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Abstract

RNAseq and microarray methods are frequently used to measure gene expression level. While similar in purpose, there are
fundamental differences between the two technologies. Here, we present the largest comparative study between
microarray and RNAseq methods to date using The Cancer Genome Atlas (TCGA) data. We found high correlations between
expression data obtained from the Affymetrix one-channel microarray and RNAseq (Spearman correlations coefficients of
,0.8). We also observed that the low abundance genes had poorer correlations between microarray and RNAseq data than
high abundance genes. As expected, due to measurement and normalization differences, Agilent two-channel microarray
and RNAseq data were poorly correlated (Spearman correlations coefficients of only ,0.2). By examining the differentially
expressed genes between tumor and normal samples we observed reasonable concordance in directionality between
Agilent two-channel microarray and RNAseq data, although a small group of genes were found to have expression changes
reported in opposite directions using these two technologies. Overall, RNAseq produces comparable results to microarray
technologies in term of expression profiling. The RNAseq normalization methods RPKM and RSEM produce similar results on
the gene level and reasonably concordant results on the exon level. Longer exons tended to have better concordance
between the two normalization methods than shorter exons.
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Background

Gene expression analysis is essential for biomedical research.

Expression profiling is the simultaneousmeasurement of the cellular

concentration of different messenger RNAs.Microarrays have been

the most popular high-throughput gene expression profiling

technology for several decades. Recently, the introduction of

RNAseq technology has had a revolutionary impact on the field of

expression research. RNAseq refers to the use of next-generation

sequencing (NGS) technologies to sequence cDNA in order to get

information about a sample’s RNA content. Compared to the

microarray technology, the RNAseq method offers several distinct

advantages. First, the detection range of RNAseq is not limited to a

set of predetermined probes as with the microarray technology, so

RNAseq is capable of identifying new genes. Second, the resolution

of a microarray is limited to the gene level for most arrays and the

exon level for specially designed exon arrays. On the other hand,

RNAseq can detect expression at the gene, exon, transcript, and

coding DNA sequence (CDS) levels. Finally and most importantly,

RNAseq can detect structural variants such as alternative splicing

and gene fusion.With thematurity ofNGS technologies, the price of

RNAseq has become comparable to microarrays. The competitive

price and additional genomic information make RNAseq an

attractive alternative technology for expression profiling. Some

researchers have predicted the inevitable replacement ofmicroarray

by RNAseq [1,2]. However, before this replacement can occur, we

must understand the differences and similarities of these two

technologies.

There are two standard microarray detection paradigms: one-

channel and two-channel, also known as one-color and two-color

detection. Two-channel microarrays are hybridized with cDNA

from a pair of samples to be compared, with one sample labelled

with fluorescent Cy3 at a fluorescence emission wavelength of

570 nm (green), and the other with Cy5 at a fluorescence emission

wavelength of 670 nm (red). After labelling, the two samples are

mixed and hybridized to one microarray. The microarray is then

scanned for fluorescence intensity. Gene expression identified from

a two channel microarray is often represented as a ratio of Cy3/

Cy5. In one-channel microarrays, usually only Cy3 is used and

only a single sample is hybridized to one microarray. Thus, two-

channel microarrays do not truly reflect the abundance levels of a

gene transcript but rather the relative abundance between two

samples. A study [3] has shown good agreement with high

correlation coefficients and high concordance of differentially

expressed gene lists between one-color and two-color microarrays.

