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Abstract

Docking Approach using Ray Casting (DARC) is structure-based computational method for carrying out virtual screening by
docking small-molecules into protein surface pockets. In a complementary study we find that DARC can be used to identify
known inhibitors from large sets of decoy compounds, and can identify new compounds that are active in biochemical
assays. Here, we describe our adaptation of DARC for use on Graphics Processing Units (GPUs), leading to a speedup of
approximately 27-fold in typical-use cases over the corresponding calculations carried out using a CPU alone. This dramatic
speedup of DARC will enable screening larger compound libraries, screening with more conformations of each compound,
and including multiple receptor conformations when screening. We anticipate that all three of these enhanced approaches,
which now become tractable, will lead to improved screening results.
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Introduction

There are a number of structure-based methods for predicting

small molecules that bind to specific sites on protein surfaces, most

commonly active sites, intended for finding lead compounds in

drug discovery efforts [1]. High throughput docking tools for

‘‘virtual screening’’ aim to dock thousands of compounds and

predict several that will exhibit measurable binding, as a starting

point for further optimization. This computational approach can

have potential advantages over complementary ‘‘wetlab’’ screen-

ing methods because it can be less expensive and time consuming

[1]. If successful, hits from a computational structure-based screen

may also provide insights that guide the subsequent medicinal

chemistry optimization in directions that would not be evident

from the chemical structure of the hit compound alone.

Atomistic molecular dynamics simulations and detailed docking

approaches are too computationally expensive to allow their direct

use for many thousands of independent ligands, as required for

most virtual screening applications [2]. Accordingly, several

methods have been developed to speed up docking. Some entail

using a reduced representation of the receptor, thus reducing the

number of calculations associated with each energy evaluation [3–

6]. Most approaches fix the receptor conformation or allow only

limited conformational changes during docking, to reduce the

number of degrees of freedom associated with the search [7–11].

While some methods allow the ligand conformation to vary during

docking [9,12,13], others carry out independent docking trajec-

tories using a series of pre-built low-energy ligand conformations

(‘‘conformers’’) [7,14,15].

We have developed a docking tool called ‘‘Docking Approach

using Ray Casting’’ (DARC), as part of the Rosetta macromolec-

ular modeling software suite [16]. Our approach entails casting a

set of rays from the protein center of mass to a series of points

mapping out a surface pocket, thus building up a description of the

topography of the protein surface as viewed from the protein

interior. Since a complementary small-molecule bound to this site

should have a complementary topography, we then cast the same

set of rays towards the candidate inhibitor. If the inhibitor is

indeed complementary to the protein surface, the intersection

distance of each ray with the inhibitor should closely match the

distance at which the ray reaches the protein surface. In a separate

study we find that DARC proves capable of identifying known

inhibitors from among large sets of decoy compounds, and we use

DARC to identify new compounds active in biochemical assays

against the anti-apoptotic protein Mcl-1 (manuscript in prepara-

tion: Gowthaman R, Miller S, Johnson D, Karanicolas J).

Despite using low resolution scoring and a fast minimization

method (both are described in detail below), DARC screening

nonetheless remained limited by computational restrictions. Our

initial deployment of DARC to screen against Mcl-1 entailed

screening only 12,800 compounds (with a maximum of 100 pre-

built conformers per compound), and required 152,500 CPU

hours to complete this screen. We found that we could achieve a

speedup of approximately 6-fold by efficiently neglecting to

calculate interactions of rays guaranteed not to contribute to the

total score (the ‘‘ray elimination’’ step described later), but DARC

remained limited by the size of compounds libraries that could

feasibly be screened.

Graphics processing units (GPUs) were originally designed to

process parallel, multithreaded 3D graphics via ray tracing, and

have since evolved hardware to enable broader types of high

throughput processes. Modern GPUs can process mathematical

operations, support flow control, and have floating point precision.

New libraries such as Compute Unified Device Architecture

(CUDA, www.nvidia.com) and Open Computing Language

(OpenCL, www.khronos.org/opencl) allow development of non-
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graphics programs for GPUs. These enable an application running

on a central processing unit (CPU) to farm out parts of the job to a

GPU. A variety of biomolecular modeling tasks have been adapted

for GPU processing, from carrying out quantum calculations to

calculating electrostatic surface potentials to stochastic modeling of

chemical kinetics and molecular dynamics [17–22]. GPU

computing has also been used to speed up certain other

structure-based docking tools [23–29].

