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Abstract

The assumption that a name uniquely identifies an entity introduces two types of errors: splitting treats one entity as two or
more (because of name variants); lumping treats multiple entities as if they were one (because of shared names). Here we
investigate the extent to which splitting and lumping affect commonly-used measures of large-scale named-entity networks
within two disambiguated bibliographic datasets: one for co-author names in biomedicine (PubMed, 2003–2007); the other
for co-inventor names in U.S. patents (USPTO, 2003–2007). In both cases, we find that splitting has relatively little effect,
whereas lumping has a dramatic effect on network measures. For example, in the biomedical co-authorship network,
lumping (based on last name and both initials) drives several measures down: the global clustering coefficient by a factor of
4 (from 0.265 to 0.066); degree assortativity by a factor of ,13 (from 0.763 to 0.06); and average shortest path by a factor of
1.3 (from 5.9 to 4.5). These results can be explained in part by the fact that lumping artificially creates many intransitive
relationships and high-degree vertices. This effect of lumping is much less dramatic but persists with measures that give less
weight to high-degree vertices, such as the mean local clustering coefficient and log-based degree assortativity.
Furthermore, the log-log distribution of collaborator counts follows a much straighter line (power law) with splitting and
lumping errors than without, particularly at the low and the high counts. This suggests that part of the power law often
observed for collaborator counts in science and technology reflects an artifact: name ambiguity.
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Introduction

Assuming that an author is uniquely identified by last name and

first initials, Newman [1] reported much greater clustering and

assortative mixing of co-authorship networks in physics versus

biomedical science. This implied that physicists tended to

collaborate much more transitively and homogenously than did

biomedical scientists. Could this result be an artifact of a flawed

assumption and simply reflect the extent of name ambiguity? After

all, we know experientially that name ambiguity increases with the

size and diversity of bibliographic databases and that the

biomedical literature is much larger than that of physics.

Name ambiguity is not unknown to investigators who study

large networks; but few attempt to resolve this bias because it

requires substantial effort. Many argue that ambiguity has a small

effect on statistical network measures (e.g., [2–7]). Some ignore the

matter completely (e.g., [8–15]). However, some have found that

measurement errors vary significantly depending on an author’s

role. For example, measurements of individuals acting as network

‘‘bridges’’ or ‘‘hubs’’ are subject to the greatest systematic

distortion [16].

Two types of errors result from assuming that a name identifies

an individual uniquely: splitting, whereby output by one individual

is assigned to two or more individuals (e.g., due to name variants);

and lumping, whereby output by several individuals is assigned to

one individual (e.g., due to common names). Figures 1 and 2

illustrate these two types of errors on co-authorship networks using

data from the Author-ity 2009 dataset (a computational disam-

biguation of authors in PubMed; [17,18]). Figure 1 shows two

graphs before and after a splitting error. The vertex corresponding

to Monika J. Hjortaas is erroneously split into two new vertices

(labeled M. Hjortaas and M. J. Hjortaas) when we assume that

individuals are identified by a name (here, last name, both initials).

The two new vertices are connected to two different sets of co-

authors that are not mutually exclusive (e.g., C. M. Jonassen

appears in both sets, representing an indirect connection between

the two new ‘‘authors’’). In Figure 2, the vertices corresponding to

Julia A. Kenniston and Jon A. Kenniston are erroneously lumped

into one vertex when we assume that a name (here, last name,

both initials) identifies the individual. Before lumping, the network

comprises two disjoint subgraphs (one for Julia; the other for Jon);

after lumping, the network comprises a pair of biconnected

components sharing a single cutpoint, J. A. Kenniston. Splitting

and lumping change network topology in these small examples,

and the accompanying network measures reflect a modest

distortion.
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Figure 1. Illustration of splitting 1 author into 2 authors based on a name variant alone. The bold arrow separating the 2 network
diagrams indicates the direction of change: before, to the left; after, to the right. Hjortaas M[J] is split into Hjortaas M and Hjortaas MJ based on last
name, both initials. Note that the split would not have occurred if last name, first initial had been the criterion. Note also that the artificial vertices
created by the split do not separate completely in the sense that Hjortaas M and Hjortaas MJ continue to share some co-authors. This is real data
from PubMed; but the network measures regard the present, local network only.
doi:10.1371/journal.pone.0070299.g001

Figure 2. Illustration of lumping 2 authors using only last name, both initials. The bold arrow separating the 2 network diagrams indicates
the direction of change: before, to the left; after, to the right. Note that Jon A. Kenniston and Julia A. Kenniston had no common co-authors before
lumping. Lumping introduces a cutpoint as 2 connected components become biconnected. This is real data from PubMed; but the network measures
regard the present, local network only.
doi:10.1371/journal.pone.0070299.g002
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We hypothesize that the distortion of network measures

becomes more pronounced in networks that are larger and more

comprehensive. To test this hypothesis, we investigate the effects of

splitting and lumping on different statistical properties of two

large-scale networks: one based on PubMed co-authorship; the

other on USPTO co-inventorship. Starting with bibliographic

datasets where names have been computationally disambiguated,

Author-ity 2009 [17,18] and USPTO [19], we simulate splitting

and lumping and show that these errors will indeed affect many

network measures in dramatic, if not counterintuitive, ways.