The Microarray Quality Control (MAQC) project has shown

that there is a high level of intra-platform consistency across test

sites and inter-platform concordance in terms of genes identified as

differentially expressed by microarray methods [4]. Similar to

these microarray tests, RNAseq data has been shown to estimate

expression level with high reproducibility [5]. The majority of the

previous studies showed moderate to good concordance rate
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between microarray and RNAseq results. However, few studies

have focused on human gene expression consistency between

RNAseq and microarray methods. The majority of existing studies

have focused on non-human samples such as Candida parapsilolis

[6], Candida albicans [5], fission yeast Schizosaccharomyces

pombe [7], Drosophila melanogaster [8], Saccharomyces cerevi-

siae [9], Caenorhabditis elegans [10], mouse tissues [10,11], and

rat tissues [12]. A few studies [5,13,14] have performed

comparisons using human samples or cell lines, but the sample

sizes of those studies were very limited. A large scale, compre-

hensive analysis of RNAseq and microarray gene expression

consistency using human data would benefit the research

community and serve as guidance for future studies. A perfect

dataset for conducting such a study is The Cancer Genome Atlas

(TCGA) [15,16].

TCGA is a massive, comprehensive, and collaborative project to

catalogue genomic data for over 20 types of cancers by the

National Cancer Institute (NCI), the National Human Genome

Research Institute (NHGRI), and 27 institutes and centers of the

National Institute of Health (NIH). Gene expression profiling is

one of the major components of genomic data collected by TCGA.

However, use of the gene expression profiling data in TCGA is

complicated by the fact the gene expression data reported was

obtained through a mixture of microarray and RNAseq technol-

ogies. Fortunately, many of TCGA’s samples have had gene

expression quantified using both technologies. This provided a

good opportunity to study the repeatability and concordance of

gene expression profiling between the two technologies on a large

scale.

Methods

TCGA Data Description
From TCGA, we collected expression data on 4747 samples

over 14 cancer types (TCGA public data until Dec 17, 2012). Out

of 4747 samples, 2250 were expression profiled using Agilent

G450A_07 arrays, 1269 were expression profiled using Affymetrix

HT_U133 arrays, and 4064 were expression profiled using

RNAseq. The overlap between Agilent and Affymetrix arrays

was 1134 samples, the overlap between the Agilent array and

RNAseq was 1662 samples, and the overlap between Affymetrix

array and RNAseq was 699 samples. Table 1 describes the

detailed sample distributions between technologies and cancer

Table 1. TCGA sample description.

Cancer Abbreviation Cancer Name Sample Type RNASeq RPKM RNASeq RSEM Agilent Affymetrix

BLCA Bladder Urothelial Carcinoma Tumor 56 122 0 0

Normal 11 16 0 0

BRCA Breast invasive carcinoma Tumor 782 813 536 0

Normal 102 106 63 0

COAD Colon Adenocarcinoma Tumor 192 192 155 0

Normal 0 0 19 0

GBM Glioblastoma Multiforme Tumor 0 168 473 532

Normal 0 0 10 10

HNSC Head and Neck squamous cell
carcinoma

Tumor 263 303 0 0

Normal 31 37 0 0

KIRC Kidney renal clear cell carcinoma Tumor 471 469 72 0

Normal 68 68 0 0

KIRP Kidney renal papillary cell carcinoma Tumor 16 63 16 0

Normal 0 15 0 0

LGG Brain Lower Grade Glioma Tumor 0 174 27 0

Normal 0 0 0 0

LIHC Liver Hepatocellular Carcinoma Tumor 17 17 0 0

Normal 9 9 0 0

LUAD Lung adenocarcinoma Tumor 126 355 33 0

Normal 37 57 0 0

LUSC Lung Squamous Cell Carcinoma Tumor 224 220 155 133

Normal 17 17 0 0

OV Ovarian serous cystadenocarcinoma Tumor 420 266 561 586

Normal 0 0 4 8

READ Rectum adenocarcinoma Tumor 72 71 69 0

Normal 0 0 3 0

UCEC Uterine Corpus Endometrioid
Carcinoma

Tumor 335 333 54 0

Normal 5 5 0 0

doi:10.1371/journal.pone.0071462.t001
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types. More detailed and updated overlap information was

described at supplementary table 1.