Given that the ray-casting step underlying our approach is

highly analogous to the problem for which GPUs were originally

developed, we reasoned that DARC would be highly amenable for

porting to GPUs. Since each ray is scored separately and their

scores are independent of one another, scoring is intrinsically a

parallel process. Here we describe our adaptation of DARC for

GPU scoring, leading to a speedup of approximately 27-fold over

the corresponding calculation on a CPU alone.

Methods

Virtual screening using DARC
An overview of the intended DARC workflow for virtual

screening is diagrammed in Figure 1. The flow is separated into

pre-DARC, DARC, and post-DARC stages.

In the pre-DARC preparation stage, a target pocket on the

protein is identified and protein structures are generated for use

with DARC. DARC was designed for docking at shallow pockets

characteristic of those used by small-molecule inhibitors of protein-

protein interfaces [30,31]. The protein conformation is not moved

during docking, and can come either from an experimental

derived structure or from simulations designed to generate

energetically favorable structures with diverse surface pocket

shapes at the target site [32].

Each of these protein conformations is then used as a starting

point for docking in DARC. Briefly, DARC sequentially carries

out rigid body docking for each ligand conformer using a scoring

function that maximizes the complementarity of the pocket and

ligand shapes when viewed from the protein interior; the following

two sections will describe the DARC scoring scheme and

optimization protocol in detail. DARC is used to select the

optimal conformer and docked pose for every member of the

compound library.

The top-scoring model complexes (typically the best 10%) serve

as a starting point for further optimization using the all-atom

forcefield in Rosetta. This final energy minimization includes all

rotatable dihedral angles (in both the protein and the ligand) as

degrees of freedom. Finally, these minimized complexes are re-

ranked on the basis of energetic considerations (e.g. interaction

energy) as well as structural considerations (e.g. number of buried

unsatisfied polar groups). The top scoring compounds can then be

advanced for further characterization in biochemical or cell-based

assays.

Since DARC scoring considers solely shape complementarity,

the intended use of DARC is not as a standalone tool for

predicting binding free energies, or even for predicting whether

any particular compound is likely to bind the target protein.

Rather, DARC is intended to provide a fast, low-resolution tool

for identifying the likely binding mode of a compound. Our

intended workflow thus separates the extensive burden of

sampling (carried out by DARC using a crude scoring scheme)

from the requirement of a detailed energy function to

discriminate active from inactive compounds. This approach is

in contrast to complementary methods such as RosettaLigand

[33–35], which carries out detailed flexible-ligand docking via

Monte Carlo simulations using the all-atom Rosetta energy

function but is too computationally expensive to enable routine

screening of large compound libraries.

Scoring with DARC
DARC starts from a PDB file of a protein conformation, either

from an experimentally derived structure or from biased ‘‘pocket

optimization’’ simulations [32]. The shape of a surface pocket is

defined using a grid-based method described in detail elsewhere

[32]. Briefly, a grid is placed over the protein surface of interest.

Based on the coordinates and radii of the atoms comprising the

protein, grid points are marked either ‘‘protein’’ (P) or ‘‘solvent’’

(S). Solvent points which lie on a line between two protein points

are then marked as ‘‘pocket’’ (to denote concave regions on the

protein surface); this approach was originally used in the LigASite

software [36].

The pocket ‘‘shell’’ is identified as those pocket grid points in

direct contact with the protein (Figure 2, yellow squares).

Additional grid points are then added around the perimeter of

the pocket shell (Figure 2, red squares), used to mark regions

outside the pocket where ligand binding will not lead to favorable

interactions (‘‘forbidden’’ points). The direction from the pocket

center of mass to the protein center of mass is defined, and a point

30 Å along this direction is defined as the origin from which rays

will emanate (Figure 2, white point).

The angles and the distances expressing each of the shell points

and forbidden points in spherical coordinates (relative to the origin

point) are calculated and saved. The number of shell points and

‘‘forbidden’’ points that define the pocket – and thus the number

of rays – depends both the grid spacing (typically 0.5 Å) and on the

size of the surface pocket. In a typical use case, approximately

7,000 rays are used to define the protein pocket. This collection of

vectors (representing points on this small region of the protein

surface expressed in spherical coordinates) serves as a mapping of

the protein surface topography that should be complemented by a

well-docked ligand; the protein conformation and grid points are

not directly used in docking beyond this point.

