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Abstract

Correctly matching the HLA haplotypes of donor and recipient is essential to the success of allogenic hematopoietic
stem cell transplantation. Current HLA typing methods rely on targeted testing of recognized antigens or sequences.
Despite advances in Next Generation Sequencing, general high throughput transcriptome sequencing is currently
underutilized for HLA haplotyping due to the central difficulty in aligning sequences within this highly variable region.
Here we present the method, HLAforest, that can accurately predict HLA haplotype by hierarchically weighting reads
and using an iterative, greedy, top down pruning technique. HLAforest correctly predicts >99% of allele group level (2
digit) haplotypes and 93% of peptide-level (4 digit) haplotypes of the most diverse HLA genes in simulations with
read lengths and error rates modeling currently available sequencing technology. The method is very robust to
sequencing error and can predict 99% of allele-group level haplotypes with substitution rates as high as 8.8%. When
applied to data generated from a trio of cell lines, HLAforest corroborated PCR-based HLA haplotyping methods and
accurately predicted 16/18 (89%) major class | genes for a daughter—father-mother trio at the peptide level. Major
class Il genes were predicted with 100% concordance between the daughter—father-mother trio. In fifty HapMap
samples with paired end reads just 37 nucleotides long, HLAforest predicted 96.5% of allele group level HLA
haplotypes correctly and 83% of peptide level haplotypes correctly. In sixteen RNAseq samples with limited coverage
across HLA genes, HLAforest predicted 97.7% of allele group level haplotypes and 85% of peptide level haplotypes
correctly.
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Introduction would benefit from sequencing of RNA and whose disease
would require HSCT, it would be cost effective to predict HLA
Hematopoietic stem cell transplantation (HSCT) has haplotypes directly from RNA-seq data rather than performing
successfully treated a wide variety of diseases including an additional specialized test to determine HLA haplotype.
autoimmune disorders, rare genetic diseases and blood Predicting HLA haplotypes, however, has been historically a
cancers [1]. Success of allogenic HSCT treatments is highly difficult task [16]. This is due to the fact that the HLA genes
correlated with matching of Human Leukocyte Antigen (HLA) reside in the most polymorphic region of the human genome,
alleles between donor and recipient [2]. The process of the Major Histocompatibility Complex (MHC) [17]. As a result of
matching a donor and recipient requires HLA haplotyping, a balancing selection, the number of known haplotypes for many
process that typically requires specialized antibody or targeted HLA genes is in the thousands [18,19]. Despite the diversity of
DNA based tests [3]. The utility of high throughput sequencing the region, a high degree of sequence similarity exists between

methods has been restricted by the need for specialized primer known haplotypes. The unique assignment of a short read to
sets to enrich targeted DNA or RNA sequences [4-10]. The an allele is nearly impossible due to sequence similarity
use of untargeted RNA-seq data for HLA haplotyping has not between alleles. The hierarchical nature of the haplotypes (see
seen much development despite dramatic reductions in Methods for details) and the sampling bias, with over
sequencing costs. This is unfortunate, as RNA-seq assays representation of most common haplotypes in public databases
have proven to be useful tools in personalized medicine for the (e.g. IMGT), further add to the complexity. For these reasons,
subclassification of cancers including breast, prostate, traditional techniques for assigning mapping qualities or
leukemias and lymphomas [11-15]. In cases where a patient confidence in alignments cannot be applied for this region [20].
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Despite the difficulty of predicting HLA haplotypes, attempts
to call HLA haplotypes from short read data are numerous.
Earlier studies utilized targeted resequencing and the generous
read length of the Roche 454 to predict haplotypes [4—10].
Recent studies employ targeted resequencing in conjunction
with lllumina sequencers to generate haplotypes [21].
However, at the time of this publication only two publicly
available haplotyping tools, HLAMiner and seq2HLA, are
available for the HLA haplotyping directly from RNA-seq reads
[22,23]. HLAMiner utilizes a targeted de novo assembly
technique to rebuild the genes and then check the haplotype.
While the method effectively handles sequencing errors and
can potentially increase phasing information, it is limited by the
assembly technique that relies on overlapping kmers just 15
nucleotides long. The second available tool, seq2HLA utilizes
an alignment-based method to predict low resolution
haplotypes, but is unable to provide predictions at higher
resolutions.