Level 3 released gene level expression data for microarray, gene

and exon level expression data for RNAseq were downloaded for

14 cancers from TCGA. The data processing and quality control

were done by Broad Institute’s TCGA workgroup. For microarray

data, gene level normalization was performed by using Robust

Multi-array Average (RMA) [17] algorithm on GenePattern [18].

Agilent expression values were gene centred. The RNAseq gene

expression level 3 data contains Reads per Kilobase per Million

mapped reads (RPKM) [19], RNAseq by Expectation-Maximiza-

tion (RSEM) [20] and read count. RPKM is the most widely used

RNAseq normalization method, and is computed as follows:

RPKM =109(C/NL), where C is the number of reads mapped to

the gene, N is the total number of reads mapped to all genes, and

L is the length of the gene. An alternative form of RPKM is

Fragments Per Kilobase of transcript per Million mapped reads

(FPKM) [21]. FPKM is computed similarly to RPKM, except it

accounts for the scenario in which only 1 end of a pair-end read is

mapped. RSEM on the other hand is based on a generative

probabilistic model of maximum expectation. The major differ-

ence between RPKM and RSEM is that RPKM’s normalization

factor is proportional to the mean length of a transcript in the

transcriptome while RSEM is independent of the mean expressed

transcript length. The more detail difference between RPKM and

RSEM is described in a study by Li et al. [22], section 1.1.1.

Both RPKM and RSEM results were generated using SeqWare

pipeline [23]. The reference gene transcript set was based on the

HG19 UCSC gene standard track. For RPKM, alignment of raw

data was done using BWA [24], and for RSEM the alignment of

raw data was done using MapSplice [25]. RPKM values were

computed using the formula described earlier, and RSEM values

were computed using RSEM package [20]. The detailed

description of each processing protocol can be found in the

TCGA open access FTP download directories.

Figure 1. Expression value distributions of different quantification methods for the same 258 samples. For each method, each gene’s
expression value was represented by the median value from the 258 samples. a) Affymetrix microarray analysis followed by RMA normalization
method. b) Agilent microarray analysis followed by RMA normalization method. c) RNAseq analysis followed by the RPKM normalization method, the
last bar represents genes with RPKM over 100. d) RNAseq analysis followed by the RSEM normalization method, the last bar represents genes with
RSEM over 3000.
doi:10.1371/journal.pone.0071462.g001
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Comparison between RNAseq and Microarray
Consistencies between the RNAseq and microarray data were

tested using Spearman’s correlation instead of Pearson’s correla-

tion due to two reasons: 1. RMA normalization uses log2

transformation for microarray data, for RNAseq data, log

transformation is impractical due to the large number of zeroes

that often are reported in this method. 2. Pearson’s correlation is

heavily influenced by outliers, and RNAseq data is heavily skewed.

In addition to raw expression correlation, the directionality and

agreement of the significantly differentially expressed gene list

between the two technologies are also important measurements of

concordance. Breast cancer is the only cancer type in TCGA that

collected expression data using both RNAseq and microarray on

53 tumor-normal paired samples. Using breast cancer data, we

identified significantly differentially expressed genes based on

Benjamini-Hochberg adjusted p-value and fold-change between

Figure 2. Spearman correlation coefficient analysis between different quantification methods. For each comparison, the samples from
the tumor dataset that were analyzed by the corresponding methods were extracted. For each sample, the Spearman correlation coefficient of the
expression values from those methods was calculated. a) The comparison between the RPKM method and the RSEM method. The Spearman
correlation coefficients were as high as around 0.94. b) The comparison between the Affymetrix method and the RPKM/RSEM method. The Spearman
correlation coefficients were around 0.8. c) The comparison between the Agilent method and the RPKM/RSEM method. Since the Agilent method
generated a ratio value for each gene but the RNAseq methods generated an absolute expression value for each gene, the Spearman correlation
coefficients between the Agilent method and the RNAseq methods were as low as ,0.2. d) The comparison between the Agilent method and the
Affymetrix method. Since the Affymetrix method also generated an absolute expression value for each gene, the Spearman correlations were also as
low as ,0.2.
doi:10.1371/journal.pone.0071462.g002
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the tumor and normal samples using paired t-tests on the