Disambiguation Efforts
Name ambiguity jeopardizes research, collaboration, decision-

making, and commerce. To appreciate this fact, one need only

consider large-scale initiatives that attempt to counteract ambi-

guity’s effects: authority control (which has a long history in library

information systems management), the Virtual International

Authority File (VIAF; http://www.oclc.org/viaf/), The Friend of

a Friend (FOAF; http://www.foaf-project.org/) project, Master

Data Management (MDM), OpenID (http://openid.net/), VIVO

[20], and Open Researcher & Contributor ID (ORCID; http://

www.orcid.org/), to name only a few. The problem these

initiatives address – the lack of a definitive link between an

individual or entity and its output or manifestations – permeates

institutional, disciplinary and commercial repositories alike; and

the responsibility for maintenance is not always clear. For

example, to what extent can a depositor be trusted to find the

correct identifier for a co-author let alone spend time in its pursuit

[21]? Torvik and Smalheiser [18] found that MEDLINE is rife

with instances of author name ambiguity, due partly to changing

data curation practices over years. Full first names appeared for

the first time in MEDLINE in the year 2002. Other identifying

information such as affiliations and email addresses were added

more recently, and their use has been inconsistent. (See also [22–

24].).

Name ambiguity exists because it is both useful and necessary in

reducing redundancy and enabling reuse. It limits the cognitive

resources required to identify a person, place, or thing; and it

makes language (natural or artificial) efficient [25]. The price paid

is the time, energy, and care needed to simultaneously identify and

differentiate entity instances and their referents accurately. Name

variants resulting from Romanization, misspelling, use of abbre-

viations, aliases or nicknames, changes in marital status, and

religious conversion present a particular challenge for disambig-

uation of human names [26]. Moreover, even when linguistically

simple (as opposed to descriptive) proper names can be matched,

disambiguation without contextual clues may distort the topology

of the network itself, as Figures 1 and 2 illustrate. This distortion

becomes acute when the sample under study contains a significant

number of common surnames and given names. [21,27].

Algorithmic name disambiguation is also known under names

such as entity resolution and coreference resolution (in natural language

processing), record linkage and duplicate detection (in administrative

database management), among many others. The absence of

standards for name disambiguation, lack of benchmark datasets,

context-specificity, poor performance, and difficulty scaling

algorithms are reasons offered for avoiding the arduous task of

disambiguation altogether. Many features must be considered in

combination to disambiguate with a high degree of accuracy. For

example, co-author names, affiliations, self-citations or references,

topics, vocabulary, temporal features, and name frequency all

contribute non-redundant information in disambiguation

[4,16,26,28,29]. Restricting the domain of inquiry (e.g., to

information science or stem cell research) and even the byline

position of authors, along with author co-citation analysis, has

helped in the past too; but the increasing presence of common

Chinese and Korean surnames (e.g., Liu, Chen, Kim, Lee) among

authors complicates this particular approach [30]. Some investi-

gators have offered methods to assess the cost of name

disambiguation in natural language processing [31] and biblio-

graphic analysis [16]. Others have taken steps to establish and

improve benchmark datasets [32–35] and to encourage partici-

pation in improving matching algorithms through competition at

an institutional level [36].

Materials and Methods

Network Measures
A network is defined as a set of vertices (or nodes), V, and a set

of edges, E, each of which connects a pair of vertices. To facilitate

comparison with other work (specifically [1,37]), we treat edges as

undirected and unweighted, even though we could define direction

in terms of the position of an author on a publication and weight

as the frequency of co-authorship, for example. Additionally, no

two vertices may have more than one edge between them; and no

vertex may be self-referential.

Several measures figure prominently in graph-theoretic analyses

of collaboration networks: clustering coefficient, degree assortativ-

ity, and average shortest path length, among others. Each

characterizes a different aspect of network topology. Several terms

are rudimentary to this characterization. A triple (a.k.a. triad) is a

graph or subgraph comprising 3 vertices that may or may not be

interconnected. A connected triple has 2 or 3 edges. A connected

triple with 2 edges is called a 2-star; a connected triple with 3 edges

is a triangle. Lastly, the degree of a given vertex is the number of

edges incident to that vertex. (See [38–41]).

The word collaboration serves presently as shorthand for activity

among individuals resulting in a published paper or a granted

patent (co-authorship or co-inventorship, respectively). Co-author-

ship (or co-inventorship) is, in a sense, an approximation of

collaboration and only captures certain types of collaboration,

because (a) a paper is not sufficient evidence of collaboration

among all pairs of authors on a paper [6,42]; and (b) the lack of a

co-authorship does not imply the absence of collaboration. Also,

mere co-occurrence of authors does not capture the nature of their

relationship.

The clustering coefficient of a collaboration network measures the

degree to which people tend to collaborate transitively. A transitive

relation is one where if vertex X directly connects to vertex Y, and

Y directly connects to vertex Z, then X and Z are directly

connected too. M. Granovetter [43,44] famously explored

transitive relations in the context of friendship networks, conclud-

ing that even if X and Z are not directly connected, they may

indirectly integrate each other into disparate communities and

increase opportunities for one another.

