific approaches using functional MRI can also

be employed for the same purpose. Specifically for the fMRI

studies, when performing a certain cognitive task, synchronized

activation of various brain regions may have a role in the cognitive

function coherent with the task [94]. Hipp et al. localized the sub-

Figure 4. The identified sub-network correlated with the disease severity: subcortical vascular dementia. The figure shows in the lateral
view of the left hemisphere (A), the transverse view of both hemispheres (B), and the lateral view of the right hemisphere (C). The identified
connection was shown as an orange line, whose thickness represents the magnitude of its correlation coefficient between its edge weight and CDR-
SOB. The identified node was shown with a colored sphere, whose color represents the lobe to which it belongs: frontal (cyan), limbic (blue), central
(magenta), temporal (green), parietal and occipital (red).
doi:10.1371/journal.pone.0072332.g004

Figure 5. Comparison to the other multiple comparison
correction methods. To compare with Bonferroni correction and
FDR procedure, we drew histogram of p-values in log-scale whose
correlation coefficients are negative, showing the thresholding p-value
of Bonferroni correction with a= 0.10, p0:10

Bonf (thin solid vertical line), and
the maximum of uncorrected p-values of network connections in the
proposed cluster-based correction, pmax (thick solid vertical line), for
patients with svMCI (A) and SVaD (B). We note that the thresholding p-
values of the FDR procedure with q = 0.05 and 0.1 cannot be shown in
log-scale, because they both are exactly zero, leading no significant
findings. To compare with extreme statistics, we drew the histogram of
raw correlation coefficients (Spearman, partial correlation adjusting age
and gender), showing 10% threshold of the extreme statistics, r0:10

h,ext

(thin solid vertical line), along with the initial threshold, rinitial
h (thick solid

vertical line), in patients with svMCI (C) and SVaD (D), where dotted
vertical line indicates the zero correlation coefficient.
doi:10.1371/journal.pone.0072332.g005
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networks correlated with the performance of the given task using

the Spatial Pairwise Clustering (SPC), another form of cluster-

based multiple comparison correction for network connections

[50,51]. However, our method is more beneficial than the method

with task-specific functional MRI in two aspects. First, it does not

require a special MR image recording, a task-specific functional

MRI: instead, our method is independent of the brain network

construction method. Second, the proposed method can be

applicable to any behavioral measure which is not connected

with a specific task, such as Intelligence Quotient (IQ), age, and

disease severity.

Similar to the network based statistics (NBS) [49], the identified

network connections in our method depend on the selection of an

initial threshold, though the estimated significance level is always

valid [20]. The NBS suggests testing for a threshold in a range of

values. Accordingly, it is also recommended for our method to use

a series of threshold values and find one with stable results. Unlike

the NBS, however, selecting an initial threshold for correlation

coefficient is more delicate than that for t-statistics. It is well-known

that there exists a nonlinear mapping between correlation

coefficients and t-statistics [65] (Figure S1). For small values of

the correlation coefficient, the mapping is approximately linear.

However, as the correlation coefficient increases, the correspond-

ing t-value follows a super-linear function. Therefore, finer control

is required for selecting an initial r-threshold as the threshold

increases. Moreover, such a super-linear growth starts at earlier

position as the number of subjects increases (Figure S1). We

therefore recommend to tune the initial threshold more carefully

at larger correlation coefficients and also for bigger group size.

Under this circumstance, one may want to first convert the

correlation coefficient to the corresponding t-value, and then

control the initial threshold. However, this is not feasible in the

case of employing the Spearman partial correlation coefficients

since the mapping between the Spearman correlation coefficient

and the t-statistics is not well-established.

It would be interesting to compare our method with the analysis

of network motifs [95,96]. A network motif is a small characteristic

sub-network, which could play a role of building blocks of the

complex networks. While both the motif analysis and the proposed

method identify sub-networks without a control group, they are

different in three aspects. First, a motif is a small set of brain

connections (usually connecting 3–5 brain regions), but our

method asserts bigger sub-networks in general. Second, implica-

tion of the identified connection is different. In the motif analysis,

an identified edge implies existence of the connection. However, in

our method, each edge in the identified sub-networks contains a

correlation coefficient between its weight and a behavioral

measure of interest, and therefore it implies a significance level

for the correlational study. Third, our method requires a group of

subjects, while the motif analysis can be performed for a single

subject. Thus the motif analysis requires additional measures such

as the occurrence frequency of each network motif for a statistical

test.

We further emphasize that the purpose of our method is not for

differentiating one group from the other. As directly correlating

the network connections (edge weights) with the behavioral

measures, we identified sub-networks that are responsible for the

changes represented by the behavioral measures. We note that the

clustering technique has also been used for other purposes:

clustering brain regions to investigate modular organization of the

brain networks [12,97], clustering brain regions in a feature space

to find uncommon network motifs [98,99], clustering streamlines

extracted from the DTI to identify the major fiber bundles

[100,101], and clustering subjects in a feature space to differentiate

structural networks of one group from the other [102,103].