microarray data. Previous studies have shown that edgeR [26]

performs best among the read count based methods [27,28]. Thus,

for RNAseq data differentially expressed genes were selected based

on fold change and adjusted p-value generated by the edgeR

package. Directionality and significance agreements were com-

puted. The consistency of the fold-change computed from the

microarray and RNAseq data was evaluated by comparing the

four quartiles of expression value. Furthermore, results of the

RPKM and RSEM normalization methods were compared on

both the gene and exon level.

Results

Expression Value Distribution
Microarray and RNAseq methods are different in terms of the

technology used to quantify gene expression. Microarray

methods measure the intensity of fluorescence, which reflects

the corresponding gene expression level, while RNAseq methods

measure the read count, which also reflects the abundance of the

gene product. The expression values of microarray data after

RMA normalization are on a log2 scale. The count data of

RNAseq, on the other hand, is not usually normalized using the

quantile normalization method because a log-transformation does

not provide a variance-stabilization of the data as it does for the

(assumedly log-normally distributed) microarray data. However,

in a study by Dillies et al. [27], quantile normalization has been

evaluated in the context of RNA-seq data and shows no worse

results than RPKM normalization. Figure 1 shows an example of

expression level distributions across different platforms and

normalization methods. The data generated by four methods

from 258 same ovarian carcinoma samples were used in this

comparison. For the Affymetrix microarray RMA normalization

results, the range of expression was between 2.63 and 12.75 with

a peak around 4 (Figure 1a); for the Agilent microarray RMA

normalization, the range of expression was relatively symmetri-

cally distributed between 27.66 and 7.61, with a peak around 0

(Figure 1b). The Agilent array had expression values across zero

because expression from this array is computed as a ratio rather

than as a raw intensity value. The expression values derived from

RNAseq had a much wider distribution than that of the

microarray methods (Figure 1c, 1d). For RPKM, the range

was 0 to 3136.11, and for RSEM the range was 0 to 101988.11.

Both RPKM and RSEM have large amounts of zero expression

values (9.12% of RPKM =0, 12.58% of RSEM =0), which

reflects non-expressed genes. For RPKM, out of 19990 total

genes, the number of detected genes (RPKM .0) per sample was

between 17330 and 18784 with the median equal to 18055. For

RSEM, out of 20501 total genes, the number of detected genes

(RSEM .0) per sample was between 16989 and 18725 with the

median equal to 17835.

Expression Concordance
The majority of cancer types in TCGA used the Agilent two-

channel array for expression profiling. Three types of cancer,

GBM, LUSC and OV (See Table 1 for definitions), used the

Affymetrix one-channel array for expression profiling.

We found high Spearman correlations between the RNAseq

data normalized by the RPKM and RSEM methods across all

types of cancers with median correlation coefficients range from

0.92 to 0.95 (Figure 2a). Good concordance between the

Affymetrix one-channel array data and the RNAseq data was

Figure 3. Differentially expressed gene concordance analysis using 53 paired tumor-normal breast cancer samples. a) The Spearman
correlation coefficients of tumor/normal ratios between the Agilent method, the RPKM method and the RSEM method. b) Venn diagram summarizing
the overlap between genes called as significantly differentially expressed (adjusted FDR less than 0.01 and fold-change larger than 2). The
differentially expressed genes in Figure 3b were computed using commonly measured genes between microarray and RNAseq. c) Scatter plot of fold-
change per gene as measured by the Agilent method and the RNAseq RPKM method. Genes identified as differentially expressed with consistent
fold-change direction by both methods are plotted in green. Genes identified as differentially expressed with inconsistent fold change direction by
both methods are plotted in red. Genes identified as differentially expressed by either RNAseq method or Agilent method are plotted in blue and
yellow, respectively. Genes not identified as differentially expressed by either method are plotted in black. Only 1.2% genes identified as differentially
expressed genes by both methods were inconsistent on the fold-change direction (red data).
doi:10.1371/journal.pone.0071462.g003
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observed (Figure 2b). The median Spearman correlation