The clustering coefficient is calculated in two prominent ways

differing on the unit of averaging: connected triples (Equation 1);

or vertices (Equation 2; [45,46]). For the former, the global

clustering coefficient, C, is simply the proportion of connected

triples in the network that are triangles (i.e., averaged over

connected triples):

C~
number of distinct triangles

number of distinct connected triples
ð1Þ

For the latter, one calculates a local clustering coefficient for

each vertex and then computes the average over all vertices:

A Flawed Named-Entity Network Assumption
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�CC~
1

n

Xn

i~1

Ci ð2Þ

where Ci is the clustering coefficient of the network formed by

the i-th vertex and its neighbors; and n is the total number of

vertices in the network. In both cases, the clustering coefficient

ranges from 0 to 1, where 0 indicates that all vertices are arranged

hierarchically (as trees or chains), and 1 indicates that all

connected triples are triangles (where each friend of a friend is

also a direct friend). Soffer & Vázquez [46] proposed an

alternative definition of the clustering coefficient that factors out

degree-degree correlations. Nevertheless, for the sake of compar-

ison with results reported by [1,37], we also use Equation 1.

Assortativity (a.k.a. assortative mixing, homophily) in a collabo-

ration network is the extent to which authors collaborate with

people like themselves. Here, degree is the unit of comparison.

The greater the degree assortativity, the less vulnerable the

network becomes to disruptions in information flow from targeted

failure or removal of high-degree vertices [47,48]. Newman [49]

quantifies assortativity as ‘‘the Pearson correlation coefficient [r] of

the degrees at either ends of an edge.’’ Pearson’s r ranges from 21

to 1. In the context of a collaboration network, if r~{1, then

participants collaborate exclusively with opposites; if r~0,

Table 1. Extent of distortion caused by name = identity assumptions.

Network measures Disambiguated Last name, First initial Last name, Both initials

PubMed (2003–2007)

Authors 3.176106 1.566106 2.186106

Mean Co-authors 16.8 (40.9 SD) 32.4 (135.2 SD) 24.9 (94.4 SD)

Density 5.361026 20.761026 11.561026

Giant Component 3.026106 (95.5%) 1.546106 (98.3%) 2.126106 (97.4%)

Biconnected Components 211,014 (6.7%) 72,295 (4.6%) 121,126 (5.6%)

Cutpoints 132,492 (4.2%) 52,003 (3.3%) 84,976 (3.9%)

Global Clustering Coefficient 0.265 0.046 0.066

Degree Assortativity 0.763 0.043 0.060

Average Shortest Path 5.88 3.99 4.49

USPTO (2003–2007)

Inventors 468,697 258,221 344,755

Mean Co-inventors 4.6 (4.9 SD) 8.1 (23.4 SD) 6.4 (15.7 SD)

Density 9.961026 31.561026 18.561026

Giant Component 214,195 (45.7%) 222,584 (86.2%) 254,080 (73.7%)

Biconnected Components 128,384 (27.4%) 53,582 (20.8%) 84,143 (24.4%)

Cutpoints 49,546 (10.6%) 27,835 (10.8%) 39,278 (11.4%)

Global Clustering Coefficient 0.268 0.031 0.043

Degree Assortativity 0.414 0.060 0.128

Average Shortest Path 12.95 5.04 6.35

The following table shows a variety of network measures for 2 different bibliographic databases (PubMed and USPTO) construed in 3 different ways. The label
Disambiguated refers to baseline datasets generated by [17-19]; the other labels denote versions of these baselines derived using the given name = identity assumption.
Note that the network measures vary considerably; those for global clustering coefficient and degree assortativity are particularly dramatic.
Note: SD = standard deviation.
doi:10.1371/journal.pone.0070299.t001

Table 2. The effect of splitting and lumping on precision and
recall for PubMed (2003-2007) and USPTO (2003-2007) with
respect to disambiguated networks.

Network Precision Recall

PubMed (2003–2007)

Split 89%

Lumped, One initial 35%

Lumped, Both initials 40%

USPTO (2003–2007)

Split 90%

Lumped, One initial 31%

Lumped, Both initials 38%

Here, precision reflects the extent of error due to name variants from 100%
splitting; and recall, the extent of error due to grouping of common name
elements from 100% lumping.
doi:10.1371/journal.pone.0070299.t002

Table 3. The number of operations required for each
simulation in Figures 3, 4, 6, and 7 corresponding to the
number of name instances eligible for identity change.

PubMed USPTO

Splitting 383,436 26,685

Lumping, One initial 1,997,939 285,689

Lumping, Both initials 1,374,465 179,341

doi:10.1371/journal.pone.0070299.t003

A Flawed Named-Entity Network Assumption
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Figure 3. Change in clustering coefficient and degree assortativity given splitting and lumping of PubMed authors (2003–2007)
and USPTO inventors (2003–2007). In each subfigure, the x axis denotes the state of completion for splitting and lumping separately; the y axis
represents the value of each labeled statistic. Each line segment (differentiated by color and style) plots 100 separate snapshots of the underlying
network taken at even intervals for each set of operations. Splitting is based on last name, both initials. See Table 3 for the number of operations
required. The global clustering coefficient is due to Equation 1; the mean local clustering coefficient to Equation 2. Degree assortativity is calculated
as the correlation coefficient (corr coeff) with linear scaling and, separately, log-based scaling of degree.
doi:10.1371/journal.pone.0070299.g003