Clinical Interpretations
In the clinical application involving patients with svMCI and

SVaD, we identified sub-networks of which connections are

correlated with the disease severity. All the identified connections

were negatively correlated with the severity score for both groups.

The result indicates that the white matter connectivity is becoming

more disrupted in the identified sub-networks as the disease

becomes more severe. We observed that the identified sub-

networks were reliable in statistical significance levels even with

greater magnitude of the initial threshold. Furthermore, the results

were also reproducible for both groups. We therefore infer that the

identified sub-networks were core sets of the white matter

connectivity, which are responsible for deteriorating subcortical

vascular dementia-related symptoms.

Our clinical results are consistent with previous work, which

show disrupted white matter connectivity in patients with the

subcortical vascular dementia (SVD) [38,61,104]: abnormal

frontal-subcortical circuits and disrupted long association fibers.

The abnormal frontal-subcortical circuits include brain regions in

the prefrontal cortex and subcortical regions such as the anterior

cingulate gyrus, the dorsomedial prefrontal cortex, the orbital

prefrontal cortex, the inferolateral prefrontal cortex, the middle

frontal gyrus, the caudate, the accumbens, the thalamus, and the

pallidum. Also, widespread vascular problems may affect the long

association fibers including the fiber bundles from the anterior

parts to the posterior parts of the brain, such as cingulum, superior

longitudinal fasciculus and fronto-occipital fasciculus. On one

hand, we observed heavily decreased white matter connectivity in

the frontal lobes, especially the prefrontal cortex. In svMCI, the

identified sub-network included connections between the prefron-

tal regions and subcortical regions: the both superior frontal gyri

(SFGmed.L, SFGmed.R, and SFGdor.R), the orbital part of the

left middle frontal gyrus (ORBmid.L), the both inferior frontal gyri

(IFGtri.L and IFGoperc.R), the left anterior cingulate gyrus

(ACG.L), the left pallidum (PAL.L), the left putamen (PUT.L), the

left amygdala (AMYG.L), and the left thalamus (THA.L). In

SVaD, the identified sub-network includes the both superior

frontal gyri (SFGdor.L, SFRdor.R and ORBsupmed.R), the both

middle frontal gyri (MFG.L,MFG.R, ORBmid.R), the inferior

frontal gyrus (IFGtri.L, IFGtri.R, IFGoperc.L and ORBinf.L,

ORBinf.R), the left and right putamen (PUT.L and PUT.R), and,

the left and right pallidum (PAL.L and PAL.R). These regions are

all related to the brain regions in the frontal-subcortical circuits.

Because the identified connections were all negatively correlated

with the disease severity scores, our results showed the disrupted

fronto-subcortical circuits. On the other hand, the identified sub-

networks also included the anterior-to-posterior connections, those

are correlated with the disease severity (Marked with { in Table 2

and 3). The implication of this result could explain the disruption

of long association fibers in patients with SVD [38,61].

It is interesting to observe that the disease-related network

connections identified for each group were not similar to each

other. Only three connections were overlapped among about forty

connections (38 connections in svMCI and 45 connections in

SVaD). The overlapped connections included connections be-

tween the left anterior cingulate cortex (ACG.L) and the left

precuneus (PCUN.L), between the left pallidum (PAL.L) and the

left precuneus (PCUN.L), and between the left middle temporal

gyrus (MTG.L) and the left inferior parietal lobule (IPL.L). The

first two connections were anterior-to posterior long associate

connections. Considering that svMCI is an earlier stage of SVaD,
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this exclusiveness in the identified sub-networks has some

implications. On one hand, the result implies that the specific

sub-network of the white matter connectivity disrupted in subjects

with svMCI is not much correlated with the disease severity once

they become clinically impaired. This could be explained from the

fact that the identified set of connections in the svMCI group was

already disrupted too much at the early stage. On the other hand,

some brain connectivity is significantly disrupted as the disease

develops further, while those connections are not that altered at

the stage of mild cognitive impairment. Indeed, it is well-known

that brain regions that might be associated with the pathology of

the Alzheimer’s disease (AD) gradually expand as the disease

develops from mild cognitive impairment to severe AD. Our

finding therefore implies that such phenomenon in AD is also valid

in SVD: the disruption of the white matter connectivity occurs as

different locations along the course of the disease severity. The

existence of such exclusive sub-networks that are affected by

svMCI and SVaD is worthy to be further investigated in future.

