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Abstract

We demonstrate quantitatively that, as predicted by evolutionary theory, sequences of homologous proteins from different
species converge as we go further and further back in time. The converse, a non-evolutionary model can be expressed as
probabilities, and the test works for chloroplast, nuclear and mitochondrial sequences, as well as for sequences that
diverged at different time depths. Even on our conservative test, the probability that chance could produce the observed
levels of ancestral convergence for just one of the eight datasets of 51 proteins is <1610219 and combined over 8 datasets
is <16102132. By comparison, there are about 1080 protons in the universe, hence the probability that the sequences could
have been produced by a process involving unrelated ancestral sequences is about 1050 lower than picking, among all
protons, the same proton at random twice in a row. A non-evolutionary control model shows no convergence, and only a
small number of parameters are required to account for the observations. It is time that that researchers insisted that
doubters put up testable alternatives to evolution.
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Introduction

There are some areas of science where there is still strong

resistance to basic scientific conclusions: anthropogenic climate

change [1], the reality of long term evolution [2] http://www.

dissentfromdarwin.org, the origin of life, and the safety and

efficacy of vaccination programs [3] are well-known examples.

Thus we still require strong quantitative tests of our main scientific

hypotheses, even if the conclusions appear obvious to most

researchers. In the case of evolution, a strong prediction of

Darwin’s ‘descent with modification’ [4] is that, as we go further

and further back in time, the sequences for a given protein should

become increasingly similar – we call this either ‘ancestral

convergence’ or ‘reverse convergence’. The prediction from

evolutionary theory is that DNA or protein sequences carrying

out the same basic functions in different organisms are generally

inherited from a common ancestor – in this sense they are fully

homologous proteins (or orthologs) [5]. We must be able to

measure this convergence and test it quantitatively. In practice,

although the information comes primarily from DNA sequences,

we convert them to protein sequences for the tests. As we see later,

we currently cannot yet find any other hypothesis that leads

inevitably to the same prediction without an explosive increase in

the number of parameters.

It is basic to science that we have never tested all possible

hypotheses; consequently we never obtain final and absolute

knowledge about any aspect of the universe. Nevertheless, the

scientific method provides us with the best form of knowledge that

humans can attain, and ensures that we use the most thoroughly

tested understanding at any time [6]. This Popperian framework

allows both Bayesian and frequentist approaches to be used,

dependent on what is appropriate for the questions being tested.

We use a non-evolutionary null model and develop a

quantitative test of ancestral convergence, and apply it to a range

of datasets that have diverged at deeper and deeper times. As a

control we show that unrelated proteins do not show convergence.

Furthermore, an excessive number of free parameters are required

to account for the observed convergence by other processes. This

clearly does not ‘prove’ that yet unknown models are impossible,

but the theory of evolution leads to extremely strong predictions,

and so the onus is now on others to propose testable alternatives.

Materials and Methods

We develop a statistical test for quantifying convergence that

consists of eight simple steps For Step 1 we take two subgroups of

taxa X and Y (see Figure 1) that on independent evidence have

non-overlapping subtrees; that is, they are natural subgroups (or

clades). For example, with chloroplast sequences, we select

subgroups based on nuclear and/or mitochondrial data [7,8],

and only later check that the subgroups are also supported by the

chloroplast sequences. For each subgroup we independently align

the sequences (Step 2); infer a subtree (Step 3); and infer the

ancestral sequences ax and ay for the deepest nodes of each subtree

(Step 4). For this step we use PAML [9], which is a well-established

method that is robust to small changes in the tree [10]. Our test is
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conservative in that ancestral sequences are estimated indepen-

dently: information from subgroup X is not used to estimate the

ancestral sequence for subgroup Y, nor vice versa. We used the

cpREV model [11] for inferring chloroplast trees, the WAG model

[12] for nuclear proteins, and the mtREV24 model [13] for animal

mitochondria. We obviously can never know whether these are the

best possible models for estimating convergence, but any better

models are predicted to show even greater convergence.

The program MUSCLE [14] is used for calculating alignment

scores, see details later. For Step 5, the pairwise alignment score

s(ax,ay) is then calculated between the inferred ancestral sequences

ax and ay (we call this the ‘ancestral score’), with higher values

showing that ancestral sequences are more similar (Table 1). In

Step 6 we then calculate the alignment score s(i,j) for all pairs of

sequences (with just one sequence from each of the two

subgroups). From the resulting distribution of between-subgroup

scores (see Figure 2) we calculate (Step 7) the probability p of

observing scores at least as high as the ancestral score under the

null model, which we now describe.