Given the position and orientation of a ligand to be scored, a

series of rays are cast from the origin along each of the directions

used to map the surface topography. For each ray, the distance at

which the first intersection with the ligand occurs is calculated and

subtracted from the (stored) distance at which the same ray hit the

protein surface (i.e. the shell point). Each ray contributes to the

total score as follows (where c1, c2, c3, and c4 are constants set to

1.0, 1.4, 21.6, and 9.5 respectively):

Figure 1. Docking overview. A schematic diagram of the complete
workflow split into three stages: pre-DARC preparation, DARC, and
post-DARC re-ranking.
doi:10.1371/journal.pone.0070661.g001
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PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e70661



Ray condition Contribution to score

1: Ray hits protein surface point before ligand c1 * difference between

distances

2: Ray hits ligand before protein surface point c2 * difference between

distances

3: Ray does not intersect with ligand c3

4: ‘‘Forbidden’’ ray intersects ligand c4

A highly complementary ligand will fill the pocket on the

protein surface exactly; each contribution to the score represents

some imperfection. A ray that hits the protein surface point

before the ligand (condition #1) indicates unpacking in this

docked pose (Figure 2, yellow rays). Conversely, a ray that hits

the ligand before the protein surface (condition #2) indicates a

steric clash (Figure 2, pink rays). A ray that does not intersect

the ligand (condition #3) indicates that the ligand does not fully

fill the surface pocket (Figure 2, orange rays), and ‘‘forbidden’’

rays that intersect the ligand (condition #4) indicate that the

ligand extends beyond the boundaries of the surface pocket

(Figure 2, red rays). Forbidden rays that do not intersect with

the ligand do not contribute to the score (Figure 2, purple rays).

The score assigned to the docked pose is taken as the sum of

contributions from individual rays, divided by the number of

contributing rays.

This approach to scoring is notably different from commonly-

used docking tools, each of which estimate energies as the sum of

contributions from interacting atom-atom pairs [1].

Docking with DARC
Using this method for scoring poses, docking is then carried out

using the particle swarm optimization (PSO) scheme [37] to

optimize this objective function. Much like a genetic algorithm,

this approach entails generating a set of candidate solutions (here

called ‘‘particles,’’ each of which corresponds to a different docked

pose). The position and orientation of each particle is then allowed

to adapt in response to the other particles, moving towards the

best-scoring local and global particles with a step size that depends

on the relative scores of the particles [37]. After a number of

iterations in which all particles move in response to one another,

the ‘‘swarm’’ of particles ideally converges upon the globally

optimal solution (in this case the lowest-scoring pose).

Though some docking approaches carry out sampling by greedy

algorithms (such as incremental construction [38]), the most

common approaches involve either individual Monte Carlo

trajectories that sample Cartesian space or approaches that

generate optimal solutions from a population of candidate

solutions [1]. The latter class of methods, which include particle

swarm optimization and genetic algorithms, make use of coupling

between candidate solutions that can be advantageous in guiding

the search towards optimal solutions: in the case of AutoDock, for

example, a genetic algorithm was found to outperform a Monte

Carlo simulated annealing protocol [39]. The potential drawback

of this coupling lies in the fact that the inherent need for

communication may preclude running candidate solutions on

multiple separate machines. In the case of DARC (and virtual

screening approaches that use genetic algorithms), however, the

scoring function can be evaluated sufficiently rapidly that

simulation of all candidate solutions (particles) can reasonably be

evaluated on a single processor. Further, in a virtual screening

context, running each member of the screening library as an

independent job can still allow for parallelization across multiple

machines.

In a typical use case, we generate ,7,000 rays to map the

protein pocket and dock ligands of ,30 (non-hydrogen) atoms,

iterating 200 times over a swarm comprised of 200 particles. This

requires evaluating the DARC score for 40,000 docked poses,

from a total of 8.46109 potential ray-atom intersections per

simulation (210,000 potential ray-atom intersections per pose).

In practice, however, angular bounds can be computed from

the docked pose that restrict which rays will intersect with a ligand.

In other words, given a ligand atom radius and position relative to

the origin, one can compute the maximum and minimum values

of each angle required for intersection with this atom. Any rays

that fall outside the bounds set by all atoms are guaranteed not to

intersect with the ligand, and thus (in a step we call ‘‘ray

elimination’’) can be removed from consideration before this

docked pose is scored. This reduces the number of ray-atom

intersections that need to be computed, and leads to a speedup of

about 6-fold when running on a CPU.

DARC using GPU computing
As pointed out earlier, particles encoding the position and

orientation of the ligand move collectively in response to one

another, making this aspect of docking not naturally amenable to

parallel computing. The scoring step, however, entails simulta-

neously evaluating the scores of 200 particles by summing

independent contributions from a large number of rays; this

represented a logical candidate for GPU computing.

