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Abstract

A major barrier for a broad applicability of brain-computer interfaces (BCIs) based on electroencephalography (EEG) is the
large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant
information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application
scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These
methods have, however, rarely been compared against each other or against any type of baseline. In this paper, we review
several selection approaches and propose one additional selection criterion based on the evaluation of the performance of
a BCI system using a reduced set of sensors. We evaluate the methods in the context of a passive BCI system that is
designed to detect a P300 event-related potential and compare the performance of the methods against randomly
generated sensor constellations. For a realistic estimation of the reduced system’s performance we transfer sensor
constellations found on one experimental session to a different session for evaluation. We identified notable (and
unanticipated) differences among the methods and could demonstrate that the best method in our setup is able to reduce
the required number of sensors considerably. Though our application focuses on EEG data, all presented algorithms and
evaluation schemes can be transferred to any binary classification task on sensor arrays.
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Introduction

In recent years, the investigation and development of brain-

computer interfaces (BCIs) based on the electroencephalogram

(EEG) has gained a broad interest. This technology can be utilized

in a wide range of applications. On the one hand, users may

actively instruct devices like wheelchairs or spellers [1,2]. On the

other hand, passive systems can be used to surveil users and

enhance the man-machine interaction in more subtle ways [3,4].

In both cases, specific patterns in the EEG signals are exploited to

predict the mental state of the user.

One major barrier for the usage of BCI systems in non-clinical

applications is the complicated and time-consuming preparation.

This procedure involves placing a large number of EEG sensor

electrodes on the user’s scalp and applying a conductive gel to

each of them. The practicability of BCI systems could thus largely

profit from a simplification of the preparation process. Recently,

dry electrode systems that omit the conductive gel have been

developed and promising results both in medical [5] and in BCI

related applications [6] have been presented. This work follows a

complementary approach that aims to enhance the usability by

reducing the number of sensors (electrodes) that are required for

achieving a satisfying performance of the BCI system. Therefore,

we compare several sensor selection algorithms in the context of a

passive BCI system that has the purpose of detecting a particular

event-related potential (ERP) in single-trial [7].

Sensor selection aims at reducing the number of physical sensors

that need to be placed. In contrast, a class of methods denoted as

spatial filters tries to improve the signal quality by combining the

readings from many physical sensors into a (typically smaller)

number of ’’virtual’’ sensor channels. This is achieved by collecting

the task-relevant information in a subset of the virtual sensors and

discard the remaining ones which will contain mostly noise. This

results in a reduction of dimensionality and thus potentially

reduced computation time and a reduced risk of overfitting.

However, it does not directly reduce the preparation time since all

physical sensors are required for computing the virtual channels.

Nevertheless, there are sensor selection algorithms which are

closely related to spatial filters (see, e.g., [8]).

This paper gives an overview over the variety of existing sensor

selection algorithms and presents them in a unified framework.

The discussed algorithms range from selection schemes based on

spatial filter coefficients over schemes based on the signal to signal-

plus-noise ratio to a scheme, which performs sensor selection

directly based on the classification performance of the respective

sensor setting in the task of interest.

We present an empirical study in which we compare these

sensor selection algorithms on EEG data using two different

evaluation schemes. The first scheme denoted as intra-session is the

one commonly used in the EEG literature: sensor selection and

sensor evaluation are conducted on datasets from the same usage

session (i.e., using the same sensor placement). In addition, we use
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an inter-session setup in which sensor selection and evaluation are

performed on data from different usage sessions. In this setting the

position of sensors, their electrical impedance, etc., may slightly

differ, which in turn might influence the quality of the selected

sensors. Furthermore, we compare the methods to meaningful

baselines based on standard electrode caps and randomly selected

sensor subsets of a given size.

Surprisingly, our empirical study shows that the sensor selection

based on classification performance is not recommendable since it

obtains worse performance than other criteria. Furthermore, our

results clearly show that the intra-session evaluation scheme is not

sufficient for assessing the quality of a sensor subset; it is, however,

useful for comparing the relative quality of sensor selection

methods.

In summary, the main contributions of this paper are that (a)

several very different sensor selection algorithms are presented in a

unified way and that (b) we empirically compare these algorithms

and set them in relation to meaningful baselines.