Our null model can be considered in the following way - that

the taxa in subgroup X are descended from an unknown number

1, = rX, = |X| of root sequences, the taxa in subgroup Y are

descended from an unknown number 1, = rY, = |Y| of root

sequences, and that the rX+rY root sequences are all independent

from each other. This allows, at one end of the spectrum, the

possibility that all |X|+|Y| taxa were independently created, and

at the other end of the spectrum, the possibility that all taxa in one

subgroup are descended from a single common ancestor for that

subgroup, which was created independently of the single common

ancestor for the other subgroup. In other words, this null model

imposes no requirements on the presence or absence of internal

(within-subgroup) evolution of the two subgroups of taxa; the only

constraint is that there is no evolutionary link between the two

subgroups. That is, neither subgroup contains taxa derived from

the other, nor from a common ancestor.

That the numbers rX and rY are not specified helps generalise

the null model because a tree built on all taxa in X using any

statistically consistent method will necessarily contain rX long

edges from some ‘‘central’’ node to the subtrees containing the

taxa. (Sampling error will in general cause these long edges to be

connected to the central node by one or more short edges, rather

than being a ‘‘pure’’ star tree, but these edges can be made

arbitrarily short by using enough characters.).

Thus our non-evolutionary null model predicts that the

similarity between the ancestral sequences is equal to the similarity

between the extant sequences (that was calculated above in Step

7). When evolution from a common ancestor has occurred, the

ancestral sequences will be significantly more similar than that

predicted by the null model, and the null model will be rejected.

(Some implications of the choice of null model are discussed

further in the Discussion section.) For Step 8, additional power is

achieved by using independent tests on different genes and

combining the resulting p values [15] into a single value that

represents the probability of observing data as, or more, extreme

than that actually observed. Our test is again conservative: when

handling between-group pairwise alignment scores equal to the

ancestral score we consider these to be larger than the ancestral

score (see Figure 3).

At this point we mention the possibility that two sister taxa

could have been (mis-)placed in different subgroups. Although this

does not fit within our null model, the only effect is to increase the

measured between-subgroups average similarity, making it harder

for the measured ancestral similarity to exceed it. Thus this model

violation cannot induce a false positive (i.e. a claim that evolution

is present when it is not) – only a false negative could occur. In any

case, we aim to avoid these false negatives by selecting subgroups

using external data.

It is important that our test can reject ancestral convergence

with a control generated by a non-evolutionary process. This

control differs only in that specific property for which we are

testing: shared ancestry of homologous proteins for the subgroups

X and Y. For this reason, each of our control datasets is a pair of

subgroups of taxa X and Y as before, but in which the sequences

used for subgroup X come from a different gene than those used

for subgroup Y. This corresponds to (i.e. could be generated by)

the ‘‘archetypes, followed by degeneration’’ model favoured by

some pre-Darwinian biologists, discussed later. We do not expect

to see convergence between, say, the ancestor of the monocot atpA

gene and the ancestor of the eudicot psbF gene.

We measure the similarity of two sequences by the pairwise

alignment score calculated using the MUSCLE alignment

program [14] with default scoring parameters. The alignment

score is the sum of the per-site scores, which are found from a pre-

specified table that records the score for every possible combina-

tion of two amino acids, or one amino acid and a gap (see Table 1).

The freedom in placing gaps means that different alignments of

two given sequences are possible; the job of an alignment program

such as MUSCLE is to find a high-scoring (ideally the highest-

scoring) alignment. Note that setting the scores of all equal pairs of

amino acids to 0 and all other scores to 21 will cause an alignment

algorithm to recover an alignment having the fewest possible

insertions, deletions and substitutions, and the number of these

events (the Levenshtein edit distance) will be equal to the negative of

the alignment score. This edit distance is a useful measure of

similarity between strings that are not constrained to have the

same length, but more biologically realistic alignments can be

Figure 1. We use two natural subgroups (X and Y), indepen-
dently align the sequences for the species in each subgroup,
independently determine the optimal tree for each subgroup,
independently infer the ancestral sequences ax and ay on the
optimal subtrees (in practice the sequence at the nearest node
to the root of the subtree is estimated), and finally measure the
pairwise alignment score between the ancestral sequences,
s(ax,ay). Separately, we measure the alignment score between each
pair of sequences (s(i,j)) with one member in each of the two subsets, for
example, s(a,k), s(a,l), s(a,m), and so on.
doi:10.1371/journal.pone.0069924.g001
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recovered by reducing the penalty for mutations between amino