Figure 2. Docking approach using ray casting. A schematic
diagram of DARC scoring is shown in cross section. A grid is placed at a
region of interest on a protein surface, and used to identify ‘‘deep
pocket’’ points. Points that are not in direct contact with the protein
surface are removed, leaving behind a set of points that map the
topography of the protein surface pocket (yellow squares). An adjacent
layer of points on the protein surface are then labeled ‘‘forbidden’’
points (red squares). Rays are cast from an origin point within the
protein (white square) at each pocket point and forbidden point. To
score a docked pose, the same rays are cast at the ligand (blue), and the
first intersection (if any) is calculated. The contribution to the total score
from each ray is dependent on whether the ray was defined based on a
pocket point or a forbidden point, and whether the ray intersects this
point before or after it intersects with the ligand. These conditions are
described in detail in the main text.
doi:10.1371/journal.pone.0070661.g002
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DARC scoring was implemented on the GPU using the Open

Computing Language (OpenCL), which allows the execution of

custom programs called ‘‘kernels’’ on a variety of GPUs. Modern

GPUs have hundreds of processing cores, thus allowing massive

parallel execution of such kernels on a single GPU. Each kernel

performs the same operation, but on a different data element from

a large set. An important consideration for efficiently adapting

DARC for GPU computing was avoiding latency associated with

the cost of sending data between the CPU and the GPU.

Our GPU implementation of DARC separates score evaluation

(to be carried out on the GPU) from updating particle positions (to

be carried out on the CPU) (Figure 3). We begin by storing

information pertaining to rays (i.e. angles and the distance at

which these hit the protein surface) on the GPU before

optimization begins: this information will persist there, since it

does not change over the course of the minimization. At each

iteration of the optimization, information pertaining to all particles

(i.e. ligand position and orientation) is transferred from the CPU to

the GPU in a single step. The GPU uses a first kernel to compute

the score contribution for a single ray to every particle. In the

typical use case described above, each of 7,000 processes is

therefore responsible for computing the potential intersection with

the 6,000 atoms comprising the swarm (200 particles with 30

atoms each). A second kernel is then applied to each of the 200

particles, to sum the 7,000 contributions from each ray to the score

of this particle. Through the use of the second kernel on the GPU,

only 200 scores corresponding to particles must be returned to the

CPU, instead of 1,400,000 scores from individual rays. Once the

scores for each of the particles have been transferred, the CPU

uses these scores to update the ligand position and orientation

encoded by each particle accordingly.

DARC PSO scoring on CPU and GPU
DARC scoring on a CPU occurs as follows:

Loop over Particles {

Identify the max/min angles required for intersection

with the ligand

Loop over Rays {

Check if Ray angles may allow intersection with

ligand

If Ray may intersect with ligand {

Loop over Atoms in current Particle {

If Ray intersects Atom {

Calculate distance of first intersection

Save this distance if it is the lowest of all

Atoms

}

}

}

Save the contribution of this Ray for the current

Particle

}

Particle score=Sum of Ray scores/Number of Contrib-

uting Rays

}

Scoring with the GPU version occurs using two separate two

kernels. The first kernel processes one ray per thread as follows:

Get rayID for this process, define current Ray

Loop over Particles {

Loop over Atoms in current Particle {

Calculate distance of first intersection with cur-

rent Ray, if intersection occurs

Save this distance if it is the lowest of all Atoms in

this Particle

}

Calculate the contribution of the Ray for the current

Particle, store it on GPU

}

Figure 3. Control flow for GPU-enabled DARC. Control begins on the CPU. The CPU generates the pocket and casts rays at the protein surface,
then stores this information on the GPU. The CPU generates 200 ‘‘particles’’ (independent initial ligand orientations to be used in the optimization)
and passes each of these docked poses to the GPU. The GPU evaluates the DARC score of each docked pose, and passes these back to the CPU. The
CPU uses these scores to update the docked poses accordingly, then sends the new poses to the GPU. This process is repeated 200 times, and the
best-scoring particle is reported.
doi:10.1371/journal.pone.0070661.g003
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The second kernel processes one particle per thread as follows:

Get particleID for this process, define current Particle

Loop over Ray scores for this Particle {

Add to current score

}

Particle score=Sum of Ray scores/Number of Contributing

Rays

Running DARC in Rosetta
DARC is implemented in the Rosetta software suite [16].

Calculations described here were carried out using svn

revision 52964 of the developer trunk source code. Rosetta

is freely available for academic use (www.rosettacommons.

org), with the new features described here included in the 3.6

release.