Further, we observed different patterns in the scatter plots of the

edge weights with regard to the disease severity between the two

groups: svMCI and SVaD. For simplicity, we discuss about this

observation using two representative network connections: the

connection between the medial surface of the left superior frontal

gyrus (SFGmed.L) and the left median cingulate and paracingulate

gyri (DCG.L) from the identified sub-network in patients with

svMCI and the connection between the orbital part of the left

inferior frontal gyrus (ORBinf.L) and the left insula (INS.L) for

SVaD (Figure 6). We selected those connections because they are

dominantly correlated to the disease severity score. Those

connections did not have strong correlation with age (Spearman,

|r| , 0.18) and gender (Spearman, |r| , 0.26), and thus their

simple correlation coefficients with the sole disease severity without

covariates may considerably capture their behavior over the

disease severity with the similar large magnitudes (the former edge

in svMCI: r = –0.54; the latter edge in SVaD: r = –0.41). In

Figure 6, we showed their linear regression lines to delineate the

trend of changes. To avoid confusion, we showed their Pearson

correlation coefficients, whose trends were similar to the Spear-

man partial correlation coefficients. The former connection

decreases drastically in patients with svMCI, showing strong

correlation; however, in patients with SVaD, about half of subjects

had zero or very low edge weights (20 among 41), resulting low

correlation (Figure 6 A&B). The latter connection sustained its

edge weight with the level of around fifty in patients with svMCI

and decreased drastically in patients with SVaD, showing strong

correlation only in patients with SVaD (Figure 6 C&D).

Strengths of the present study include the comprehensive scan

protocol, including high quality clinical diffusion MRI data.

Specifically, our data set includes only patients with pure

subcortical vascular cognitive impairment, excluding all subjects

who showed positive Pittsburgh compound-B (PiB) in PET scans

[73]. It is well-known that in the early stage of cognitive

impairment, it is often too hard to distinguish other forms of

cognitive impairment such as Alzheimer’s disease (AD) from the

subcortical vascular cognitive impairment only with the symptoms.

Employing PET scans with Pittsburgh compound-B, we excluded

other forms of cognitive impairment whose cortices were

deteriorated rather white matter connectivity.

Methodological Limitations
Our method exploits a partial correlation coefficient as a

primary statistics. Specifically, in our clinical application, the

Spearman correlation coefficient was used to model the relation-

ship between the edge weight and the disease severity. This model,

however, is limited to capture complex relationship, such as a

quadratic (parabolic) function. In order to resolve this issue, one

may employ the general linear model. However, as in our clinical

application, if one can expect a monotonic mapping between an

edge attribute and a behavioral measure, then the simple partial

correlation coefficient might be sufficient.

Similar to the network-based statistics (NBS), the cluster-based

approach for multiple comparison correction requires an arbitrary

selection of an initial threshold. In our experiments, we searched a

range of values for threshold, and selected one with stable results.

In order to avoid this empirical selection of initial thresholds, one

may employ the threshold-free cluster estimation method

proposed by Smith and Nichols [59].

Conclusion

In this paper, we proposed a cluster-based method for

identifying sub-networks that are significantly correlated with

behavioral measures. Our method exploits the partial correlation

coefficient for modeling the relationship between network

connections and a specific behavioral measure of interest, while

taking other measures as covariates. We validated the efficacy of

our method using clinical data involving patients with subcortical

vascular dementia: the results showed that our method is

Figure 6. Edge weights over the disease severity score for two
representative edges of the identified sub-networks in pa-
tients with svMCI and SVaD: the edge between the medial
surface of left superior frontal gyrus (SFGmed.L) and the left
median cingulate and paracingulate gyri (DCG.L) in patients
with svMCI (A) and SVaD (B); and the edge between the orbital
part of left inferior frontal gyrus (ORBinf.L) and left insula
(INS.L) in patients with svMCI (C) and SVaD (D). A circle
represents each subject, dotted horizontal lines represent zero edge
weights, and solid lines represent linearly regressed lines. The noted
correlation coefficient and p-values were calculated using Pearson
correlation without any covariates. The former edge (A&B) belonged to
the identified sub-network in patients with svMCI, and thus had a
strong correlation coefficient in patients with svMCI; however, in
patients with SVaD, about half of the subjects had zero or very low
weights (20 over 45), resulting in a low correlation coefficient. The latter
edge (C&D) belonged to the identified sub-network in patients with
SVaD, and thus had a strong correlation coefficient in patients with
SVaD; however, in patients with svMCI it is not the case.
doi:10.1371/journal.pone.0072332.g006
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statistically valid but more powerful than Bonferroni correction,

FDR procedure, and extreme statistics. We expect wide applica-

tions of the proposed method because it does not depend on

methods of network construction. The proposed method can be

employed not only for the structural/functional brain connectivity

but also for edge-specific network measures such as edge

betweenness centrality [105,106]. Also, besides severity scores of

a certain disease, any behavioral measure can be correlated with

the brain network. For examples, it is feasible to identify sub-

networks correlated with age/intelligence in healthy subjects or

with hallucination in patients with schizophrenia using a sub-score

of PANSS scale [107].
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