acids having similar codons or similar physical properties (e.g. size,

hydrophobicity) as these mutations are more likely to occur or to

survive into subsequent generations. Alignment quality is also

improved by reducing the penalty incurred by multiple contiguous

gap characters. MUSCLE’s default scoring parameters have been

empirically tuned to work well with most protein datasets, and as

such MUSCLE’s pairwise alignment score is a good measure of

overall protein sequence similarity.

Evolution is a stochastic process that involves reversals and

parallel changes – for example, if the change val R ile is effectively

neutral at a site, and has already occurred, then it is always

possible that the reverse mutation (ile R val) will occur. For such

reasons, the ancestral sequence actually inferred depends on a

stochastic process, so although we do not expect the relation

s(ax,ay).s(i,j) to hold in every case we predict reliability increases as

sequences become longer (Figure 4). This effect of sequence length

is important support for the stochastic process of evolution, but

that is not the primary focus here.

Fisher’s method [15] combines p-values from multiple indepen-

dent tests of the same null hypothesis into a single p-value. We use

it to combine the results of individual gene tests. Briefly, if the null

hypothesis is true, then the p-value obtained from a test will be

uniformly distributed between 0 and 1; taking the log and

multiplying by 22 produces a quantity that is X2-distributed with

2 degrees of freedom. Thus the following statistic,

X 2~{2
Xk

i~1

ln pi

will be X2-distributed with 2k degrees of freedom. Once this

statistic is calculated, a one-sided test can be used to extract a p-

value from it, representing the probability of observing k p-values

as low as those that were observed, assuming the null hypothesis

(namely that the k original null hypotheses are correct).

The standard evolutionary model is relatively simple, and

explains the basic tree-like structure of the sequences. To infer an

ancestral sequence, the simplest models require only <190
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Figure 2. Cumulative frequency plots comparing the alignment
score for the ancestral sequences (s(ax,ay), small circle) with the
alignment scores of all pairs of proteins, s(i,j). The example is the
monocot/eudicot chloroplast dataset and for the short protein psbF
(2A), a longer protein atpA (2B), and the 51 concatenated genes (2C).
The x-axis shows the alignment score, which increases with the length
of the protein(s), and is largest for the 51 concatenated proteins. There
are 1056 s(i,j) scores between pairs of 24 monocots and 44 eudicots,
and the y-axis indicates where the s(ax,ay) fits as a proportion of this
number. For some short proteins in particular, multiple s(i,j) values
equal the ancestral score s(ax,ay), and in this case our test conservatively
places the ancestral score below the rest (as in psbF in Fig 2A).
doi:10.1371/journal.pone.0069924.g002

Beyond Reasonable Doubt

PLOS ONE | www.plosone.org 3 August 2013 | Volume 8 | Issue 8 | e69924



parameters (a 20620 symmetric matrix for the probability of

changes between pairs of amino acids, less 20 because each row

has to sum to 1). Then there is one additional parameter for each

edge (branch) of the tree (there are 2n-3 edges for a binary tree,

where n is the number of taxa). We could add one parameter for a

probability of splitting of lineages, a second for an overall rate of

change, a third for the distribution of rates across sites (e.g. for a

Gamma distribution of rates), and a fourth for the proportion of

invariable sites. Nevertheless as we later show, there are orders of

magnitude fewer parameters required for a general evolutionary

model than for a minimal ‘design’ model, and scientifically, we

select the simpler model.