Here, we present HLAforest, an alignment-based method
that exploits the implicit hierarchy of HLA nomenclature to
weight alignments systematically and procedurally predict
haplotypes individually. This approach addresses the
combinatorial problem of selecting paternal and maternal
alleles prior to scoring the most likely haplotype pairs.
Additionally, by aligning the entire read to the reference,
HLAforest maximizes the information contained within paired
reads. Predictions from HLAforest are more accurate at
clinically relevant HLA resolutions, due to the topology of the
trees generated. Finally, this method exploits the efficiency of
modern short read alignment tools and is easily scaled with
parallelized computing.

Methods

HLA Nomenclature

For both historical and functional reasons, HLA haplotypes
are defined hierarchically [24,25]. HLA molecules are divided
into two classes: Class | molecules are expressed on almost all
nucleated cells in the human body and present self as well as
foreign peptides [26]. Class Il molecules present foreign
peptides and are only expressed by specialized antigen-
presenting cells such as macrophages, B-lymphocytes and
dendritic cells. Both classes of molecules are responsible for
peptide-presentation to T-cells for antigen recognition. The
peptide-binding domains of class | molecules are encoded by a
single gene, whereas the peptide-binding domains of class Il
molecules are encoded by two genes.

The first hierarchical unit of HLA genes is the genes
themselves. There are three major class | molecules (HLA-A,
HLA-B, HLA-C), three minor class | molecules (HLA-E, HLA-F,
HLA-G), three major class Il molecules (HLA-DP, HLA-DQ,
HLA-DR) and two minor class Il molecules (HLA-DM, HLA-
DO). Because class |l molecules consist of two genes,
haplotypes are further subdivided into an ‘A’ and ‘B’ locus, eg
HLA-DRA and HLA-DRB. The IMGT database also contains
the non-classical molecules MicA, MicB, TapA, and TapB that
do not participate in antigen presentation. However, TapA and
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TapB are important for the transportation and loading of
antigenic peptides onto classical HLA molecules.

Each HLA gene is subdivided into up to four
subclassifications: allele group, peptide, nucleotide and intron.
Allele groups originated from early serotyping experiments and
represent sets of peptide sequences with high levels of
sequence homology. The peptide level represents unique
amino acid sequences. The nucleotide level represents unique
nucleotide sequences that generate the same peptide
sequence. The intron level represents polymorphisms that
occur in non-coding portions of the gene, such as introns.
These subclassifications are denoted by a 2 digit number
separated by colons, e.g., the haplotype HLA-A*01: 02:03:04 is
a haplotype for gene ‘A’ with the allele group ‘07’, peptide
sequence of ‘02, nucleotide sequence of ‘03 and intronic
sequence of ‘04’. A haplotype of HLA-A*01: 02:01:01 belongs
to the same peptide group as HLA-A*01: 02:03:04, but has a
unique nucleotide sequence.

The resolution of HLA haplotyping assays is typically
described by the number of significant digits the test can
discriminate. For example, a 2 digit assay will reveal the allele
group; whereas, a 4 digit assay will reveal the unique peptide
sequence. 2 digit assays are typically referred to as “low
resolution typing”; whereas, 4 digit assays are referred to as
“high resolution typing”.

Alignment

Version 3.10.0 of the IMGT HLA nucleotide database was
downloaded as a FASTA file and was used as a reference for
Bow tie alignments. Null alleles were excluded from the set of
known alleles, as intronic reads can artificially inflate the scores
of those alleles. Reads mapping to any HLA haplotype in the
IMGT were filtered using Bow tie v-0.12.8 using default options
[27]. Reads that aligned at least once to any IMGT reference
HLA haplotype were kept using Bow tie’s option to write
aligned reads to a new file. Filtered reads were then realigned
to the IMGT database, this time reporting all possible
alignments. Alignments with exact matches excluded any
alignment with > 0 mismatches. For read lengths greater than
100bp, the maximum insert size was set to the sum of
simulated fragment length and three standard deviations of
fragment size. All other parameters were set to bow tie
defaults.