A Flawed Named-Entity Network Assumption
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Figure 4. Change in triangles and connected triples given splitting and lumping of PubMed authors (2003–2007) and USPTO
inventors (2003–2007). In each subfigure, the x axis denotes the state of completion for splitting and lumping separately; the y axis represents the
value of each labeled statistic. Each line segment (differentiated by color and style) plots 100 separate snapshots of the underlying network taken at
even intervals for each set of operations. Splitting is based on last name, both initials. See Table 3 for the number of operations required.
doi:10.1371/journal.pone.0070299.g004

A Flawed Named-Entity Network Assumption
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participants have no preference; if r~1, then participants

collaborate exclusively with others like themselves. Kendall-

Gibbons’tb and Spearman’sr, both rank correlations, are among

proposed alternatives to Pearson’s r. [50–52].

Density is the proportion of vertex pairs that are directly

connected. It has long been considered an indicator of structural

(group) cohesion, because it measures the ‘‘completeness’’ of a

network (that is, the extent to which all vertices connect to one

another; [39,53]). However, Friedkin [53] reiterates a caution that

as an aggregate measure, density is not a reliable measure of

structural cohesion at all if the network contains subgroups (e.g.,

groups with high local density in an otherwise low-density

network). PubMed and USPTO most certainly contain subgroups;

so among results, we also include the mean number of co-authors

and co-inventors, respectively, in our tabulation of density. (See

[39], p. 180ff).

A connected component is a maximal subgraph wherein each vertex

is reachable from any other vertex. A biconnected component (a.k.a.

block) is a connected component that joins another connected

component via a cutvertex (a.k.a. cutpoint, cutnode, articulation

point, or boundary spanner) or a cutedge (a.k.a. bridge or isthmus;

[54–57]). Cutpoints and bridges are critical elements, because their

removal creates connected components, eliminating one or more

paths in the network and, consequently, disrupting the flow of

information within the network.

The shortest path (a.k.a. geodesic distance) from one vertex to

another is the path with the minimum number of edges.

Knowing the shortest path between points has practical benefit

when, for example, social navigation is critical for task

completion. The breadth-first search algorithm finds the

minimum paths between a starting vertex and all other vertices

with time complexity O(DV DzDED) [57]. This measure is not

tractable computationally for networks beyond a certain size; so

we use sampling with negligible sampling error for estimates.

Datasets
Author-ity 2009 is a set of inferred authors (,9.3 million)

from instances of author names on biomedical or biomedically-

related publications (,20 million) from ,1946 to September,

2009 in PubMed. Author-ity 2009 is the product of an

algorithm that clusters instances of author names associated

with different PubMed records probabilistically and with a high

degree of accuracy (,98%; [17,18]). The algorithm accom-

plishes this result by computing similarity profiles from many

different fields in PubMed records. To maintain the window

size used by [1,37], we restricted papers (not exclusively journal

articles) to those published in the 5 years between 2003 and

2007, inclusive. The papers within this range contain more

complete metadata than earlier periods, helping remove any

possible edge effects. For example, the majority of these papers

include the given (first) names of authors; so accuracy should be

better. To reiterate, previous assessment of the entire Author-ity

dataset showed both splitting and lumping at less than 2% [17];

and the subset of Author-ity used in the present paper is likely

to be more accurate, because papers are restricted to years

which typically have more complete records (i.e., include first

names and affiliations). Unless indicated otherwise, the names

Author-ity 2009 and PubMed are interchangeable in this paper.

An analogous 2003–2007 dataset was extracted from the

USPTO (United States Patent and Trademark Office) inventor

data disambiguated by [19].

Each dataset consists of a set of clusters, each of which contains

a set of name instances on papers (or patents) representing an

author (or inventor). Each cluster can have multiple name variants

(making it eligible for splitting) and can share a name with other

clusters (making it eligible for lumping).

Simulations
Starting with a disambiguated dataset pruned of isolates

(authors without any co-authors, inventors without any co-

inventors), all possible splitting operations are performed followed

by all possible lumping operations. Splitting (and lumping)

operations in each simulation follow a random order. As illustrated

in Figure 1, a splitting operation entails cleaving one randomly

selected name variant (along with its name instances) from a

randomly selected cluster to create two new clusters, at least one

without any name variants. All splitting is complete when no

cluster contains name variants. As illustrated in Figure 2, a

lumping operation entails combining a pair of randomly selected

clusters that share a name. Lumping is performed with two

different definitions of name: last name, first initial; last name, both

initials. All lumping is complete when no two clusters share a

name. When all splitting and lumping is complete, each cluster is

uniquely identified by a name (i.e., name = identity). In practice,

we maintain a list of splitting and lumping eligibles to make

random selection efficient and determine when to terminate the

algorithm.

Each splitting or lumping operation creates a new network

where a cluster corresponds to a vertex and the co-occurrence

of a name instance on a paper (or patent) corresponds to an

edge. All network measures are computed for each of 100 such

networks sampled every x number of splitting (or lumping)

operations, where x is the total number of operations divided by

100. Only the average shortest path is estimated by sampling,

because of its computational complexity. Estimation involves

randomly sampling 1,000 vertices from the giant component of

each of the 100 networks. A second random sample confirmed

that the sample size is sufficient to make sampling errors

negligible. It should be noted that the networks obtained at the

Table 4. Comparison of different ways of measuring the
clustering coefficient and degree assortativity.