Genuine Subgroups
It is important to demonstrate that the two subgroups or clades

(X and Y) are genuine, and we do this for each of the subgroups in

Table 2 in two ways. Firstly, the two subgroups are determined by

other data – for example by nuclear or by mitochondrial DNA

sequences for the plant chloroplast data. Secondly, for each of the

eight pairs of datasets in Table 2 we later combine the two

datasets, and confirm that the same two subgroups are still found –

for example, the monocots and eudicots. This independent

selection of the two subgroups is necessary because if, for example,

we formed one subgroup by randomly selecting half the monocots

and half the eudicot sequences, and used the other taxa to form

the second subgroup, then we could artefactually get similar

ancestors. So both tests (selecting subgroups from independent

data, and later showing that the subgroups are recovered with the

data used) are important in demonstrating that the subgroups X

and Y are natural.

Estimating the Root of the Two Subtrees
There are several ways of estimating the root of the two

subtrees, but in practice it appears to make little difference which

of several methods we use. In the chloroplast example, the root of

each subtree can be inferred from nuclear or mitochondrial DNA

sequences (not chloroplast), and so is independent of the

chloroplast data we use. This gives the position of the root in

each subtree from prior information; alternatively they can be

independently estimated by ‘midpoint rooting’. This can be done

either by selecting the midpoint of the longest path, or the internal

branch with the longest average of paths passing through it [16].

In practice, we take the node closest to the mid-point because we

are estimating nodal sequences. There does appear to be an

acceleration of the rate of evolution in the grasses [17], but, again

in practice, this appeared to have little effect. The sequence of the

root of the two subtrees appears to be quite robust.

Note that we could quite separately make an independent test

for the similarity of evolutionary trees, by comparing the likelihood

of chloroplast, nuclear, and mitochondrial datasets giving such

highly similar trees. (Here we are only concerned, for example,

about the ancestral sequences of the monocot/eudicot split – not

the similarity of the trees as a whole.) Instead of computing

alignment scores between pairs of sequences, maximum likelihood

distances could in principle be computed for different-length

Figure 3. Cumulative distribution plots of the between-groups
alignment scores for 50 of the 51 chloroplast proteins of
monocots and eudicots (the plot for psbF is Fig 2A). The
ancestral alignment score (s(aX,aY)) is indicated by a small circle on each
plot. There are 1056 comparisons (24 monocots644 eudicots) for each
protein. The y-axis is the same for each gene, but the x-axis is strongly
dependent on the length of the protein (see also Figure 4).
doi:10.1371/journal.pone.0069924.g003
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sequences by using models of evolutionary change that allow for

insertions and deletions, such as the TKF model – however

software for computing these distances is apparently not currently

available.

We start with chloroplast genomes because they have more than

50 protein genes (allowing both individual and combined tests);

although there is some loss of genes from chloroplasts, there are no

basic problems identifying homologous genes. In addition, there

are several datasets at increasing levels of divergence, e.g.

monocots versus eudicots (both within flowering plants);

flowering plants angiospermsversus gymnosperms,

seed plants versus ferns and fern allies;

Streptophytes (land plants plus some green algae) versus

Chlorophytes (most green algae).

These plant subsets have a wide range in their inferred

divergence times; from about 125 to over 700 million years before

the present [18,19].

The tests are repeated on nuclear encoded sequences from

animals, and then on avian mitochondrial genomes. With nuclear

encoded proteins we test convergence for seven genes and for two

groups for the deeper animal divergences, ranging from around

600–700 Mya [20]. The first test is for Vertebrata plus

Urochordata versus Echinoderms plus Hemichordates. The

second is for Deuterostomes versus Lophotrochozoa. For the

nuclear datasets the 7 genes used are aldolase, methionine

adenosyltransferase, ATP synthase beta chain, catalase, elongation

factor 1 alpha, triosephosphate isomerase, and phosphofructoki-

nase.

For mitochondrial sequences, we use a dataset from birds, using

12 protein-coding genes, and focus on two tests – firstly Neoaves

[21] (most birds) versus Galloanseriforms (chickens and ducks),

and secondly these two groups combined (neognaths) versus

paleognaths (ratites and tinamous) [22]. Their estimated diver-

gence times are around 80 and 100 million years ago, respectively

[21,22]. For the mitochondrial dataset, the 12 genes are ATP6,

ATP8, COX1, COX2, COX3, Cytb, ND1, ND2, ND3, ND4,

ND4L, and ND5.

Results

Our primary results are very clear and are shown in Table 2.