The standard Rosetta can be built enabling GPU processing as

follows (it may be necessary to alter rosetta_source/tools/build/

basic.settings to add the address of individual OpenCL headers):

scons mode=release extras=opencl bin

Input files for small molecules are generated in two steps. The

first involves downloading the ligand in the SMILES format from

the ZINC database [40], then creating a pdb format file with

multiple conformers with using the Omega software [41–43] as

follows:

OpenEye/bin/omega2 -in molecule.smi –out molecules.pdb

–maxconfs #conformers

When creating multiple conformers, they can be separated by

babel as follows:

babel –ipdb molecules.pdb –opdb molecule.pdb -m

In the second step, a parameter file for the ligand is created with

babel and the Rosetta python app molfile_to_params, as follows:

babel –ipdb molecule.pdb –opdb molecule.sdf

molfile_to_params.py –c –nKHR –pmol molecule.sdf

The Rosetta command line used to generate a set of rays

(rays.txt) that define a protein pocket topography is as follows (for

target residue number 105 of protein Bcl-xL with the file

2YXJ.pdb):

make_rayfiles.linuxgccrelease –iinput_protein_

file 2YXJ.pdb –central_relax_pdb_num 105

The Rosetta command line used to run DARC on a GPU using

these input files is as follows:

DARC.opencl.linuxgccrelease –input_protein_

file 2YXJ.pdb –input_ligand_file molecule.pdb –extra_-

res_fa molecule.params –eggshell_triplet rays.txt –gpu 1

Results

Determining suitable stopping criteria
The two key parameters that determine the DARC runtime are

the number of particles and the number of iterations. In order to

determine the extent of sampling required for adequate conver-

gence, we evaluated the difference in DARC score obtained from

simulations of varying computational requirements against the

score obtained from an intensive ‘‘gold-standard’’ simulation. As a

model system, we randomly selected a compound from the ZINC

database of commercially available compounds [40],

ZINC00057615, and docked a single conformer of this compound

to a pocket on the surface of the protein Bcl-xL (PDB ID 2yxj).

We initially fixed the number of particles at 200, and

sequentially extended the number of iterations from 10 up to

our ‘‘gold standard’’ value of 1000 iterations. As expected,

increasing the length of our trajectories led to progressively lower

final scores (Figure 4a), at the expense of a linear increase in

(CPU) runtime (not shown). While the docked score decreased

rapidly at first, much of the improvement had already been

realized after 200 iterations: extending the trajectory beyond this

point led only to a modest decrease in score. For this reason, we

adopted 200 iterations as our ‘‘typical use’’ value.

We then turned to the number of particles for inclusion, and

carried out an analogous experiment. Using 200 iterations in all

cases, we sequentially increased the number of particles from 10

up to our ‘‘gold standard’’ value of 1000 particles. As expected,

increasing the number of particles similarly led to better solutions

(Figure 4b), again with a linear increase in runtime (not shown).

Based on the diminishing benefit of including a large number of

particles, we adopted 200 particles as our ‘‘typical use’’ value.

To put these results in the more pragmatic context of virtual

screening experiment, we then compiled a set of 1000 randomly

selected compound from the ZINC database [40], and evaluated

how the extent of sampling would affect the ranking of these

compounds against the same Bcl-xL surface pocket. We started

with a ‘‘gold standard’’ ranking of each member of our library, by

carrying out docking with DARC using 1000 particles and 1000

Figure 4. Effect of the number of particles and the number of iterations on DARC score. To determine the number of particles and
number of iterations required for reasonable convergence of the DARC score, docking was carried out with (A) an increasing number of iterations
while holding the number of particles fixed at 200, and (B) an increasing number of particles while holding the number of iterations fixed at 200.
Differences in score are reported relative to the ‘‘gold standard,’’ taken to be the most extensive simulation in the set (i.e. 1000 iterations or 1000
particles).
doi:10.1371/journal.pone.0070661.g004
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iterations. We marked the top-scoring 10% of the library (100

compounds) as ‘‘hits,’’ then asked how many of these ‘‘hit’’

compounds would remain in the top 10% if docking was carried

out using a reduced number of iterations and particles. We found

that 94 of the 100 hit compounds were recovered in the top-

scoring 10% using our ‘‘typical use’’ parameters of 200 particles

and 200 iterations (Figure 5), with little benefit associated with

more extensive sampling. We therefore carried forward these

values for the further studies described below.

DARC speedup on Graphics Processing Units (GPUs)
All timing comparisons described below were carried out using

a GeForce GTX 580 GPU, which can run 1024 threads

concurrently, and a Dual Intel Xeon E5-2670 CPU using one

thread.