Alignment Tree Building

A tree is built for each read given the set of possible
alignments generated during the mapping step (Figure 1). This
tree describes the entire set of alignments such that each leaf
in the tree represents an alignment of a read to a specific HLA
allele (Figure 1b). The root of the tree is an empty node with no
biological significance. The descendants of the root node
represent a specific HLA gene (e.g., HLA-A, HLA-B, and HLA-
C are each represented as unique nodes under the root node).
The structure of each gene subtree is defined by the HLA
nomenclature where the second level represents the allele
group, the third level represents unique peptide sequence, the
fourth level represents synonymous nucleotide sequences and
the fifth level represents differences in non-coding regions. For
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Figure 1. Method for building a weighted read tree. Given
a set of alignments (a) for a single read, a tree is built such that
all possible alignments are leaf nodes (b). Gene, allele group,
peptide, nucleotide and intronic digits are represented as
nodes on the tree. Sum of mismatch qualities (SMMQs) are
converted to alignment probabilities for leaf nodes (c).
Probabilities are then distributed upwards such that the
probability of a parent node is equal to the maximum probability
of its children (d). Weights are distributed downwards in such
that the weight of a node is dependent on the local probability
of the node and the weight of the parent child (e & f). Equations
used for generating probability of an alignment and weights of
example nodes are outlined (g).

doi: 10.1371/journal.pone.0067885.g001
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example, direct descendants of root nodes correspond to
genes. The descendants of gene nodes correspond to allele
groups and this pattern continues until a leaf is reached.

Generating Weights for Each Node in a Read Tree

An alignment tree is built for each read given the set of
possible alignments generated during the mapping step. Local
alignment probabilities are calculated for each leaf node by first
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Figure 2. An example of the top-down pruning
algorithm. Given a set of reads and their alignments (a), read
trees are built for each read (b). The evidence for each allele
group is determined by taking the sum of the evidence of all
allele groups represented in the trees (c). Here it is assumed
that the weight of each node is 1. The allele group with the
maximum evidence is assumed to be the primary allele group
for each gene and edges in trees containing the primary allele
group are pruned (d). After pruning, the trees are reweighted
and the evidence for each allele group (e). The second highest
scoring allele group is then considered to be the minor
haplotype. Read trees are then repruned such that only edges
supporting the primary or secondary allele group remain (f).
The process repeats itself iteratively until the most likely leaf
nodes remain (g and h).

doi: 10.1371/journal.pone.0067885.g002

identifying mismatched positions in the alignment between the
read and a reference allele (Figure 2b). The phred quality
scores of mismatched positions are summed and the sum is
exponentiated in order to generate a probability (Figure 2c).

More specifically:
qi

Pleaf=10 '

where p,.; represents the local alignment probability of a leaf
and q represents to a phred quality value corresponding to a
mismatched base at position 7 in the read. These probabilities
are then distributed upwards through the tree by assigning the
maximum probability of all children to the current node (Figure
2e),

Pnode= max(pchildren)
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Once probabilities have been distributed throughout the tree,
they are converted to weights. The weighting procedure
distributes the total evidence provided by the read to all nodes
of the tree, such that

« Pnode
w =w ~
node ="parent Zpsiblings

In the above equation, w is the weight of a node and p is the
local probability of a node (Figure 2f and g). Each node can
only have as much weight as its parent, and all weight
contained in a node is distributed amongst its children. In this
study, all root nodes were given a weight of 1; this weight,
however, may be modified to reflect variable read lengths.

Haplotype Prediction

Haplotypes are predicted using a greedy, top down, iterative
pruning algorithm (Figure 2). The algorithm begins by
attempting to select a primary and secondary haplotype for
each HLA gene at the allele group level. Here a primary
haplotype is defined as the haplotype with greater
representation in an RNA-seq library. A secondary haplotype is
the haplotype with less sequence representation. Selecting a
primary haplotype begins by summing the weighted evidence
of all read trees at the allele group level (Figure 2b and c). For
each gene in the IMGT reference database, the allele group
with the highest score is chosen as the primary haplotype
(Figure 2c).

After primary haplotypes are chosen, a temporary set of
pruned trees is generated to predict the secondary haplotype.
Trees that contain evidence for any of the primary haplotypes
are pruned by removing edges that do not support primary
haplotypes. Secondary haplotypes are predicted by summing
the weighted evidence of pruned trees and selecting the
haplotype with the second highest score. Read trees are then
repruned such that only edges that belong to the primary or
secondary allele group remain. In the event that a read tree
supports both primary and secondary haplotypes, it is assigned
to the haplotype with greater weight. If the weights between the
primary and secondary haplotypes are equal, the read is
randomly assigned to a haplotype. Nodes of pruned trees are
then reweighted using the local alignment probabilities
generated in the tree-building step.