Methods

Typical approaches for the search of sparse sensor sets

(constellations) consist of three components: firstly, one or more

data sets using the full EEG sensor set have to be acquired.

Secondly, most approaches require the definition of a validation

function that specifies a real-valued score for each subset of sensors

and thereby allows a ranking of sensor sets. Lastly, one needs a

search strategy to find a set that performs well by means of this

ranking function. Even though an exhaustive search approach to

find the global optimum in principle is possible, it becomes already

impractical for moderately large numbers of total sensors; e.g.,

there are more than 1:8:1018 ways of picking 32 out of 64 sensors.

Thus, one needs to use search heuristics. A subset of the full sensor

set for (hypothetical) subsequent measurement sessions can then be

chosen using the search strategy such that the ranking score is

maximized on the acquired data sets.

For evaluating the quality of the learned constellations, one

would typically like to know how close the constellation’s

performance is to the optimal performance. This question is

difficult to answer since the best performing sensor constellation is

unknown and cannot be determined due to the gigantic number of

constellations. Thus, we consider a different question which might

give some alternative insights: How many randomly sampled

constellations would one have to evaluate until one finds a

constellation with equal or better performance than the one

selected by the sensor selection method? For this we fit a

distribution to the performance values of randomly sampled sensor

constellations (see section ’’Constellation Performance Distribu-

tion’’).

Overview: Sensor Set Ranking
Recently, a number of particular procedures and validation

functions have been proposed. Interestingly, the validation

functions operate on very different stages of the BCI signal

processing chain–from the raw signal to filtered signals or even the

classifier output. A brief overview is given in the following.

Barachant and Bonnet propose to rank sets of sensors based on

the Riemannian distance between the class-specific covariance

matrices [9]. This criterion is particularly efficient in the context

of BCI systems that use the common spatial patterns (CSP) filter

since CSP also relies on the covariance matrices as discriminating

property of the data [10]. Lan et al. propose a sensor ranking

based on the mutual information between the features derived

from the sensor and the class labels [11]. In the context of BCIs

that work with ERPs, the xDAWN algorithm can be utilized to

compute particularly discriminative features [12]. xDAWN

computes spatial filters that maximize the signal to signal-plus-

noise ratio (SSNR) in a number of pseudo channels. Rivet et al.

use the same concept also to rank sets of sensors according to the

sum of their SSNRs [8]. This procedure will be discussed in more

detail later in this manuscript (methods SSNRAS and SSNRVS ).

The methods described so far can in principle be applied in any

BCI scenario as they are not specific for any type of data

processing. If, on the other hand, particular filters or classifiers are

used, it may be possible to exploit them in order to compute a

ranking from the estimated coefficients associated to a feature.

Wang et al. apply this consideration to CSP weights [13] and we

will come back to this type of procedures in the section on

xDAWN, CSP, and PCA type methods. Lal et al. and Tam et al. go

one step further in the processing chain and utilize the weights of a

support vector machine classifier (SVM) in a similar fashion

[14,15]. We will later adopt this idea (methods 1SVM and 2SVM).

The key criterion for a comparison of the proposed methods in

practice is the performance of the resulting reduced sensor BCI

system–and as such the classification performance of the

classification algorithm at the end of the data processing chain.

An intuitive way of ranking sensor sets is therefore to evaluate the

classification performance using the very set of sensors on a validation

data set. Different choices for a ranking criterion based on the

classification performance are imaginable. The straightforward

approach we propose is to rank sensor sets according to the mean

classification performance they obtain on several data sets. An

alternative was proposed by Sanelli et al. [16]; the authors

compute test errors for different sensor configurations and then

evaluate through statistical tests whether each single channel

contributes significantly to the classification performance or not.

Then the p-values associated with these comparisons are used as

scores. However, since p-values are random variables we argue

that it is disputable to draw conclusions from the comparison of

their values.

It shall be noted that some approaches deviate from the general

procedure described so far. Farquhar et al. [17] and Arvaneh

et al. [18], e.g., consider sparse variants of the CSP filter. In these

works, the CSP model is extended by a regularization term that

favors filters with contributions from few sensors. Sensors without

or with small contribution to the spatial filters may be omitted for

future sessions. A similar extension was proposed for the xDAWN

spatial filter approach yielding the sparse xDAWN algorithm [19].