coefficient for the Affymetrix microarray vs RPKM was from

0.83 to 0.85. For the Affymetrix microarray vs RSEM, the

median Spearman correlation coefficient was from 0.80 to 0.82.

A paired Wilcoxon test of Spearman correlation coefficients

between the Affymetrix/RPKM and Affymetrix/RSEM com-

parisons from 383 common samples had a p-value of 4.3e-66

which indicates that the RPKM results were significantly more

highly correlated to Affymetrix measurements than the RSEM

results were.

We observed poor agreements between the Agilent two-channel

array data and RNAseq data (Figure 2c). The median Spearman

correlation coefficient for the Agilent microarray vs. RPKM for all

cancers was from 0.18 to 0.26. For the Agilent microarray vs.

RSEM, the median Spearman correlation coefficient was from

0.18 to 0.33. The low Spearman correlation between the two-

channel microarray data and RNAseq data is a result of the

normalization difference between ratio and non-ratio representa-

tions of the data. For two-channel microarray, the intensity of a

gene is represented by the ratio of case vs control, which makes

two-channel microarray data only comparable within a platform.

Since RNAseq is a direct count measurement of gene transcript

abundance, a low correlation in this case does not necessarily

indicate low concordance between two-channel microarray data

and RNAseq data. Poor agreement between the Agilent two-

channel array data and the Affymetrix one-channel array data was

also observed due to the same reason (Figure 2d).

Differentially Expressed Genes Concordance
The primary purpose of gene expression profiling is to identify

differentially expressed genes. TCGA has collected expression data

on 53 paired tumor-normal breast cancer samples using both

microarray and RNAseq methods. Significantly differentially

expressed genes were identified using this paired breast cancer

data. For a gene to be significantly differentially expressed between

the tumor and normal samples, it has to satisfy two conditions:

FDR adjusted p-value ,0.01 and |Fold Change| .2. A standard

paired t-test was used to compute the p-value for the microarray

data. The Bioconductor package edgeR [26] was used to compute

the p-values and fold changes for the RNAseq read count data

downloaded from TCGA.

When comparing the expression fold-changes of all genes, we

observed generally good concordance between the microarray and

RNAseq results (Figure 3a). Between the Agilent microarray and

the RPKM method, the median Spearman correlation of the fold

change was 0.75. Similarly, between the Agilent microarray and

the RSEM method, the median Spearman correlation was 0.74.

The median Spearman correlation of the fold change between the

RPKM and RSEM normalization methods for RNAseq data was

0.96. A paired Wilcoxon test of the Spearman correlation

coefficients between Agilent/RPKM and Agilent/RSEM com-

parisons was performed and the p-value was 1.2e-7 which

indicates that the RPKM result was slightly but still significantly

more similar to the microarray results than was the RSEM result.

There were 3219 genes identified as significantly differentially

expressed by the microarray data and 3681 genes identified by the

Table 2. Inconsistent significantly differentially expressed genes between microarray and RNAseq.