As a first timing benchmark, we evaluated the time needed to

carry out docking using the same model system described earlier: a

single conformer of ZINC00057615 docked against a pocket on

the surface of the protein Bcl-xL. Based on our typical grid spacing

(0.5 Å) and the size of the surface pocket we would typically use

about 7,000 rays to describe this pocket; for benchmarking, we

instead reduced the grid spacing to generate 93,000 initial rays

then varied the number of rays used in docking by generating

subsets of this large collection.

As expected, the time required to complete this calculation

scales approximately linearly with the number of rays and the

number of particles, whether carried out entirely on a CPU

(Figure S1a) or with the help of a GPU (Figure S1b). While the

scaling is similar, however, the calculations are completed much

more quickly using the GPU: in a typical uses case (7,000 rays, 200

particles and 200 iterations), the CPU takes 93 seconds to carry

out the calculation and the GPU takes 3.4 seconds, corresponding

to a 27-fold speedup (Figure S1c).

Similar behavior is observed when docking a single conformer

to a surface pocket at the functional site of another protein, Mdm2

(Figure S1d–f). Due to the different size and shape of this pocket,

the same grid spacing would lead to only 3,000 rays to describe

this protein surface. Under these conditions (again with the

standard 200 particles and 200 iterations), the calculation would

take 47 seconds using the CPU alone, or 3.2 seconds using the

GPU (a 15-fold speedup).

We next tested the scaling of time with regards to the number of

atoms in the ligand, docking to Mdm2 using 5,000 rays and 200

particles. We used a series of ligands containing 20

(ZINC0043625), 25 (ZINC00469420), 30 (ZINC01280234), 35

(ZINC01298436), and 40 (ZINC02091520) non-hydrogen atoms.

We find that the time required for this calculation on the CPU

alone is not linearly related to the number of ligand atoms

(Figure 6a), because the geometry of the ligand dictates how

much of the calculation can be avoided through the ‘‘ray

elimination’’ step. In all cases, carrying out this calculation using

the GPU results in a speedup of about 25-fold (Figure 6b).

While the typical-use speedup in the examples here is

dramatic, we note that these data in fact downplay the true

difference stemming from the use of the GPU for these

calculations. In the timings we have reported above, the

algorithm carried out on the CPU includes the ‘‘ray elimina-

tion’’ step that reduces the number of potential ray-atom

intersections to be considered. The GPU calculations described

above, however, do not include this step; we made a design

decision not to take advantage of the potential for fewer

calculations on the GPU, because the ray elimination step

would cause threads to become asynchronous. This branch

divergence in the kernel execution would lead to uncoalesced

memory access, slowing the total time required for the

calculation. For a straightforward comparison, we therefore

additionally tested a variation of the CPU code that does not

include the ‘‘ray elimination’’ step, and a variation of the GPU

code that does include this step (Figure 7). We find that the

GPU optimization requires a very similar time to reach

completion regardless of whether or not the ‘‘ray elimination’’

step is used, justifying our design decision. As expected, the

opposite holds for the CPU version: performance is significantly

slower when the ‘‘ray elimination’’ step is not used. In a typical

use case for Bcl-xL comprising 7,000 rays, the GPU version of

DARC without the ‘‘ray elimination’’ step is completed about

180-fold faster than the same calculation on the CPU alone.

Analysis and implications of DARC speedup on GPUs
As described earlier, a key motivation in adapting DARC for

GPU processing stemmed from the practical limitation on the size

of compound libraries that can be routinely screened: our initial

deployment of DARC entailed screening only 12,800 compounds,

and required vast computational resources. To test whether

extending our library size would improve the quality of

compounds identified – subject to the DARC objective function

– we carried out an experiment to determine the effect of library

size on the resulting hit compounds. Since virtual screening

involves drawing those few compounds from the extreme end of

the distribution of scores, we trivially anticipated that increasing

library size would lead to a monotonic improvement in the score of

the top-scoring compound. Accordingly, we built a library of

46,000 compounds corresponding to a drug-like subset of the

ZINC database [40], then used this to build further incrementally

smaller libraries (decreasing the library size 10-fold each time). We

carried out a virtual screen of each library against two protein

targets, interleukin-2 (PDB ID 1m47) and Mdm2 (PDB ID 4jvr),

and unsurprisingly observed a considerable decrease in the DARC

score for the top-scoring compound as we increased our library

size (Figure 8). These results serve to illustrate the fact that

chemical space is not heavily covered by (random) compound

libraries of this size, and that computational enhancements that

Figure 5. Effect of the number of particles and the number of
iterations on the ‘‘hit’’ compounds selected. The most pragmatic
measure of convergence is the identity of the ‘‘hits’’ to be advanced for
further evaluation. The top scoring 10% of the compound library from
the most extensive docking simulations were considered to be the
‘‘gold standard’’ hits. With increasing computationally intensive
simulations (by together increasing the number of particles and the
number of iterations), an increasing fraction of the hits are members of
the ‘‘gold standard’’ set.
doi:10.1371/journal.pone.0070661.g005
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enable screening of larger compound libraries are likely to enable