Selected Ranking Approaches
In this subsection, we present a subset of the discussed methods

in more detail and present them in a unified way which forms the

basis for our empirical evaluation. The ranking function is always

denoted by w and a sensor set by I .

Spatial Filter Ranking (xDAWN, CSP, PCA). Linear spatial

filtering is a common processing step in EEG data processing.

Especially CSP and xDAWN have proven to be useful in different

BCI scenarios [10,12]. In addition to these two, we employ

principle component analysis (PCA) [20] as a not primarily BCI-

related, widely used spatial filtering method.

Essentially, in these filters the signals x(t) of different sensors are

projected into a surrogate sensor space by multiplication with a

filter matrix U : xfilter(t)~UT x(t). Each column of U represents

one spatial filter that generates one signal in the surrogate space as

a linear combination of the original signals. What discriminates

between different filter algorithms is the criterion for the

determination of U . All algorithms considered here have in

common that they come with an intrinsic ordering of the surrogate

Comparison of EEG Sensor Selection Mechanisms
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signals: it is expected that the first CSP or xDAWN channel carries

the most information associated to one class and that the first PCA

component carries the dimension of maximum variation. Based on

these spatial filters, we obtain a straight forward ranking of the

original sensors by summing up the absolute values of the filter

coefficients associated with every individual sensor. More formally,

a set I of sensors is ranked by

w(I )~
X
i[I

XNf

k~0

DUik D: ð1Þ

This ranking is motivated by the fact that the larger the absolute

weight values of a specific channel for the first Nf filters are, the

higher is the channel’s impact onto the most relevant Nf virtual

channels. In our evaluation, we always consider the Nf ~4 most

relevant filtered channels. This value was chosen based on

preliminary investigations.

The combination of this ranking method with the recursive

backward elimination search strategy (see below) can be imple-

mented particularly efficient since in each iteration, it is optimal to

remove the sensor whose sum of absolute filter weights is minimal.

Signal to Signal-Plus-Noise Ratio (SSNRAS,

SSNRVS). Rivet et al. [8] propose to use the Signal to Signal-

Plus-Noise Ratio (SSNR) as evaluation criterion in the context of

ERP detection. They decompose the recorded signal X using least

mean square estimation into three components: (i) the ERP

component related to the stimulus of interest, (ii) responses

common to every stimulus, and (iii) the residual noise. Based on

this mixed effects model, the SSNR p(ei,X ) of the i-th sensor in X
is defined as the ratio of the ERP component’s energy to the

recorded signal’s energy. The first evaluation criterion they

propose, the SSNR in the actual sensor space, rates a set of

sensors I as the sum of the SSNR of the individual sensors in I :

w(I )~SSNRAS(I )~
X
i[I

p(ei,X ): ð2Þ

Note that this criterion cannot account for correlations in the

individual sensors since each sensor’s SSNR is determined in

isolation. In order to account for correlations, a second criterion,

the SSNR in the virtual sensor space, rates the same set of sensors

as the sum of the SSNR of the first Nf pseudo channels uk. These

uk are generated using spatial filters that have been learned using

the xDAWN algorithm on the data X projected onto I (XI ).

Formally,

w(I )~SSNRVS(I )~
XNf

k~1

p(uk,XI ): ð3Þ

For further details, we refer to the original paper by Rivet et al.

[8].

SVM Coefficient Ranking (1SVM, 2SVM). Linear SVM

classification bases on the evaluation of the scalar classification

function f (x)~S�ww,xTzb for each data sample x with some SVM

parameters �ww and b. While b is a constant offset, the classification

vector �ww weights each individual feature similarly to a spatial filter

as described above. If each feature originates from one single

sensor, it is again possible to compute a sensor ranking by adding

the absolute values of all weights of features belonging to each

sensor. If this is not the case, e.g., if spatial filters were used, the

feature weights would have to be distributed across the sensors that

contribute to the feature.