Network Subset C C r r log

PubMed (2003-2007)

Disambiguated All 0.265 0.689 0.763 0.561

d#100; n#50 0.073 0.688 0.164 0.249

Lumped, One initial All 0.046 0.619 0.043 0.291

d#100; n#50 0.018 0.616 0.128 0.194

Lumped, Both initials All 0.066 0.640 0.060 0.372

d#100; n#50 0.020 0.638 0.136 0.208

USPTO (2003-2007)

Disambiguated All 0.268 0.658 0.414 0.588

Lumped, One initial All 0.031 0.597 0.059 0.260

Lumped, Both initials All 0.043 0.620 0.128 0.398

Crepresents the global clustering coefficient; C, the mean local clustering
coefficient; r, degree assortativity (the correlation coefficient of degree); and r
log, the correlation coefficient of the log of degree. To eliminate the effects of
hyper-authorship, subsets labeled dƒ100; nƒ50include authors with degree
(d) no more than 100 and papers (n) with no more than 50 authors. Subsets
labeled ‘‘all’’ exclude nothing.
doi:10.1371/journal.pone.0070299.t004

A Flawed Named-Entity Network Assumption
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end of all lumping operations are equivalent to the networks

studied in [1–15,37] where it is assumed that a name uniquely

identifies the person.

Figure 5. Degree distribution and its relationship with the local clustering coefficient and degree assortativity. Each point represents
the average of a set of authors (inventors) with identical degree. The points near the dashed diagonal reflect the influence of hyper-authorship.
doi:10.1371/journal.pone.0070299.g005

A Flawed Named-Entity Network Assumption
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Figure 6. Change in density, the proportion of cutpoints, and average shortest path given splitting and lumping of PubMed
authors (2003–2007) and USPTO inventors (2003–2007). In each subfigure, the x axis denotes the state of completion for splitting and
lumping separately; the y axis represents the value of each labeled statistic. Each line segment (differentiated by color and style) plots 100 separate
snapshots of the underlying network taken at even intervals for each set of operations. Splitting is based on last name, both initials. See Table 3 for
the number of operations required.
doi:10.1371/journal.pone.0070299.g006

A Flawed Named-Entity Network Assumption
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Figure 7. Change in measures of components given splitting and lumping of PubMed authors (2003–2007) and USPTO inventors
(2003–2007). In each subfigure, the x axis denotes the state of completion for splitting and lumping separately; the y axis represents the value of
each labeled statistic. Each line segment (differentiated by color and style) plots 100 separate snapshots of the underlying network taken at even
intervals for each set of operations. Splitting is based on last name, both initials. Differences in the mean size of biconnected components between
PubMed and USPTO suggest a cause of the unexpected behavior of cutpoints in Figure 6. See Table 3 for the number of operations required.
doi:10.1371/journal.pone.0070299.g007

A Flawed Named-Entity Network Assumption
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Results

Tables 1–3 summarize the overall effects of splitting and

lumping. They list measures for biomedical co-authorship

networks (in PubMed) and co-inventorship networks (in USPTO)

constructed in three different ways: one disambiguated; two non-

disambiguated (based on two different definitions of a name). The

two non-disambiguated networks correspond to the application of

all splitting and lumping operations. In Table 1, the disambiguated

PubMed and USPTO networks respond similarly to splitting and

lumping errors as reflected by the direction of change in the value

of all measures, except for the proportion of cutpoints. Among

similarities, the following measures decrease: number of vertices

(authors and inventors), number of biconnected components as a

percentage of vertices, clustering coefficient, degree assortativity,

and average shortest path. For example, for PubMed (from

disambiguated to last name, both initials), the global clustering

coefficient decreases by a factor of 4 (from 0.265 to 0.066); degree

assortativity by a factor of ,13 (from 0.763 to 0.06); and average

shortest path by a factor of 1.3 (from 5.9 to 4.5). The following

measures increase: mean degree (co-authors and co-inventors) and

size of the giant component as a percentage of vertices. For

PubMed (from disambiguated to last name, both initials), mean co-

authors increases modestly by a factor of 1.5 (from 16.8 to 24.9);

the size of the giant component as a percentage of vertices

Table 5. Basic properties of the PubMed (2003-2007) and USPTO (2003-2007) networks along with power-law fits of their degree
distributions.

Network n Mean xmax x̂xmin âa ntail

PubMed (2003–2007)

Disambiguated 3,188,865 13.7 (21.7) 1,944 156 (13) 4.3 11,961 (3,275)

Last name, Both initials 2,197,836 20.3 (72.4) 15,647 131 (18) 2.7 42,773 (7,427)

USPTO (2003–2007)

Disambiguated 555,740 3.9 (4.6) 161 26 (3) 4.6 3,993 (1,385)

Last name, Both initials 403,097 5.4 (14.5) 1,247 13 (3) 2.7 35,399 (6,387)

The power law distribution has the form p(x)~ Pr (X~x)~Cx{a , for x§x̂xmin , where x is degree, C is the normalizing constant 1
�P?