identification of more optimal compounds for the target of interest

– subject to the strong caveat that compounds with better scores

may not necessarily show more activity, depending on the

objective function.

With an eye towards additional optimization of our GPU

adaption of DARC in the future, we sought to better understand

the rate-limiting step in our current implementation. Based on the

relatively weak dependence of the GPU timing on factors that

dictate the number of potential ray-atom intersections to be

considered (number of rays, number of ligand atoms, and number

of particles) (Figure S1), we surmised that GPU calculation itself

was not the rate-limiting step in the overall calculation. To test this

hypothesis, we carried out minimizations of Bcl-xL (with our

typical use case of 7,000 rays), but varied the number of iterations

while keeping the product of the number of iterations and the

number of particles was fixed. As expected from fixing the total

number of potential ray-atom intersections to be computed, the

CPU alone required an almost identical amount of time to

complete each of these calculations, confirming that calculating

ray-atom intersections was indeed rate-limiting. If the same step

was rate-limiting when carried using the GPU implementation, we

would expect each of these calculations to again require a fixed

amount of time for completion. In contrast, the use of the GPU

allowed faster calculations upon decreasing the number of

iterations but using more particles: this in turn lead to a greater

overall speedup with respect to the CPU implementation

(Figure 9). We further found that up to eight independent

GPU-DARC threads running on eight (CPU) cores required the

same time for completion as a single GPU-DARC thread, despite

sharing a single GPU (not shown). Collectively these observations

suggest that given a ‘‘typical use’’ setup in the current implemen-

tation, the portion of the calculation carried out on the GPU is not

rate-limiting; rather the rate-limiting step lies either in the CPU-

GPU communication step occurring once per iteration or, more

likely given that a GPU can be effectively shared between multiple

Figure 6. Dependence on number of atoms in the ligand. Ligands of varying sizes were docked using DARC. A) Time required to complete the
optimization, using a CPU alone or with the GPU. B) Speedup factor, reported as the ratio of the time required using the GPU to the time required
using the CPU alone.
doi:10.1371/journal.pone.0070661.g006

Figure 7. Comparison of DARC optimization with and without the ‘‘ray elimination’’ step. The ‘‘ray elimination’’ step is found to
significantly improve performance of DARC on the CPU alone, but made little difference when the GPU is used. A) Time required to complete the
optimization, using a CPU alone or with the GPU. B) Speedup factor, reported as the ratio of the time required using the GPU to the time required
using the CPU alone.
doi:10.1371/journal.pone.0070661.g007
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cores, lies in the few remaining calculations taking place on the

CPU. The implications of these observations will be discussed

further below.

Discussion

Here we describe a faster implementation of the DARC ligand-

docking program enabled by GPU computing. By carrying out the

scoring step on GPUs, we achieve a speedup a 180-fold speedup

over the same calculation carried out on a CPU alone. This

calculation could be carried out 6-fold faster on the CPU by

eliminating certain interactions from consideration before scoring,

but this algorithmic difference did not affect timing on the GPU.

Accordingly, the GPU-enabled code is therefore 27-fold faster

than our fastest CPU-only code. This speedup was achieved using

a modern GPU that is relatively inexpensive (less than $500).

Several other docking tools have recently been adapted to make

use of GPU computing, leading to reported speedups in ranging

from 2-fold to 100-fold (Table 1). Methods that require long serial

trajectories, such as those built upon molecular dynamics [23,24],

require frequent CPU-GPU communication. This in turn leads to

latency that limits the speedup achievable through GPU comput-

ing. A feature common to tools that achieve dramatic speedup is

the ability to break up tasks into parallel subtasks that are either

very numerous (i.e. DARC, PLANTS, GPUperTrAmber) or else

individually computationally intensive (i.e. AutoDock Vina): either

approach leads to long stretches of computing carried out

exclusively on the GPU without the need for communication

with the CPU. By extension, for applications such as DARC in

which the objective function can be easily ported for calculation on

the GPU, optimization schemes that simultaneously consider

multiple candidate solutions (such as genetic algorithms and

particle swarm optimization) are exceptionally well-suited to

achieve dramatic speedups through relatively minor code changes.