Following the selection of primary and secondary haplotypes
at the allele group level, protein level haplotypes are chosen
using the same methodology used to predict primary
haplotypes. The sum of node weights over all pruned trees are
generated at the protein level. The protein level haplotype with
the maximum score is chosen for both the primary and
secondary haplotypes. Trees are then repruned to reflect the
protein level haplotypes and the process iterates until the
nucleotide and intron level haplotypes are similarly chosen.

In some instances, an individual may have a primary and
secondary haplotype that are the same at the allele group
level, but differ at the protein or nucleotide level. In these
instances, the secondary haplotype is only assigned if the sum
of its evidence exceeds 5% of the primary haplotype. This
percentage was determined empirically (data not shown).
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Simulations

Simulations were generated to test the effect of read length,
sequencing depth and error rate on the accuracy of this HLA
haplotyping method. Each of these variables was tested
independently. Two haplotypes were randomly selected for a
subset of genes represented in the IMGT reference database.
In this case, HLA-A, HLA-B, HLA-C and HLA-DRB1 were
chosen as these genes represent the majority of diversity in the
IMGT database (Table S1 and Figure S1).

Reads were simulated using ART [28]. ART uses empirically
derived models to generate simulated reads with a realistic
distribution of errors with regards to position. Simulations
tested the effect of substitution rate, coverage, and read length
on the accuracy of the method. Paired read lengths of 37 nt, 50
nt, 75 nt, 100 nt and 200 nt were tested. Coverage of 1x, 10x,
25x, 50x, 100x and 500x for each selected gene. Varying
substitution rates were generated by modifying the quality shift
parameter of the ART simulator. Higher quality shift values
resulted in reads with fewer substitutions. The substitution rate
for each quality shift value was calculated by dividing the total
number of substituted bases by the total number of simulated
bases. For 100nt reads, quality shift values of 0, 3, 6, 9, 12,
and 30 resulted in substitution rates of 8.8%, 4.4%, 2.2%,
1.1%, 0.5% and .009%, respectively. In addition, simulations
using all genes present in the IMGT were also performed.
5,000 simulations were performed for each variable. Paired
reads were used in all simulations. Insertion and deletions were
not included in simulation. Exact parameters used for
simulation are described in Table S2.

Calculating Simulation Accuracy

Predictions were considered to be accurate if the true
haplotype (determined by selection during simulation or
through external validation) was consistent at the allele group,
peptide, nucleotide or intron level. Accuracy was assessed
over all levels present in the true haplotype. If the true allele
was only typed to the peptide level, accuracy was not assessed
at the nucleotide or intron level. For example, the reference
allele HLA-A*02: 90 is only typed to the peptide level and
accuracy at the nucleotide level cannot be determined for this
allele. Of the 8,631 sequences present in the IMGT database:
87 (1%) are typed to the allele group level; 6,014 (70%) are
typed to the peptide level; 2,308 (27%) are typed to the
nucleotide level; and 222 (2%) are typed to the intron level.

Cell Line Trio Data

Cell line Tri6 RNA-seq data was downloaded from the UCSC
Encode release 4 (August 2012). Raw fastq files for GM12878
rep2v2 were downloaded from the UCSC genome browser.
Raw fastq files for gm12891 (rep2v2) and gm12892 (rep3v2)
were also downloaded from the UCSC genome browser. The
number of reads available for each dataset are presented in
Table S3.

HapMap Data

Fifty RNAseq samples were sequenced in a study by de
Bakker et al and HLA haplotypes were subsequently reported
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Figure 3. Simulation results showing the effect of read length (a),

average accuracy of HLA-A, HLA-B, HLA-C, and HLA-DRB1.
doi: 10.1371/journal.pone.0067885.g003

by Montgomery et al [29,30]. RNA-seq samples were obtained
from the NCBI SRA with the study accession id ERP000101.
The accession numbers of the individual samples presented in
this study are available in Table S4.

Colorectal Cancer Data

Warren et al tests HLAMiner on sixteen colorectal cancer
RNAseq datasets. These samples were HLA Haplotyped by
Sanger Sequencing, for which 87 out of 96 possible Class |
haplotypes were reported [22]. Corresponding RNAseq data
with the NCBI SRA study accession id SRP10181 was
downloaded and used as input for HLAforest. Sample
accession numbers are available in Table S5.

Implementation

HLAforest is implemented in perl and is free for academic
use under the Apache License. It can be downloaded (http:/
code.google.com/p/hlaforest). HLAforest uses bioperl to read in
FASTA files. Alignments use Bow tie, although any alignment
tool can be used to generate SAM alignments for use as input
to HLAforest.