Gene Microarray Log2 Fold Change Microarray Adjusted Pvalue RNAseq Log2 Fold Change RNAseq Adjusted Pvalue

BMP8A 21.05 8.43E-07 2.00 1.23E-32

CEACAM20 1.03 1.27E-09 21.55 3.08E-03

CHGA 21.66 1.46E-04 5.43 5.27E-13

COL9A1 21.43 6.01E-04 2.76 8.04E-07

DCD 23.74 1.99E-03 6.30 4.56E-10

GPM6A 21.36 8.41E-04 1.56 3.13E-04

GRIA3 21.53 1.26E-03 1.01 3.17E-03

GSTA3 23.02 2.59E-07 4.41 9.71E-09

IGF2 21.51 1.12E-04 1.16 1.84E-04

KLK11 24.60 3.66E-04 1.10 1.88E-03

KRT16 22.03 1.34E-03 2.34 1.48E-07

KRT6A 22.93 3.51E-05 1.52 2.68E-03

LEMD1 23.12 7.20E-04 1.63 7.73E-03

LGALS7 21.94 3.25E-06 1.16 5.48E-03

LY6D 22.63 5.45E-05 2.88 2.94E-06

MT1H 21.23 4.69E-09 2.22 1.46E-06

PLAT 21.85 1.02E-04 1.01 8.23E-03

PLP1 22.42 1.03E-08 1.12 4.74E-03

PRSS12 22.07 8.56E-04 1.56 1.52E-03

RLBP1 21.05 1.34E-04 1.49 8.72E-03

SCN1A 21.06 3.07E-04 4.99 3.59E-13

TNFSF11 2.29 3.40E-03 22.16 1.17E-05

UCP1 21.95 7.10E-06 2.24 2.55E-05

UGT2B4 22.08 3.96E-04 4.81 1.25E-16

doi:10.1371/journal.pone.0071462.t002
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RNAseq data by edgeR. The overlap between the microarray and

RNAseq results was 2023 genes (Figure 3b). Among these 2023

genes, there were only 24 genes with an inconsistent direction of

change (consistency rate = 0.988) (Figure 3c). The fold change and

p-values of these 24 genes are reported in Table 2. From a

biological point of view, besides the number of commonly

differentially expressed genes, it is of interest to understand

whether a biological interpretation of differentially expressed genes

independently identified by each technique lead to the identifica-

tion of the same deregulated pathways or not. To evaluate this, we

performed pathway and functional analyses using Ingenuity

Pathway Analysis (IPA). The results between genes identified by

RNAseq and microarray showed some similarity but with enough

difference to distinguish them clearly. This is understandable

because there was a large non overlapped subset of significant

genes identified by the two methods as shown in Figure 3b. The

summary reports of IPA can be viewed in supplement table S2

and S3.

The consistency of the expression fold-change between the

microarray and RNAseq data was further evaluated by dividing

the RNAseq expression values into four quartiles (Figure 4). A

linear regression model was used to fit the fold change results

within each expression quartile. A monotonically increasing

pattern of consistency was observed as the gene expression level

(as measured by RNAseq) increased. For the four quartiles of

RPKM expression, the linear regression model’s R2 equals 0.175,

0.514, 0.612 and 0.648 respectively. In the previous study

conducted by Wang et al., the authors found poor concordance

between raw high RNAseq expression and microarray expression.

Our results contradict that study by showing that the concordance

between microarray and RNAseq measurements of fold-change

increases with higher expression level [1].

RPKM and RSEM
RPKM/FPKM is currently the most popular method for

normalizing RNAseq gene expression. The RSEM method has

gained considerable popularity, evidenced by the recent adapta-

Figure 4. Fold-change consistency between the Agilent method and the RPKM method from 53 paired tumor-normal breast cancer
samples. The common genes were divided into four groups based on their RNAseq expression value, and linear regression was performed to
evaluate the fold-change consistency for each group. This indicates that the fold-change derived from genes with higher RNAseq expression was
more concordant with the fold-change derived from microarray expression than the fold-change derived from genes with lower RNAseq expression.
doi:10.1371/journal.pone.0071462.g004
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tion of this method for all RNAseq data by TCGA. We have

shown excellent agreement between the RPKM and RSEM

methods at the gene level. To be more thorough, we also

compared RPKM and RSEM results at the exon level. For

RNAseq, the length of the exon plays a significant role in

detectability. The median exon length was 138, but the mean exon

length was 345, as this data was biased by very long exons

(Figure 5a). The consistency between the RPKM and RSEM

methods on the exon level is good but not as strong as on the gene

level. Some exons were detected as expressed by one of the

normalization methods but were not detected by the other, which

suggests the level of disparity between RPKM and RSEM is quite

strong for these exons (Figure 5b, d). We divided the exons into

subcategories based on their length, (1–25, 26–50,.50 base pairs).