In our analysis, we omit spatial filters when using this approach

and consider two variants of SVMs: a standard SVM with 1-norm

regularization (1SVM) or 2-norm regularization (2SVM). In

comparison to their more commonly used 2-norm counterparts,

SVMs with 1-norm regularization are known to operate on a

reduced set of features [21]. They can thus be regarded as

classifiers with intrinsic feature selection mechanism–a property

that might be particularly advantageous in the context of sensor

selection, provided that there is a direct relationship from a feature

to a specific sensor.

Let l be the number of features per sensor and �wwsk the weight of

the linear SVM for the k-th feature belonging to sensor s. Now, a

set I of sensors is ranked (analogously to spatial filter-based

ranking) by

w(I )~
X
i[I

Xl

k~0

D�wwik D: ð4Þ

Because of the weight regularization, a SVM will only assign

large absolute weight values D�wwsk D when the k-th feature of sensor s
is is actually important for classification. Thus, ranking according

to this criterion appears to be a sensible choice.

Performance-based Ranking (Performance). The preva-

lent goal in BCI research is to provide a system that performs as

well as possible in the context of a predefined application. From a

machine learning point of view, the system’s performance is

equivalent to the performance of a classification algorithm that

discriminates between specific commands or mental states. The

most directive way to assess the effect of a change to the BCI

system (like, e.g., changing the set of used sensors) is therefore to

evaluate how it affects the classification performance in terms of a

suitable performance metric. We use the balanced accuracy to

measure the classification performance. The balanced accuracy

xba is the mean of true positive rate and true negative rate:

xba~
1

2
(
TP

P
z

TN

N
): ð5Þ

To be able to assess the performance, a validation data set is

required so that the classifier can be trained and validated on

different data. We use a 5-fold cross validation scheme to this aim.

Further on, we propose to rank the sensor sets according to the

mean performance they effect, i.e.:

w(I )~
1

5

X5

k~1

xba(Xtr(I )k,Xva(I )k), ð6Þ

where Xtr(I )k is the training set of the k-th fold of the cross

validation containing only data from the sensors in I , Xva(I )k is

the corresponding validation set, and xba refers to the balanced

accuracy the system achieves for this combination of training and

validation data.

This method is computationally expensive, as a full cross-

validation including repeated training of spatial filters and

classifiers needs to be executed for every sensor set I . However,

it may be expected that this approach yields the best results

because the selection criterion (high classification performance) is
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exactly the same as the target criterion. Surprisingly, our results

will show that this is not the case.

Search Strategy: Recursive Backward Elimination
Given any of the sensor ranking methods described so far, one

still has to define a strategy to find a set of sensors in the space of

sensor constellations that corresponds to a high ranking. A popular

approach to select k out of n sensors is a recursive backward

elimination. The algorithm was proposed as a feature selection

strategy in a similar context as recursive feature elimination [22], and it

can readily be transferred to sensor selection [8,14,15]. Starting

with the full set of n sensors, the idea is to evaluate the scores of all

size (n{1) subsets. The set with the highest score is the starting

point for the next iteration. We will stick to the recursive backward

elimination procedure for the investigation in this paper.

Alternatives to this heuristic include a forward search that adds

one sensor at a time [11], a combination of forward and backward

search [16], or evolutionary algorithms [23].

Constellation Performance Distribution
We make the assumption that the performance, i.e., the

balanced accuracy xba, over the set Sn,m of sensor constellations

with n out of m sensors follows a beta distribution (see Brodersen

et al. [24] for a discussion):

f (xba; an,m,bn,m)~
x

an,m{1

ba (1{xba)bn,m{1

B(an,m,bn,m)
: ð7Þ

The parameters an,m and bn,m are determined by fitting the

distribution to the balanced accuracy scores of randomly sampled

constellations of size n. The probability of sampling a random

constellation I[Sn,m which obtains a balanced accuracy of at least

x�ba is obtained based on the cumulative density function of the

beta distribution:

pn,m(xba(I )wx�ba)~

ð?

x�
ba

f (x; an,m,bn,m)dx

~1{F (x�ba; an,m,bn,m):

ð8Þ

We will later evaluate this probability for the balanced accuracy

scores obtained for constellations generated by the different sensor

selection algorithms. This gives us an estimate of how many

randomly sampled constellations would have to be evaluated until

an equally good constellation is obtained. Furthermore, since

DSn,mD~ n

m

� �
, we can approximate the probability of randomly

sampling the (unknown) best constellation as
n

m

� �{1

.