n~0 (nzxmin){a ; n is the number of
observations; and x̂xmin is the estimated lower bound (cutoff) of the scaling region such that ntail~x§x̂xmin . The values here were computed from 1,000 iterations of the
non-parametric fitting procedure using the goodness-of-fit approach described by [58]. Because the p-value for each distribution is zero with large ntail and small x̂xmin ,
we have strong evidence that none of the distributions fit a power law. (See also [59]).
Note: Standard deviation shown in parentheses.
doi:10.1371/journal.pone.0070299.t005

Figure 8. Cumulative distributions of collaborator counts (degree) for PubMed (2003–2007) and USPTO (2003–2007). Note that in
both cases, the disambiguated data exhibits much more curvature than for the name = identity assumption.
doi:10.1371/journal.pone.0070299.g008
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increases by 1.02 (95.5% to 97.4%). Stated another way, if one

assumes that a name uniquely identifies an individual, then one

will underestimate the number of individuals in the network, the

degree to which individuals collaborate in a transitive fashion, and

the extent to which individuals collaborate with others like

themselves. Likewise, one will also overestimate an individual’s

average number of collaborators and the extent to which the

majority of individuals are connected. Also, the two different

definitions of a name (last name, first initial, and last name, both

initials) do not provide bounds on any of the measures, as

Newman assumed [37].

Figures 3 and 4 show the extent to which some network

measures change as functions of the extent of splitting and

lumping, from start to finish (from no splitting or lumping to 100%

splitting and lumping). They show that network measures vary

considerably, but systematically, and behave differently under

splitting and lumping. In Figure 3, for example, the systematic

distortion of the global clustering coefficient, C, and degree

assortativity is particularly dramatic. Intuitively, one might expect

C to increase with lumping and decrease with splitting. After all,

clustering and lumping are both related concepts, colloquially.

The fact that the opposite occurs is therefore counterintuitive. The

simulations show that for PubMed, splitting increases C linearly

and only slightly from 0.265 to 0.279, start to finish. For lumping

(by last name, both initials), C decreases from 0.279 to 0.066,

which is the identical value reported for MEDLINE by [37].

Figure 4 shows that this dramatic decrease due to lumping is

caused by a dramatic increase in the number of connected triples

(the denominator in Equation 1) with little corresponding change

in the number of triangles (the numerator in Equation 1). Note

that MEDLINE is a subset of PubMed. The use of only one initial

makes the effect of lumping even worse. (See dotted lines in

Figures 3 and 4.) The change is much less dramatic for the mean

local clustering coefficient, in large part because high-degree

authors receive the same weight as low-degree authors.

Lumping’s dramatic effect on degree assortativity in Figure 3 is

explained by Table 4 and Figure 5. In the case of both PubMed

and USPTO, covariance between degree and mean degree of

neighbors is evident up to a point (a degree of ,100 for PubMed;

,30 for USPTO). As the cumulative distribution function shows,

most authors (inventors) have degrees below this point, making

those above the point ‘‘outliers’’. These outliers represent (a)

authors (inventors) who have indeed collaborated with many other

authors (inventors) between 2003 and 2007, (b) lumped individ-

Figure 9. Distributions of collaborator counts (degree) conditioned on paper and patent counts for PubMed (2003–2007) and
USPTO (2003–2007). Papers and patents with 20 or more authors or inventors are excluded. Lumping error is visible in the upper row of plots as
the name = identity assumption inflates collaborator counts. For PubMed, 280,446 (9%) authors have 4 co-authors over the period; for USPTO, 93,540
(17%) inventors have no co-inventors. For authors with 1 paper, 3 co-authors is the mode; for authors with over 10 papers, 33 co-authors.
doi:10.1371/journal.pone.0070299.g009
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uals, even a few in the disambiguated datasets (such as Lee, Gotoh,

Wu, Torres, and Hwang), and (c) for PubMed particularly, the

sociological phenomenon of hyper-authorship. Degree assortativ-

ity (as expressed using Pearson’s r) is sensitive to vertices of high

degree; so despite the location of mass in the plots in Figure 5, the

outliers (however defined) add sufficient weight to decrease the

measure. To test this hypothesis, we selected a subset of authors

from PubMed having degree no greater than 100 and papers with

no more than 50 authors. Table 4 shows that the removal of high-

degree vertices and hyper-authorship papers has little effect on the

relative difference between the disambiguated and non-disambig-

uated networks. After factoring out high-degree vertices and

hyper-authorship, lumping still deflates measures of the assorta-

tivity and clustering. However, the dramatic effect of lumping is

also a direct result of the measures chosen (local vs global

clustering, and linear vs. log-based degree assortativity).

Splitting has much less effect on network measures than

lumping. Because we expect PubMed (and USPTO) to have

more shared names than name variants, the magnitude of change

due to splitting versus lumping is not surprising. Furthermore, the

splitting curves tend to be linear. That is, the distortion of network

measures is proportional to the extent of splitting. In contrast,

lumping has nonlinear curvature and much greater effect at early

stages along the operational continuum. In other words, the

distortion of the network measures is not proportional to the extent

of lumping. The differences between splitting and lumping have at

least three possible explanations. First, they may simply reflect

fewer splitting than lumping operations, because individuals have

fewer name variants than shared names on average. Second,

lumping might have a greater domino effect that compounds

errors with each lumping operation. Third, lumping may be

hitting a floor effect that limits how low a measure can drop.