Our first example uses chloroplast genomes from 44 eudicotyle-

donous and 24 monocotyledonous flowering plants (monocots

include grasses, palms and lilies). Combining results for all 51

genes gives a p value for our non-evolutionary null model of

<2610219, shown in the top row of results in Table 2. This

eudicot/monocot subdivision can be derived independently from

either nuclear or mitochondrial DNA sequences [8], and so is

independent of the chloroplast information. The 51 chloroplast

proteins common to all lineages total 11,414 amino acids in length

with an average length per protein of ,225 amino acids (see

Table 3). However, the proteins vary in length from 16 amino

acids (psbZ) to 1168 amino acids (rpoC2). Across all 51 genes, on

average 22% of pairwise scores were at least as high as the

ancestral score, but this is mostly caused by a small number of

shorter genes with relatively low ancestral scores (see Figure 3).

Results are shown for each of the proteins in Table 3 and Figure 3.

Figure 4. Protein length versus proportion of pairwise
alignment scores higher than the ancestral score, for 4
datasets. Because of the possibility of slightly different gene lengths

just one of the two datasets is used for illustration. As expected, longer
proteins show convergence more strongly. Chloroplast results (4A and
4B) are for 51 chloroplast genes for divergences of monocots and for
angiosperms (flowering plants). There are 7 nuclear proteins for 4C and
12 for the mitochondrial data in 4D.
doi:10.1371/journal.pone.0069924.g004
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Figure 4 shows a correlation between protein sequence length and

convergence, certainly consistent with a stochastic mechanism.

Our standard approach infers the ancestral sequences on the

two subtrees independently. If we follow the more usual method

and jointly infer the ancestral sequences on a single tree using the

combined monocot and eudicot data we get, as expected, an even

higher alignment score between the two ancestral sequences aX

and aY, that is, the ancestral sequences are even more similar. Part

of the reason for this is that we are using more information when

inferring the ancestral sequences. Combining probabilities for all

genes using Fisher’s method as before, we find that the probability

of observing such high ancestral scores for the 51 chloroplast

proteins under our non-evolutionary null model is 1.51610257

(compared with <2610219, see the top row of Table 2) - our test is

thus very conservative.

It is a fundamental prediction from evolutionary theory that

convergence should continue at deeper times, and this is strongly

supported as shown by the first four rows of results in Table 2,

which use chloroplast genomes from deeper and deeper

divergence times (column 4). This eliminates one simple model

that allowed creation of ‘archetypes’ and limited evolution

thereafter (see later discussion). Similarly, we find ancestral

convergence with nuclear encoded sequences from vertebrates

and invertebrates, and also with mitochondrial genomes from

birds. Thus we have used chloroplast, nuclear, and mitochondrial

DNA sequences, and from a wide variety of species. The times of

divergence of the different datasets are estimated to vary from 80–

700 millions of years ago (Mya) [18–22]. If we combine all 8 tests

we get a p value of < 26102132, and this is shown in the second to

bottom row of Table 2.

The last two columns in Table 2 are control values where we

compare the inferred ancestral sequence of one protein against the

inferred ancestral sequence of a different protein. As expected,

there is no tendency for these separate proteins to converge to

similar sequences, making them good and effective controls.

Indeed, the combined p value on the eight control datasets is

p = 0.93172: indicating that the inferred ancestral scores are

consistently below the average between-subgroups alignment score

– again, our test is conservative.

The analyses establish that some form of ancestral convergence

is occurring, and it is essential to explain the continued

convergence as we go back to more distantly related organisms.

Of course, such analyses by themselves cannot establish the

mechanisms of evolutionary change (though the results are fully

consistent with a stochastic mechanism, see also later).

Discussion

Our test is based on the expectation that, under evolution, the

ancestral sequence of one natural group of taxa will be more

similar to the ancestral sequence of a second natural group of taxa,

than to any sequence from the first group will be to any sequence

from the second. In contrast, a variety of proposed non-

evolutionary models either do not make this prediction, or require

so many parameters that they cannot be said to make any testable

predictions at all.

The basic results in Table 2 are overwhelming evidence that

some form of ancestral convergence is occurring, and continues at

deeper and deeper times. Individual tests have probabilities from

1026 (for small numbers of genes) to 10244 (for the larger number

of genes in chloroplasts). Equally important, non-homologous

controls show no tendency to converge (Table 2) – it is only

homologous proteins that show ancestral convergence. T
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Table 3. Results for the 51 genes for the monocot/eudicot chloroplast dataset, and with the ancestral sequences (ax and ay)
inferred independently.