Implementation
All evaluations have been performed using a self-developed

Python signal processing and classification environment (py-

SPACE) (pySPACE is scheduled to be released as open source

in mid 2013. The configuration files used for this manuscript will

than be available online). pySPACE is a modular software for the

processing of large data streams that has been specifically designed

for the empirical evaluation of EEG signal processing chains. The

software enables the distributed execution of multiple processing

tasks allowing us to run the analyses on a high performance cluster

with 144 cores.

Experimental Paradigm and Data Preprocessing
Our empirical evaluation is based on data acquired from a BCI

system that belongs to the class of passive BCIs: the purpose is the

gathering of information about the user’s mental state rather than

a voluntary control of a system [3]. Therefore, no deliberate

participation of the subject is required.

This section is dedicated to the introduction of the BCI system

and paradigm, followed by a description of the data processing we

performed.

Paradigm and Data Acquisition
The goal of the system is to identify whether the subject

distinctively perceived certain rare target stimuli among a large

number of unimportant standard stimuli. It is expected that the

targets in such scenarios elicit an ERP called P300 whereas the

standards do not [25]. Since passive BCIs aim at minimizing

nuisance of their users, these systems will profit the most from a

reduction of EEG sensors since the less sensors need to be applied,

the less preparation time is required and the more mobile the

system might become. So the users will probably be less aware of

the fact that their EEG is recorded. Thus, basing the empirical

evaluation on data from a passive BCI is a sensible choice.

The empirical evaluation was conducted on data recorded in

the Labyrinth Oddball scenario (see Figure 1), a testbed for the use

of passive BCIs in robotic telemanipulation. In this scenario,

participants were instructed to play a simulated ball labyrinth

game, which was presented through a head-mounted display. The

insets in the photograph show the labyrinth board as seen by the

subject. While playing, one of two types of visual stimuli was

displayed every 1 second with a jitter of 100. The corners arranged

around the board represent these stimuli. As can be seen, the

difference in the standard and target stimuli is rather subtle: in one

case the top and bottom corners are slightly larger, in the other

case the left and right corners are larger. The subjects were

instructed to ignore the standard stimuli and to press a button as a

reaction to the rare target stimuli.

Both standard and target stimuli elicit a visual potential as seen in

the averaged time series in Figure 1 (strong negative peak at

around 200 after the stimuli). Additionally, target stimuli induce a

positive ERP, the P300, with maximum amplitude around 600

after stimulus at electrode Pz. It is assumed that the P300 is evoked

by rare, relevant stimuli that are recognized, and cognitively

evaluated by the subject.

The BCI only needs to passively monitor whether the operator

of the labyrinth game correctly recognized and distinguished these

stimuli. There is an objective affirmation of the successful stimulus

recognition, because a button has to be pressed, whenever a target

is recognized. However, since no feedback is given to the user, the

testbed is well suited for evaluation of passive BCIs.

Five subjects participated in the experiment and carried out two

sessions on different days each. A session consisted of five runs with

720 standard and 120 target stimuli per run. EEG data were

recorded at 1 with an actiCAP EEG system (Brain Products

GmbH, Munich, Germany) from 62 channels following the 10–10

layout (This system usually uses 64 channels. Electrodes TP7 and

TP8 were used for EMG measurements and are excluded here).

For further details on the experimental procedure, we refer to

Metzen et al. [26].

Aside from the study at hand, the data from the Labyrinth

Oddball scenario have already been used for several investigations

in a machine learning context, but with completely different focus.

Comparison of EEG Sensor Selection Mechanisms
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Topics include an improvement of the general processing flow [7],

and the transfer of a processing flow onto an embedded hardware

system [27]. Further, the behavior of spatial filters has been

analyzed [28–30], and classifier threshold adaptation [31] and

ensemble approaches were discussed [26].

Ethics Statement
The study from which this data was taken has been approved

with written consent by the ethics committee of the University of

Bremen. Furthermore, subjects have given informed and written

consent to participate. The study has been conducted in

accordance with the Declaration of Helsinki. The subject of the

photograph used for Figure 1 has given written informed consent,

as outlined in the PLOS consent form, to publication of his

photograph.