The proportion of cutpoints to vertices in Figure 6 exhibits

opposite reactions (a decrease for PubMed; an increase for

USPTO) and, in the case of lumping under USPTO. Although the

range of the effect is relatively small (less than one hundredths of a

point), this result is unexpected, because the behavior of all other

measures is nearly identical, including the relative effect of using

one vs. two initials. We expected lumping to create cutpoints, but

lumping appears to be creating only local cutpoints. What explains

these differences? First, dissimilarities exist in the completeness

(perhaps also quality) of the underlying metadata as well as the

methods used for disambiguation. For example, the proportion of

clusters with missing middle initials from the start of lumping is

63% for PubMed, 48% for USPTO. This implies that more

authors are being lumped under the ‘‘last name, both initials’’

name = identity assumption than inventors. Second, the domains

of authorship in biomedicine and inventorship broadly may have

sociological differences that the tally of cutpoints captures. If this is

true, because cutpoints do not exist without biconnected

components, the latter warrant further investigation.

Figure 7 shows that the number of biconnected components

increases with splitting and decreases with lumping for both

PubMed and USPTO. Ostensibly, as the number of biconnected

components increases due to splitting, more vertices become

cutpoints, maintaining network cohesion. Likewise, as the network

contracts due to lumping, cutpoints disappear due to component

consolidation (increased component size). PubMed exhibits this

behavior; USPTO does not, despite the nearly identical average

size of biconnected components for disambiguated versions of both

PubMed and USPTO. Something else must be at play.

Table 1 and Figures 6 through 9 provide some clues. USPTO is

a much smaller network than PubMed and has a significantly higher

number of biconnected components (higher by a factor of ,1.64),

a longer average shortest path (more than double for splitting and

for the early stages of lumping), and constituent inventors with 3

times fewer collaborators on average. For USPTO, splitting based

on name variants alone tends to increase the size of existing

biconnected components and decrease the number of cutpoints.

Lumping based on the name = identity assumption tends to create

more bridges in early stages and thus increases the number of

cutpoints. The effect of this behavior is long-lasting for the more

selective ‘‘both initials’’ assumption. However, lumping by first

initial, being more inclusive and thus prone to greater consolida-

tion of biconnected components, causes a gradual decrease in the

number of cutpoints after reaching critical mass at about 20%

(Figure 6). The implication here is that the number of biconnected

components actually captures a sociological difference between

domains.

Among other measures, density increases dramatically from

0.4461025 to 1.1561025 for lumping with both initials (Figure 6).

This result is unenlightening, however. Density is known to

increase in networks in which name homonymy is pervasive, such

as research groups with Asian affiliations [16]. Moreover, we

expect density to be low given the large size of the networks [53].

Collaboration networks such as ones constructed from co-

authorships in PubMed and co-inventorships in USPTO are often

characterized as scale-free networks. Scale-free networks exhibit a

power law degree distribution whereby most vertices have few

edges and a small minority of vertices have many edges (making

such vertices hubs). When plotted on log-log scale, an empirical

degree distribution follows a straight line when it follows a pure

power law. While a straight-line fit on a log-log plot is not sufficient

evidence of a power law; it is necessary [58,60,61]. Both Table 5

and Figure 8 show explicitly that the networks constructed from

PubMed and USPTO do not follow a pure power law, with or

without disambiguation; rather, the power law is limited to a

certain range. Much of the range of the power law disappears with

disambiguation. Figure 8 shows that the empirical distributions

have at least three components: an initial ‘‘hook’’ (or curve); a line;

and a curved tail (or cutoff). (The mixture model in Figure 9 shows

this too. Note [6,62].) The initial hook in the curves probably

reflects the fact that most authors represented in the PubMed

dataset obtain three to four co-authors in a single instance.

Inventors behave similarly; but the hook is narrower, because their

norm favors sole or dual attribution. The curved tail probably

reflects the finite limits of human capacity (physical and mental).

For a moderate number of collaborators, we see a linear trend in

the non-disambiguated set, whereas the disambiguated set exhibits

some curvature throughout the moderate range (as shown by the

narrow range of the linear fit in Figure 8). In other words, the

apparent power-law fit becomes an effect of ambiguity, because

disambiguation reduces the linear piece of the distribution.

Figure 9 shows co-authorship degree distributions decomposed

into mixtures of authors by productivity. The bottom two

subfigures show that the curvature of both baselines beyond four

collaborators results from increased output (papers published or

patents granted) and, perhaps not coincidentally, a larger number

of collaborators over time. The curvature may indicate the

physical limits of what someone can accomplish in a finite period

(over 5 years), the number of people with whom one can

collaborate, and/or the number of people with whom one can

maintain stable collaborative relationships. (This effect may be

seen in the tail of plots in Figure 8 as well.) For example, although

[11] did not account for name ambiguity, they found that team

size varies by discipline and tends to increase up to a local

optimum over time. Generalizing from Figure 9, relatively few

authors or inventors collaborate with many other authors or
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inventors. This is the essence of the power law in collaboration

networks: a few individuals are extremely effective in building on

their existing social and topical capital, producing a compounding

effect.