Results

Simulation Results

Simulations were performed to test the effect of read length,
coverage depth and substitution rate on the accuracy of the
method. These simulations were performed only on the HLA
genes HLA-A, HLA-B, HLA-C, and HLA-DRB1 as these
represented the majority of diversity present in the IMGT
database (Figure S1). The average of prediction rates over
these four genes is reported (Figure 3). Performance of each
individual gene is available in Table S2. Simulations were also
performed using all genes in the IMGT database in order to test
the accuracy on each individual gene. HLAforest performed
very well at the allele group level, achieving > 99% accuracy in
all situations except for very low coverage (1x) and short read
lengths (2x37nt and 2x50nt). Peptide level accuracy varied
more throughout the simulations with shorter read lengths
contributing most to a decline in accuracy. HLAforest
performed well at varying levels of coverage and with
substantial substitution rates.
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sequencing depth (b), and substitution rate (c) on

Simulated Effect of Read Length

Accuracy was largely affected by read length, with longer
reads providing substantially better results. Read lengths of
2x50, 2x75, 2x100, and 2x200 nt were tested for their effect on
accuracy (Figure 3a). Greater read lengths provided more
accurate results, with 2x200 nt achieving very high accuracy
(96.7%) at the peptide level. At 2x100 nt an average accuracy
of 94% was achieved. At lower read lengths, accuracy declined
at the peptide level but increased at the nucleotide level. This
effect is artifactual as accuracy is not assessed at the
nucleotide level if the true haplotype is only typed to the
peptide level. Allele group level suffered with 2x37nt and
2x50nt reads, achieving 94.5% and 97.6% accuracy,
respectively. However, accuracy was above 98.7% for 2x75nt,
2x100nt and 2x200nt read lengths.

Simulated Effect of Sequencing Depth

Simulations showed a minimal effect of increasing
sequencing depth on accuracy. Total coverage amounts of 1x,
10x, 25x, 50x, 100x and 500x for each chosen haplotype were
tested (Figure 3b). Although high resolution performance
suffered at very low coverage (64% at 1x), accuracy jumped to
92% with just 10x coverage. Increasing coverage above 25x
had minimal effect on high resolution accuracy. Peptide level
accuracy was above 94.9% for all coverage levels above 25x.
Allele group level accuracy was above 98.9% at coverage
levels greater than 10x.

Simulated Effect of Substitution Rate

Substitution rates of 0.009%, 0.5%, 1.1%, 2.2%, 4.4%, and
8.8% were assayed in order to test the effect of sequencing
error on the accuracy of the method. Substitution rate had
minor effects on the accuracy of the method. With substitution
rates below 2.2%, peptide level accuracy was above 93%. At
4.4%, accuracy declined to 90%. With a large substitution rate
of 8.8%, peptide level accuracy was still respectable at 84%.
Allele group level accuracy was above 98.9% for all
substitution rates tested.

Simulations Using All Genes

Simulations using all genes in the IMGT database rather
than just HLA-A, HLA-B, HLA-C and HLA-DRB1 were
conducted to see the accuracy of the method on each
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descendant of allele groups are shown. These results represent a naive attempt at predicting haplotypes from RNA-seq data where
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allele groups. Here it is already evident that A*02 and A*26 have the most evidence, but other haplotypes have substantial
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doi: 10.1371/journal.pone.0067885.g004

individual gene (Table S2). Low resolution accuracy was above
98% for most genes except for a few selected genes (DPA1,
DPB1, DRB6, MicA, MicB, Tap1, Tap2, V). Peptide level
accuracy was above 91% for HLA-A, HLA-B, HLA-C, but fell
below 90% for remaining genes.

Simulations Allowing No Mismatches during Alignment

Disallowing mismatches during the alignment step resulted in
higher accuracy when substitution rates were sufficiently low
(Table S2). At 0.009% error, peptide level accuracy was 94.3%
when mismatches were allowed, but increased to 95.6% when
only exact matches were utilized. However, at higher
substitution rates, performance declined achieving an accuracy
of 55% at 1.1% error rate. At 0.009% substitution rate,
accuracy was improved by 1-2% over all conditions tested
when no mismatches were allowed during alignment. With a
low substitution rate and sufficiently high coverage, it may be
beneficial to restrict the number of mismatches during
alignment. Boegel et al. reports a similar effect and
recommends allowing only a single mismatch during alignment
[23].