Standard Signal Processing and Classification
This section briefly describes the signal processing and

classification procedure used in the BCI system employed here.

This procedure is used as the standard data processing within this

BCI system and was chosen based on preliminary experiments; we

will use it as reference and deviate from it only where the sensor

selection methods require it.

All signal processing is performed on post-stimulus windows of 1

duration. The data from these windows are standardized (zero

mean, unit variance) and low-pass filtered with a cut-off frequency

of 4. Afterwards, an xDAWN filter is applied to the data. If more

than 8 sensors were used, only the 8 most relevant xDAWN

channels are retained. Features are extracted from the filtered

signal by fitting straight lines to short segments (These segments

are cut out every 120 ms and have a duration of 400 ms) of each

channel’s data and using their slopes as features. The resulting

features are again standardized (zero mean, unit variance) and

then classified by an SVM classifier. During the training phase, the

complexity parameter of the SVM is optimized using a grid search

(C[f100,10{1, . . . ,10{6g) and 5-fold cross-validation. As the

numbers of standard and target stimuli differ notably, different

weights (1 : 5) are assigned to both classes in the SVM. For the

same reason, the balanced accuracy is used as measure for the

classification performance: it is independent of the ratio of samples

per class.

The individual sensor selection methods require the training

and evaluation of different parts of the signal processing chain: the

SSNR and Spatial Filter sensor selection algorithms can be applied

for each run based on the signals after the low-pass filter and

require no separate evaluation based on validation data. For the

SVM-based methods, the entire signal processing chain has to be

trained. In this case, the xDAWN filter is not used during the

sensor selection in order to retain a straightforward mapping from

SVM weights to sensor space. Again, no evaluation on validation

data is required. The Performance method requires to train the

entire signal processing chain, too; however, additionally, a

validation of the trained system’s performance is required. For

this, the data from a run is split using an internal 5-fold cross

validation (A leave-one-out scheme is not applicable in our

scenario due to the high computational load). Each of the methods

yields one sensor constellation per run for each session of a subject.

Evaluation Scheme
For evaluating the performance of a sensor selection method,

three datasets are required: one on which the actual sensor

selection is performed, one where the system (spatial filter,

classifier, etc.) is trained based on the selected sensor constellation,

and one where the system’s performance is evaluated. From an

application point of view, sensor selection should be performed on

data from a prior usage session of the subject and not on data from

the current one, on which the system is trained and evaluated (one

would not demount sensors after a training run that are already in

position). Since the selected sensor constellations are transferred

from one usage session to another, this evaluation scheme is

denoted as inter-session (see also Figure 2). The sensor constellations

are thus evaluated on data from a different usage session with

Figure 1. Labyrinth Oddball: The subject plays a physical simulation of a ball labyrinth game. He has to respond to rare target stimuli by
pressing a buzzer and ignore the more frequent standard stimuli. The insets show the shape of the stimuli, which can be distinguished by the length
of the edges. The graphs to the left depict the event-related potentials (ERPs) evoked by both stimulus types at electrode Pz. Both stimuli elicit an
early negative potential attributed to visual processing, but only targets evoke an additional strong, positive potential around 600 after the stimulus.
doi:10.1371/journal.pone.0067543.g001
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potentially different positioning of EEG sensors, different electrode

impedances, etc. For the selected sensor constellation, the system is

trained on data from one run of the session and evaluated on the

remaining 4 runs. Thus, the inter-session scheme does not imply

that classifiers are transferred between sessions but only that sensor

constellations are transferred.

An alternative evaluation scheme, which is used frequently in

related works, is the intra-session scheme (as depicted in Figure 2): in

this scheme, the sensor selection is performed on data from the

usage session itself; namely on the same run’s data on which the

system is trained later on. Thus, sensor constellations are not

transferred to a different sessions and the influence of changes in

EEG sensor positions and impedances is not captured. While this

scheme is not sensible in the context of an actual application, it is

nevertheless used often for evaluation of sensor selection methods

because data of multiple usage sessions from the same subject may

not be available. We perform the intra-session evaluation mainly

to investigate to which extent its results generalize to the inter-session

evaluation scheme.