Gene
Gene length
(amino acids)

Ancestral alignment
score

Number of higher
alignment scores

Proportion of higher
alignment scores Chi-squared term

atpA 503 440.6 8 0.0076 9.7656

atpB 433 390.7 58 0.0549 5.8036

atpF 178 159.9 2 0.0019 12.5382

atpH 81 72.5 364 0.3447 2.1302

atpI 241 263.2 10 0.0095 9.3193

ccsA 150 200.8 16 0.0152 8.3793

cemA 155 158.0 30 0.0284 7.1221

clpP 186 129.5 80 0.0758 5.1604

matK 380 338.8 1 0.0009 13.9245

petA 313 306.2 1 0.0009 13.9245

petB 213 245.6 611 0.5786 1.0943

petD 157 179.2 850 0.8049 0.4340

petG 37 36.8 665 0.6297 0.9249

petL 30 26.4 15 0.0142 8.5084

petN 29 38.1 741 0.7017 0.7085

psaA 748 926.2 35 0.0331 6.8138

psaB 733 952.9 45 0.0426 6.3112

psaC 81 107.1 338 0.3201 2.2784

psaI 24 20.8 35 0.0331 6.8138

psaJ 22 26.5 589 0.5578 1.1676

psbA 319 383.6 208 0.1970 3.2494

psbB 506 639.2 33 0.0313 6.9315

psbC 460 581.6 181 0.1714 3.5275

psbD 345 439.3 274 0.2595 2.6982

psbE 80 90.5 419 0.3968 1.8488

psbF 39 43.8 387 0.3665 2.0076

psbH 71 71.5 7 0.0066 10.0327

psbJ 30 36.6 119 0.1127 4.3662

psbK 57 56.2 436 0.4129 1.7692

psbL 38 41.3 998 0.9451 0.1130

psbM 34 29.2 211 0.1998 3.2208

psbN 43 41.0 778 0.7367 0.6110

psbT 30 30.9 782 0.7405 0.6008

psbZ 16 12.1 469 0.4441 1.6233

rbcL 443 490.1 728 0.6894 0.7439

rpl14 122 112.4 66 0.0625 5.5452

rpl16 126 142.4 8 0.0076 9.7656

rpl2 201 210.9 13 0.0123 8.7946

rpoA 256 246.2 0 0.0009 13.9245

rpoB 824 837.7 0 0.0009 13.9245

rpoC1 270 281.3 253 0.2396 2.8577

rpoC2 1168 1138.0 0 0.0009 13.9245

rps11 131 133.6 20 0.0189 7.9330

rps12 113 114.2 175 0.1657 3.5949

rps15 57 54.7 2 0.0019 12.5382

rps2 234 247.6 117 0.1108 4.4001

rps3 207 190.2 90 0.0852 4.9249

rps4 105 98.0 22 0.0208 7.7424

Beyond Reasonable Doubt

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e69924



It is always possible to ‘design’ much more complex models

where a separate decision by some unknown agent chooses/selects

each amino acid change. With so many parameters the model is

able to precisely mimic evolution (or indeed any other model); it

has no discernible ‘‘signature’’ of its own. A minimum number of

parameters for such a complex model can be determined by

constructing, on the complete set of sequences of both subgroups,

a variation on a maximum parsimony tree that allows single-

residue insertions and deletions in addition to single-residue

substitutions. This tree is an example of a Steiner tree [23] – a tree

of minimal total edge length that connects a given set of points in a

metric space, allowing for the introduction of new intermediate

(ancestral) points as required. In this case, the distance between

two sequences is given by the edit distance (the minimum number

of single-residue insertions, deletions and substitutions [‘edits’]

required to transform one sequence into the other).

The length of this tree is then by definition the minimum

possible number of separate decisions, or equivalently free

parameters, that a hypothetical external agent requires in order

to produce the complete set of sequences, given any one of the

sequences as a starting point. A lower bound for the length of a

Steiner tree is given by half the length of a minimum spanning

tree, which is a tree that connects all given points without

introducing additional points [24]; minimum spanning trees can

be computed efficiently. For the eudicot/monocot example, a

minimum spanning tree requires 36,473 mutations to connect all

68 sequences, implying that we would need at least 36,473/

2 = 18,237 free choices, each a separate parameter. Any suggestion

that a model with such a huge number of parameters ‘explains’ the

data is of course a serious violation of the scientific principle of

selecting the simplest model.