Read Weighting and Tree Pruning Reduces Noise

An example demonstrating the effect of read weighting and
tree pruning can be visualized in Figure 4. Here, one hundred
2x100 nt reads were sampled for the HLA haplotypes HLA-
A*02: 90 and HLA-A*26: 36. The difficulty of predicting HLA
allele groups without read weighting or tree pruning can be
seen in Figure 4a, which charts the maximum number of reads
that map to a child member of an allele group. Although HLA-
A*26 is ranked first in the number of reads supporting that
allele, three incorrect allele groups rank above the true allele
group of HLA-A*02.
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Hierarchically weighting and pruning the simulated reads
allows for the reduction of noise and for accurate prediction of
allele groups in this example. The hierarchical weighting
procedure provides multiple benefits. First it distributes all the
evidence a single read could provide to all possible alignments,
rather than giving equal weight to all alignments. Secondly, it
allows for the visualization of the amount of shared evidence
between all allele groups (Figure 4b). After weighting has been
applied, HLA-A*02 and HLA-A*26 contain the majority of
evidence, however much of the evidence for the incorrect allele
groups remain. The intermediate pruning step, where
ambiguous evidence is assigned to the primary allele group,
significantly reduces noise. Figure 4c shows that post pruning,
the secondary allele group with the most evidence is clearly
A*26. The final pruning step removes all ambiguous evidence
(Figure 4d).

Cell Line Trio

Three cell lines, gm12878, gm12891, and gm12892,
representing a daughter—father-mother trio, respectively, were
used to test this method. It is expected that the daughter
(gm12878) would carry a set of alleles from each parent.
2x75bp reads were used to predict haplotypes for all genes
present in the IMGT database (Table S3).

When compared to haplotypes determined by targeted
resequencing and Sanger sequencing as performed by Erlich
et al. [5], all HLA class | alleles were recapitulated for gm12878
at the peptide level (Table 1). Most class | alleles were
recapitulated for gm12891 and gm12892, except for those that
were found to be discordant when compared to gm12878. In
all, sixteen out of eighteen (89%) of class | molecules were
called consistently with previous studies. Accuracy of other
genes, assessed by looking for consistent predictions between
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Table 1. Predicted haplotypes of major HLA genes on the
daughter-father-mother trio of cell lines using exact
alignments.

Gene Father (gm12891) Mother (gm12892) Daughter (gm12878)
Primary  Secondary Primary Secondary Paternal  Maternal
A 01:01:01" 24:02:01" 11:01:18™ 02:01:01" 01:01:01" 11:01:01™
B 08:01:01" 07:02:01" 15:01:01" 15:01:20' 08:01:01" 56:01:01""
(o 07:02:01" 07:02:01" 01:02:01" 04:01:01" 07:01:01"" 01:02:01"
DPA1 01:03:01 01:03:01 02:01:01 01:03:01  01:03:01 02:01:01
DPB1 04:01:01 03:01:01  14:01 06:01 04:01:01 14:01
DQA1 05:01:01 01:02:01 01:01:01 01:01:01  05:01:01 01:01:01
DQB1 02:01:01 06:02:01 05:01:01 05:01:01  02:01:01 05:01:01
DRA  01:02:03° 01:02:02 01:01:01 01:01:01  01:02:02°  01:01:01
DRB1 03:01:01 15:01:01 01:01:01 01:01:01  03:01:01 01:01:01

*. Consistent at allele group level with haplotypes from Erlich, et al. [5]
**_ Consistent at peptide level with haplotypes from Erlich, et al.

1. Inconsistent between parent and daughter at allele group level

1. Inconsistent between parent and daughter at peptide level

§. Inconsistent between parent and daughter at nucleotide level

Table 2. Accuracy of haplotyping results from 50 HapMap
samples with 2x37bp reads allowing or not allowing
mismatched alignments to references.

Mismatches Class Class

Allowed? A B C DQA DQB DRB | I Total
Allele

Yes 950 .930 .950 .980 .980 .976 .943 .978 .960
Group
Peptide Yes .940 .838 .680 .804 .804 .872 .819 .823 .821
Allele

No 950 .940 .950 1 990 .963 .947 985 .965
Group
Peptide No .940 .848 .730 .804 .825 .872 .839 .830 .835

the daughter (gm12878) and her parents, had accuracy similar
to major class | genes.