To mimic an application case with a training period prior to an

actual operation period, the evaluation is performed by applying a

jackknife-like schema on basis of the runs from one session. In the

intra-session scheme, one run is used for sensor selection and

training of the classification flow, and the remaining four runs

from that session are used as test cases. This is repeated so that

each of the 5 runs is used for sensor selection/training once and

results for our data set (consisting of 5 subjects with 2 sessions each)

in a total of 5:2:5~200 performance scores per selection method

and sensor set size. In the inter-session scheme, we can perform the

sensor selection on each of the five runs of the other session of the

subject, and thus we obtain 5:200~1000 performance scores.

Baselines
When reducing the number of sensors, it is often not clear what

to use as a reference to evaluate the method’s performance–there

is no obvious baseline procedure and a certain loss in performance

using a reduced number of sensors has to be expected. As we

compare several different approaches, we can always compare

them against one another. To draw an even more conclusive

picture, we generated 100 random electrode constellations for

different numbers of sensors (The resulting performance values

were also used to estimate the parameters an,m and bn,m of the beta

distribution in equation 8). This random selection does not

incorporate any information from the data and should thus be

outperformed by every approach that does so. As additional

comparison, we evaluate two electrode constellations correspond-

ing to commercialized EEG systems: one 32 electrode 10–10

layout as used in the actiCAP EEG system and the original 10–20

layout with 19 sensors.

Results

Figure 3 shows the results for the intra-session scheme. At first it

can be noticed that all standard caps perform essentially on chance

level. The same is true for the SSNRAS and 2SVM selection

heuristics: for more than 5 sensors, both curves lie close to the

center of the random selection patches. The PCA filter method

performs even worse than random for a large range of

constellation sizes. The SSNRVS method, the xDAWN filter, the

Performance ranking, and the 1SVM ranking deliver a performance

considerably better than chance level for 30 or less sensors. The

latter three perform nearly identically for the whole range on a

level better than the expected chance level. The CSP method

performs slightly worse than these methods for less than 20

sensors. For SSNRVS , the mean performance remains on the

baseline level of using all sensors down to around 18 sensors and is

remarkably better than any of the other heuristics.

In the inter-session results shown in Figure 4, all sensor selection

methods drop in absolute performance compared to the intra-

session scheme. Random constellations and standard caps are not

effected by the type of transfer since they are not adapted to a

specific session anyway. The relative order of the curves remains

identical to the intra-session results. The performance of the best

methods is still above or in the upper range of the random

constellations, and SSNRVS still outperforms all random constel-

lations in the relevant range.

As described earlier in section ’’Constellation Performance

Distribution’’ we also computed a measure of the likeliness of

drawing a constellation at random, which performs at least as well

as the constellation found by each of the sensor selection methods.

Figure 5 shows the results for both the intra-session and inter-

session scheme. It becomes evident that sensor selection has the

largest utility if one wants to select between 7 and 20 out of the 62

electrodes. For the best method SSNRVS , in the intra-session

between 104 and 106 and in the inter-session approximately 103

random constellations would have to be evaluated until one could

expect to find an equally good constellation (Note that this does

not imply that one would obtain equally good results when

evaluating 103 random constellations in the selection session and

transfer the best one to the evaluation session; rather it means one

would have to evaluate 103 random constellations in the

evaluation session). For more than 20 electrodes, the benefit of

sensor selection gets smaller.

Discussion

As the sensor selection of the SSNRAS and 2SVM methods

performs essentially equivalent to random selection, apparently

these methods are not able to extract any useful information from

the data. Possibly the 2SVM would require an additional

Figure 2. Intra-session and inter-session scheme. R1–R5 denote the runs from each experimental session. In the intra-session scheme (left), the
sensor selection (blue) is performed in the same run in which the system is trained (green), and the evaluation (red) is performed on the remaining
runs from that session. In the inter-session scheme (right), the sensor constellations are transferred to a different session of the same subject. Note
that run and session numbering were permuted during the experiment so that in each condition, each run was used for sensor selection and training.
doi:10.1371/journal.pone.0067543.g002
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parameter optimization to be able to generalize well. A potential

reason for the failure of the PCA could be that the sources with

highest variance, which are preferred by PCA, might be

dominated by EEG artifacts rather than task-related activities.