Early (pre-Darwinian) biologists suggested several ideas as to the

relationship of modern organisms, but a relevant one here is the

‘archetype’ model [25] that suggested that a number of ‘forms’

were originally created within high-level groups. For mammals

say, one ‘form’ would have been a giant cat, which then

independently evolved (or degenerated) into lions, tigers, leopards,

panthers, cheetahs, etc. In our examples, this is tested (and

eliminated) by demonstrating that successively deeper datasets

continue to show ancestral convergence. In other words, we do not

see a set of ‘archetype’ species originating at just one point in time

– there is continuity in the evolutionary process. A qualification is

that at the very deepest times we expect that information will be

lost - this is a property of the Markov models used [26]. However,

similar tests could be done at deeper times using measures of

similarity of 3D structure. Indeed, it is important to note that

modern methods of molecular biology now allow ancestral

sequences to be synthesized, and the properties of the protein

products of the ‘ancestral’ genes can be tested [27]. So there is now

no doubt that these ancestral sequences do meet the functional

requirements of the ancestors.

Perhaps, it is important for scientists to emphasize that by any

scientific standard, evolution is simply inevitable. Good examples

of continued evolution are RNA viruses, such as the influenza

viruses; they just keep evolving from year to year – evolution in

real time. New anti-viral immunisations are prepared for each

northern hemisphere winter and for each southern hemisphere

winter, and so on. Certainly, DNA-based organisms evolve more

slowly; they have a lower mutation rate. But the inevitability of the

process is there. ‘‘Stop the World, I want to get off’’, was the title of

a 1960s musical. We can neither stop the world (and get off), nor

can we stop evolution. In the viral case there can also be

recombination between RNA genes e.g. influenza, [28] or between

sections of the genome (hepB) [29] – these recombinations are the

equivalent of macroevolution (ref [28], Chap 5). We have already

tested (and rejected) some ‘non-standard’ models for influenza

evolution [30]. However, each gene (or section of the gene) should

still converge, even if there is lateral gene transfer. Even though

the fidelity of DNA copying is extraordinary - around 1 error in

109–1010 nucleotides copied [31], no known organism can copy its

DNA with absolute accuracy – thus there is always genetic

diversity in natural populations.

So our conclusions are perhaps three-fold. Firstly we have

provided a strong quantitative test rejecting a non-evolutionary

model that amino acid sequences do not become more similar as

we go back in time. Secondly, we have raised the problems of the

number of parameters required of some alternatives, and finally

we shift the requirement onto doubters to provide testable

alternatives. On this third aspect, there does appear to also be a

similar reaction from climate change advocates on placing

responsibilities onto doubters [32]. Other aspects of evolution

have been tested [33–35] and further aspects of evolution could be

tested, perhaps especially the ‘random’ nature of mutations that

occur without regard for any ‘need’ of the organism, but this is

outside the scope of the present work. Indeed, there has always

been excellent support for evolution from fossils and comparative

morphology, and molecular data enables this to be quantitative.

We can say that, as yet, no features of genomes have yet been

found that are not understandable by ‘causes now in operation’

[4].

From the scientific point of view, there is no doubt that

evolution has occurred, and there really were a continuous set of

intermediates connecting individuals, populations, varieties, spe-

cies, genera, families, etc. Nevertheless, as scientists we need to

ensure that we have good quantitative tests available of all our

favoured models. Given our results, we suggest that researchers

need to be more assertive that evolution has both occurred, and

continues to occur. It is essential that any person who does not

accept the continuity of evolution puts forward alternative testable

models. As we tell our first year undergraduates, ‘belief is the curse

of the thinking class’.

Table 3. Cont.

Gene
Gene length
(amino acids)

Ancestral alignment
score

Number of higher
alignment scores

Proportion of higher
alignment scores Chi-squared term

rps7 155 143.2 274 0.2595 2.6982

rps8 125 107.6 47 0.0445 6.2242

ycf3 157 170.3 158 0.1496 3.7993

Av/Sum 224.6 239.9 230.8 0.2186 289.0582

doi:10.1371/journal.pone.0069924.t003
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