Linear regression models were used to fit the exon expression data

between the RPKM and RSEM methods at each length interval.

The R2 of the linear regression shows that for very short exons the

consistency between the RPKM and RSEM methods is poor

compared to exons with longer length (Figure 5c, d, e, f). This

directly reflects the fact that expression of short exons is harder to

quantify through the sequencing method.

Discussion

With RNAseq gradually taking over as the tool of choice for

expression profiling, microarray technology is facing a tough battle

to stay relevant. Microarray companies such as Affymetrix and

Agilent have not abandoned microarray technology. Instead, more

customizable and higher resolution arrays are being produced to

compete for market share. These strategies will prolong the life of

microarray technology, but they will not change their inevitable

replacement by RNAseq technology.

Some researchers choose RNAseq over microarray without a

thorough understanding of the differences between the methods.

The microarray technology does still hold several advantages over

RNAseq. One of the advantages is the lesser complexity required

for analysis. Choosing the proper normalization method for a

platform may depend on many variables. For microarray data,

especially for the Affymetrix and Agilent platforms, one of the

most acceptable normalization methods is RMA. To detect

differentially expressed genes, a simple t-test is acceptable in most

scenarios for microarray data. On the other hand, more

complicated models have been introduced to deal with RNAseq’s

non-expressed genes such as negative binomial: DESeq [29],

edgeR [26], baySeq [30], NBPseq [31], and Poisson distribution:

Figure 5. Exon expression consistency between the RPKM and RSEM normalization methods for RNAseq data. a) Exon length
distribution from RNAseq data. Exons were divided into 23 groups based on log10 value of exon length. b) The length distribution of exons, blue
indicates exons were detected by RSEM but not by RPKM, red indicates exons were detected by RPKM but not by RSEM. c) The R2 of linear regression
between the RPKM and RSEM values in sub-groups defined by the exon length. The group intervals equalled to the group intervals in figure 5a,
except the first five and the last five groups were merged respectively due to small exon count in those groups. Only the exons detected by both
RPKM and RSEM methods were used. d-f) The detailed scatter plots of exon expression consistency in three groups divided by exon length of 1,20,
21,50, and .50 base pairs. Only the exons detected by both RPKM and RSEM methods were used. Figures c-f indicate that the exon expression
consistency increases significantly with exon length until exon length is larger than about 50 base pairs.
doi:10.1371/journal.pone.0071462.g005
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TSPM [32], DEGseq [33]. There has been several studies [27]

[28] [34] [35] attempting to compare different normalization and

differential gene comparison methods for RNAseq data. In the

study by Dillies et al. [27], through simulation, the authors found

DESeq [29] and edgeR [26] are able to maintain a reasonable

false-positive rate without any loss of power. In a separate study by

Kvam et al., the authors recommended baySeq, DESeq and

edgeR. Robles et al. suggested using a combination of multiple

packages may overcome possible bias susceptibility of a given

package to a particular dataset of interest [28]. In a most recent

study by Soneson et al. the authors suggested an unique

combination use of existing packages with LIMMA [36] which

performed well under many conditions. But such approach

requires at least 3 samples per condition to have sufficient power

to detect any differentially expressed genes. The authors also

pointed out that the non-parametric based SAMseq [37] was

among the top performers. However, due to the fold change

required for statistical significance by SAMseq was lower than for

many other methods, the differentially expressed genes identified

by SAMseq may potentially have less biological significance. Thus

far, a consensus on the best approach for RNAseq data analysis

has not been reached.