In accordance with the results of Rivet et al. [8], SSNRVS

performs considerably better than the relatively similar SSNRAS

ranker. This is most likely due to the fact that SSNRAS cannot take

redundancy between channels into account. SSNRVS accomplishes

this by aggregating redundant information from different channels

into a single surrogate channel via spatial filtering.

It is perhaps surprising that SSNRVS performs better than

Performance; we suspect that this might be caused by an overfitting

of the sensor selection by Performance to the selection session. This

effect might be reduced by using a performance estimate which is

more robust than the mean, such as the median or the mean

minus one standard deviation (to favor constellations with smaller

variances in performance and less outliers). However, this issue

requires further investigation.

For the inter-session scheme, the loss in performance of all

methods in comparison to the intra-session scheme is expected. It

results from the fact that due to day-to-day changes in brain

patterns and differences in the exact sensor placement, different

constellations may be optimal on different days–even for the same

subject.

Figure 3. Intra-session evaluation of the classification performance versus the number of EEG electrodes for different sensor
selection approaches. The horizontal line All is a reference showing the performance using all available 62 electrodes. The grey patches
correspond to histograms of performances of 100 randomly sampled electrode constellations. The elongation in y-direction spans the range of the
occurring performances and the width of the patches in x-direction corresponds to the quantity of results in that particular range. The three black
stars represent widely accepted sensor placements for 19, 32, and 62 EEG electrodes. All other curves depict the mean classification performance over
all subjects and cross validation splits. The results for 1-10 sensors are shown separately in the inset. By using an inset the curves in the main graphic
appear less compressed.
doi:10.1371/journal.pone.0067543.g003

Figure 4. Inter-session evaluation of the classification performance versus the number of EEG electrodes for different sensor
selection approaches. For more details, please see Figure 3.
doi:10.1371/journal.pone.0067543.g004
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The fact, that the relative order of the results remains

unchanged, however, indicates that a comparison of electrode

selection approaches can in principle be performed without the

effort of acquiring a second set of data for each subject. This

facilitates the process of deciding for a particular sensor selection

approach substantially. For obtaining a realistic estimate of the

classification performance in future recordings with less sensors

one needs a second, independent data recording session for each

subject, however.

The results presented in Figure 5 show that there is clearly a big

advantage sensor selection methods can offer. However, the

specific choice of the method is crucial since some methods like

SSNRAS perform essentially on chance level. For more than 20

electrodes, the benefit of sensor selection gets smaller; this is due to

the fact that the variance in performance of random constellations

gets smaller and thus, it gets more likely to sample a constellation

that performs close to optimally.

Conclusions
In this paper, we reviewed several sensor selection algorithms

and compared their performance in the scenario of an ERP-based,

passive, single-trial BCI [26]. We could demonstrate that the

choice of the selection criterion is crucial for the maintenance of

classification performance: Some algorithms generated sensor

constellations which performed stably with around half the initial

number of electrodes. Others, in turn, consistently performed

worse then what could be expected from a random sensor

selection. In our scenario, the most promising approach called

SSNRVS is a sensor selection based on the maximization of the

signal to signal-plus-noise ratio in combination with an xDAWN

spatial filter [8]. SSNRVS allows to halve the number of sensors

without loosing performance and performs considerably better

than other selection methods or randomly sampled constellations.

It is important to underline that SSNRVS is specifically tailored to

ERP data–for other BCI systems, different approaches might

prevail.

Beyond that we could show that one needs a second,

independent data recording session for each subject to obtain a

realistic estimate of the classification performance in future

recordings with less sensors. On the other hand, we realized that

this inconvenience is not necessary in order to decide in favor of a

sensor selection method–the inter-session transfer does affect the

absolute classification performance, but not the relative ranking of

the selection approaches.

To improve performance in the inter-session transfer setting, it

would be interesting to base sensor selection not only on one

historic session but on several ones. This could allow to account for

more of the inter-session variability during the sensor selection.

Furthermore, it would be interesting to investigate whether good

sensor constellations from different subjects show similarities, or

whether it is even possible to generate suitable constellations that

work for a wide range of subjects.
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