In the case of our GPU-enabled DARC implementation, these

insights provide inspiration by which further speedups may be

possible. As noted earlier, the fact that all particles move

collectively in response to one another does not make porting

the entire PSO calculation to the GPU an attractive approach for

achieving further speedup. However, the fact that eight CPU cores

can share a single GPU without noticeable slowing implies that the

GPU remains under-utilized in our current implementation; this

Figure 8. The GPU-enabled speedup facilitates screening of
larger libraries, which in turn allows better-scoring ligands to
be identified. Compound libraries of increasing size were screened
against interleukin-2 and Mdm2. As expected, screening larger libraries
led to identification of compounds with better scores. All scores are
reported relative to the lowest scoring ligand in the largest set.
doi:10.1371/journal.pone.0070661.g008

Figure 9. Runtime dependence on the number of particles and
the number of iterations. A series of optimizations are compared in
which the number of calculations (and thus the total time required) on
the CPU is constant, and the speedup factor is reported as the ratio of
the time required using the GPU to the time required using the CPU
alone. The benefit of using the GPU is enhanced when individual GPU
tasks are larger (more particles), allowing fewer CPU-GPU communica-
tion steps.
doi:10.1371/journal.pone.0070661.g009

Table 1. Comparison of GPU-enabled docking tools.

Docking tool GPU enabled functionality Speedup

Molecular dynamics combined with docking Molecular dynamics 2–36 [23]

DOCK6 Amber scoring (molecular dynamics) 6.56 [24]

ZDOCK/PIPER/Hex Fast Fourier Transforms 156 [25]

MolDock Initially only scoring, then also differential evolution 276 [26]

DARC Simultaneously scoring multiple particles 276

PLANTS Concurrent grid-based search 606 [27]

AutoDock Vina Runs docking concurrently from different starting orientations 626 [28]

GPUperTrAmber Scoring very large systems by decomposition 1006 [29]

Docking methods have been adapted for GPU computing using a variety of strategies. These require different degrees of CPU-GPU communication, and accordingly
enable varying speedups relative to the analogous CPU-only protocol.
doi:10.1371/journal.pone.0070661.t001
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in turn suggests that the current framework could be adapted by

increasing the size of the problem allocated to the GPU at each

iteration. Through further careful examination of the relation-

ship between the number of particles and the number of

iterations (Figure 9), it may prove possible to achieve

equivalent convergence more quickly more particles and fewer

iterations. Alternatively, further parallelization may be realized

by bundling particles corresponding to different ligand con-

formers for simultaneous scoring on the GPU, rather than carry

out separate (serial) optimization of each conformer. The fact

that additional calculations can be likely carried out on the GPU

with little additional cost also offers the opportunity to

fundamentally change the DARC scoring paradigm: either by

simultaneously using multiple sets of rays originating from

distinct origins within the protein, and/or by adding new

components to capture effects of electrostatics. In short, any

enhancement that increases the computational burden per

iteration that is carried by the GPU is likely to yield further

speedup relative to the CPU alone.

Given fixed computational resources allocated for completion

of a project, the ability to carry out docking more rapidly will

have profound implications for applications of DARC. In the

most obvious case, this speedup will allow screening against very

large libraries that previously may not have been tractable, for

example the complete ZINC database [40] or a library of

hypothetical compounds likely amenable to straightforward

synthesis [44]. Even in cases in which a relatively small library

of interest is to be screened (for example, computational

screening of a library of compounds currently available in-

house), this speedup will allow an increase in the number of

conformers screened per compound; this in turn is expected to

reduce the number of false negatives in the screen, by increasing

the likelihood of including an active conformer. This speedup

may further allow the use of multiple pre-built receptor

conformations for docking [45–51], providing a means to

implicitly represent receptor flexibility and thus allow further

diversity in collection of hits identified.

Supporting Information

Figure S1 Dependence of simulation time on number of
rays. A single ligand conformation was docked in the Bcl-xL (A–
C) or Mdm2 (D–F) surface pocket, independently varying the

number of rays defining the pocket and the number of particles.

A,D) Time required to complete the optimization using a CPU.

B,E) Time required to complete the optimization with the GPU.

C,F) Speedup factor, reported as the ratio of the time required

using the GPU to the time required using the CPU alone.
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