Discussion

From analysis of two large networks constructed from PubMed

and USPTO, we see dramatic changes in statistical properties

when using only name attributes to determine the identities of

authors and inventors. These changes indicate that these

properties capture topological aspects of the networks that are

sensitive to splitting and lumping errors. In Figure 3, for example,

degree assortativity increases modestly due to splitting and

decreases precipitously due to lumping. Additionally, relatively

few lumping operations account for 80% of the changes in both

cutpoints and average shortest path. These findings challenge the

reasoning expressed by both [2] and [37] that name ambiguity has

little effect in large-scale network analyses. It also reinforces the

importance of contextual clues (such as collaborators, affiliations,

and topics) in establishing identity and affirming attribution. (Note

[26,28]).

Why does lumping have such a dramatic effect on network measures? The

effect of lumping on network measures has at least two

explanations: (a) ambiguity; (b) sensitivity to high-degree vertices

(e.g., due hyper-authorship or lumped individuals). First, lumping

tends to create high-degree vertices and deflate transitivity

measures by artificially creating 2-stars and local cutpoints (not

global cutpoints as captured by the cutpoint measure). As lumping

increases the number of local biconnected components, it

transforms the network into a more hierarchical structure. Second,

measures such as the global clustering coefficient and degree

assortativity are particularly sensitive to the presence of high-

degree vertices. (Kowalski [63] noted that this sensitivity may also

be a consequence of measures for which the underlying

distribution is assumed to be nearly normal.) The linear scale

upon which degree correlation is calculated fails to capture

positive degree assortativity among low-degree vertices. High

degree vertices are also influential in the global clustering

coefficient, not because of its scale, but rather because of its

weighting scheme: it counts triples. By averaging or rescaling

individual measures (as with the mean local clustering coefficient

and log-based degree assortativity, respectively), one can discount

the weight some aggregate measures give high-degree vertices.

With such discounting, the differences observed with the otherwise

degree-sensitive measures become much less dramatic. It should

also be noted that hyper-authorship papers create local networks

wherein nearly everybody has the same (high) degree and are

related transitively. Removing hyper-authorship from a dataset is

one possible corrective action; but the utility of the resulting

network and the measures used to characterize it depend on the

research questions asked.

When splitting and lumping have opposite effects, why don’t they cancel each

other? What explains lumping’s nonlinear effect? First, lumping is much

more prevalent than splitting, because a person has fewer name

variants than individuals with whom he or she shares a name, both

on average and in the extreme. That is, people with name variants

typically have just two but could have a dozen; however, an

ambiguous name is typically shared by several people and could be

shared by thousands. Second, splitting has a local effect, whereas

lumping has a global compounding effect. Splitting happens to one

person; and a split personality is likely to collaborate with someone

closely related to the original. Lumping involves multiple people

and links together wildly different parts of a network. Thus, as the

number of lumping operations increases, errors compound,

creating a much bigger effect on the network. So, both the

number of individuals involved and the compounding effect of

lumping ensure that (a) splitting and lumping are not mutually

cancelling operations and (b) early and late lumping operations

differ in their effect on network measures.

Can corrective factors (offsets) for network measures overcome the need for

disambiguation of named entities altogether? Measures of large-scale

named-entity networks are biased if the networks they characterize

have not been disambiguated first. Assuming the disambiguated

version of a named-entity network is unknown or unknowable, one

could compensate for this bias by using a corrective factor. Due to

the linear effect of splitting operations on most measures, a

corrective factor for splitting only needs estimates of (a) a per-

operation splitting effect of partial disambiguation and (b) the total

number of splitting operations. Due to the nonlinear effect of

lumping operations, a corrective factor for lumping also requires

one to characterize the shape of the curve. The shapes

corresponding to the networks studied here are highly nonlinear

and depend upon the class of network examined (such as small-

world, scale-free, and others based on varying degrees of clustering

and assortative mixing, assuming generalization to class is possible;

[64–66]). The degree of nonlinearity, even if monotonic, indicates

that the corrective factor for lumping is likely to be much less

accurate than the corrective factor for splitting. Derivation of

corrective factors could be fruitful future research.

In our investigation, splitting and lumping had opposite effects

on named-entity networks in the limit: splitting increased the

global clustering coefficient; lumping decreased it. We observed a

similar though more striking and abrupt effect in degree

assortativity. The name = identity assumption leads to underesti-

mates of such network measures, and the extent of mischaracter-

ization is probably underappreciated. For example, as both the

global clustering coefficient and degree assortativity become

smaller, the network they characterize becomes more diffuse and

less cohesive. For a collaboration network, the smaller values may

indicate an increase in the diversity of opinion, experience,

perspective, and potential for innovation (via the strength of weak

ties). They may indicate isolationism just as well. For other types of

networks, the smaller values may also indicate greater vulnerability

to targeted attack due to a larger proportion of non-redundant ties

[48]. Dependency on the name = identity assumption means that a

network so characterized may appear less resilient and more

inhomogeneous than it is in actuality.

While name ambiguity facilitates communication, it is a

significant and limiting factor in the analysis of named-entity

networks. The diverse state of metadata in bibliographic

repositories, for example, ensures that resolving ambiguous names

remains a difficulty that only increases with scale. Caution is

advised in overinterpreting results where name disambiguation is

not assured or for which no account is made.
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