Microarray analysis is more time and cost-efficient than is

RNAseq data analysis. The typical raw file size for microarray

data ranges from 10 MB to 100 MB while the size of a raw

RNAseq data file ranges from 5 GB to 10 GB with additional

space required to perform data analysis. To identify a significantly

differentially expressed gene from the raw data using a microarray

will only take hours; for RNAseq, it will take days to weeks

depending on the sample size. In summary, although the current

cost to perform expression profiling using microarray and RNAseq

is comparable, the cost for the analysis and storage of RNAseq

data is significantly higher than for microarray data. However,

with the advance of computing hardware and maturity of RNAseq

analysis algorithms, we expect these advantages of microarrays to

slowly diminish.

Even though microarray technology ultimately cannot compete

with RNAseq for expression profiling, it is still very useful for

genotyping purposes. The recently introduced exome genotyping

arrays by Illumina and Affymetrix cost significantly less than

exome sequencing. Illumina’s Human Exome BeadChip only costs

$45 per array compared to $500–1000 per exome sequencing.

Even with the limitation of a pre-selected SNP list, the exome chip

is preferable for large scale genome wide association studies

(GWAS) due to the more manageable price.

With microarray technology slowly fading into history, the huge

amount of microarray expression data collected by researchers

over the last decade is still very valuable for data mining. The

majority of the microarray data have been organized and stored in

publicly available databases. The Gene Expression Omnibus

(GEO) contains expression data on 848,178 samples across 2720

datasets, and ArrayExpress contains 988,372 assays across 34,148

experiments. Those microarray databases are still providing

important support and information for researchers across the

world every day.

Our results show that two-channel microarray expression data

should not be directly compared to RNAseq expression data due

to different detection schemes. One-channel microarray has very

good concordance with RNAseq expression data. Reasonable

agreement was observed between the significantly differentially

expressed gene lists identified by two-channel microarray and

RNAseq techniques; however, out of the significant genes

identified by both RNAseq and two-channel microarray, about

1.2% genes had an opposite direction of the fold change. This

inconsistency could be caused by random error, normalization

differences or heterogeneity in samples. In the scenario of

observing such inconsistency, it would be extremely difficult to

decide which method to trust, especially when the difference is

caused by sample heterogeneity. Thus, we recommend running

multiple analysis methods such as bioconductor package LIMMA

[36] for microarray, and read count based methods such as DESeq

[29], edgeR [26], baySeq [30] to select reliable genes. If the

discrepancy still cannot be resolved, wetlab method such as RT-

PCR needs to be performed for validation. Even though such

inconsistency percentage is very small, it does cause some concern

and warrants further study. By comparing the RPKM and RSEM

normalization methods, we found very good consistency at the

gene level and good consistency rate at the exon level. However,

the RPKM and RSEM normalization methods had poor

consistency for short exons compared to long exons, partially

due to the limitation of sequencing technology’s ability to detect

short exons and the resulting difficulty involved in correctly

quantifying the expression of those short exons. Both absolute

expression value from one-channel microarray data and fold-

change value from two-channel microarray data show slightly

more concordance to RPKM result than RSEM result, which may

indicates that the RPKM method is more accurate than the

RSEM method on gene expression estimation.

We have presented the largest microarray and RNAseq

expression comparison study performed thus far. Given the large

sample size, our results would be more definitive than previous

studies on this subject. There is no denial that RNAseq is replacing

microarray at a rapid pace. However there are still researchers

who have yet to make transition from microarray to RNAseq. Our

study provides definitive evidence that RNAseq can indeed replace

microarray in term of expression analysis. Furthermore, our study

also shows that results derived from microarray data are trust

worthy. The huge amount of microarray data accumulated over

last 10 years stored in repositories such as GEO and ArrayExpress

can still serve as excellent data mining resources.
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