Accuracy of haplotyping was assessed over the fifteen genes
with sufficient coverage (greater than 1% of all mapped reads
supporting the gene). Of the thirty alleles in these genes,
twenty-six were predicted consistently at the peptide level, two
were predicted consistently at the allele group level and two
were completely miscalled (Table S3).

In addition to predicting haplotypes, the method allows for
the estimation of expression of all genes. Figure 5 shows the
number of pruned reads aligning to each HLA gene. We see
that classical class | molecules (HLA-A, HLA-B, HLA-C) have
moderate expression in all samples. Likewise there is
moderate to high expression of some major class Il genes
(HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA
and HLA-DRB1). There is lower expression of the minor class |
molecules along with some class Il molecules (HLA-E, HLA-F,
HLA-DMA, HLA-DMB, HLA-DOA and HLA-DOB).
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Figure 5. Final pruned weights supporting each gene in
the IMGT database shows expression over major class |
molecules (A, B, C) as well as over most major class |
molecules (DMA, DMB, DPA1, DPB1, DQB1, DRA,
DRB1). Some expression is seen in minor class | alleles (E, F)
and non classical molecules (TAP1 and TAP2).

doi: 10.1371/journal.pone.0067885.g005

HapMap Results

Fifty HapMap samples that have been both HLA haplotyped
with Sanger Sequencing and for which there are RNA-seq data
available were analyzed using HLAforest. RNAseq data was
2x37nt in length. HLAforest was able to predict 96% of allele-
group level haplotypes correctly. 82% of peptide-level
haplotypes were also predicted correctly. When alignments
were restricted to disallow mismatches, HLAforest was able to
predict 96.5% and 83.5% of peptide level haplotypes correctly
(Table 2). On average, 127,000 reads aligned to the IMGT
database when mismatches were allowed and 91,000 reads
aligned when no mismatches were allowed. Detailed results
are available in Table S4.
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Colorectal Cancer Samples

In a study by Warren, et al. on HLA haplotyping using short
read assembly, he presented a dataset of sixteen RNA-seq
samples for which Class | molecules were haplotyped by PCR
[22]. Of the 96 total possible alleles, 87 were typed to the
peptide level. Reads for this dataset were 2x100nt in length.
On average, 3,500 reads aligned to the IMGT database.
HLAforest predicted 85 (97.7%) of low resolution haplotypes
correctly and 74 (85%) of high resolution peptides correctly.
Detailed results are available in Table S5.

Discussion

The method described herein performed well in simulations
with read length and substitution rates mirroring those of
available  sequencing technologies, namely Illumina
sequencers. HLAforest has the advantage of scaling well with
longer reads and it fully utilizes the phasing information present
in paired-end reads. The method is generalizable to any set of
genes that can be arranged hierarchically. It also has the major
benefit of selecting haplotypes individually, thus reducing the
complexity and combinatorial difficulty of selecting two
haplotypes simultaneously. Some problems remain, including
the inability to call novel haplotypes and report ambiguous
haplotypes, but these can be addressed in the future.

Simulations show that this method can achieve a high
resolution accuracy of 93% (2x100bp reads and 0.5%
substitution rate) over the genes that represent the majority of
diversity in the IMGT database (HLA-A, HLA-B, HLA-C, HLA-
DRBT). Evaluation of this method on the daughter—father-
mother cell line trio shows that 26/30 (87%) the daughter’s
alleles were predicted consistently at the peptide level. After
comparison to results of Sanger sequencing and targeted
resequencing with Roche 454, it was determined that errors in
typing occurred within gm12891 and gm12892 (Table 1). Errors
in typing may be related to the 2x75bp read lengths available
for these cell lines. In order to make accurate predictions,
HLAforest relies on the phasing information within individual
reads, which are dependent on read length.

The majority of information extracted from short reads comes
from the ability to phase discriminatory SNPs across the most
diverse coding regions of the HLA genes. For class | genes,
the majority of diversity are present in exons 2-4 [31]. Here,
short reads of sufficient length and quality are able to phase
the discriminatory SNPs that define each haplotype. Indeed,
increasing the read length to 2x200 nt in simulations
substantially improves the accuracy of the method with
accuracy greater than 96.7% at the peptide level. This finding
is significant as high throughput sequencing technologies such
as lllumina and lon Torrent have announced plans to release
2x200 nt sequencing kits. The HLAforest method is best
applied to RNA-seq data as reads are more likely to phase
discriminatory SNPs across exons in fully spliced transcripts. If
read lengths or insert size exceed the length of introns in these
genes, this method can be extended to the whole genome or
targeted sequencing datasets without loss of accuracy.

The robustness of this method is apparent in simulations
testing effect of substitution rate on accuracy. Modern lllumina
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machines report an overall substitution rate < 0.5% [32]. In
simulations with comparable error rates, HLAforest is able to
predict 93% of haplotypes at the peptide level. Even with
substitution rates as high as 8.8%, HLAforest can predict 99%
of low resolution haplotypes correctly.

This method has major benefits over earlier methods. First it
can be generalized to any set of genes that are classified
hierarchically. Secondly, as opposed to competing methods,
there are no combinatorial issues with selecting two haplotypes
to score simultaneously. In this method, haplotypes are chosen
procedurally and this reduces the computation time necessary
for scoring many hypothetical pairs of alleles.

Recently, HLAMiner has been published and shares many of
the same benefits as HLAforest. The major distinction between
the methods is HLAMiner’s reliance on the de novo assembler,
TASR [33]. HLAforest exploits highly efficient short read
alignment algorithms, which have been the subject of major
development in the bioinformatics field. This alignment step is
easily parallelizable, as opposed to de novo assembly methods
that require shared memory. Additionally, HLAforest uses all
the phasing information within paired-end reads rather than
attempting de novo assembly with shorter k-mers. Differences
in the methodologies make direct comparison of the methods
difficult. However, our simulations with 2x100 nt reads and
0.55% substitution rate show an average major class |
accuracy of 92.7% at the peptide level as opposed to
HLAMiner's sensitivity and specificity of 84.7% and 89.65%
with the same parameters, respectively. When error rates were
increased to 2%, average major class | accuracy with
HLAforest dropped slightly to 92.7% whereas the sensitivity
and specificity of HLAminer's simulations were 54.9% and
87.5% respectively. The data suggests that HLAforest's
predictions are more accurate than HLAMiner even with larger
error rates.

When compared to HLAMiner on sixteen colorectal cancer
samples, HLAforest was able to predict 97.7% of low resolution
haplotypes and 85% of high resolution haplotypes for Class |
molecules. HLAMiner reported 95.6% sensitivity and 99%
specificity at low resolution, and 90.7% sensitivity and 93.5%
specific at high resolution. It is worth noting that the sensitivity
and specificity measures reported by Warren, et al. are not
standard. Whereas HLAforest generated 96 predictions for the
96 possible peptide-level Class | haplotypes, HLAMiner
generated 235 predictions.

HLAforest’s predictions for colorectal cancer samples fell
below the levels predicted by simulations with 2x100nt read
lengths. This is perhaps due to the low number of reads
aligning to the IMGT database, especially when compared to
the HapMap samples (3,500 for colorectal samples vs 127,000
for HapMap samples).

HLAforest performed well on fifty HapMap samples using
2x37nt reads. It was able to predict 96% low resolution
haplotypes accurately. Performance of HLAforest was
comparable to seq2HLA, which predicted low resolution
haplotypes with 100% sensitivity and 93% specificity. However,
HLAforest was also able to predict 82% of high resolution
haplotypes correctly. Remarkably, HLAforest performed better
on these samples than it did in simulation with similar read
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lengths. This is perhaps due to the increased coverage in the
HapMap samples as well as the reduced representation of
haplotypes present in these samples. These cross study
comparisons imply better performance with HLAforest;
however, such comparisons should be interpreted cautiously
until systematic benchmarking can be performed.

Although HLAforest presents many strengths, there are
some shortcomings. First, typing class Il MHC molecules may
be impossible based on the cell type of the input RNA.
Because only specialized antigen presenting cells (such as B
cells, dendritic cells, etc) express class II MHC molecules,
some of these cells must be present in the sample in order to
generate the corresponding reads. Second, the method is
restricted to haplotypes that already exist in the IMGT
database. HLAforest chooses the closest matching haplotype,
but does not reconstruct the actual haplotype. It is feasible to
look for novel haplotypes by generating a consensus sequence
from the reads supporting each predicted haplotype and then
checking for novel SNPs. Third, HLAforest reports only two
haplotypes and does not produce confidence scores at this
time. Finally, this method does not yet incorporate population-
based frequency data that has been shown to improve the
accuracy of all typing methods in well-studied populations [34]

Supporting Information

Figure S1. Number of Haplotypes in IMGT Database.
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