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Abstract

Background: Branchio-oto-renal (BOR) or branchio-otic (BO) syndrome is one of the most common forms of autosomal
dominant syndromic hearing loss. Mutations in EYA1, SIX1 and SIX5 genes have been associated with BOR syndrome. In this
study, clinical and genetic analyses were performed in patients with BOR/BO syndrome focusing on auditory manifestations
and rehabilitation.

Methods: The audiologic manifestations were reviewed in 10 patients with BOR/BO syndrome. The operative findings and
hearing outcome were analyzed in patients who underwent middle ear surgeries. The modality and outcome of auditory
rehabilitation were evaluated. Genetic analysis was performed for EYA1, SIX1, and SIX5 genes.

Results: All patients presented with mixed hearing loss. Five patients underwent middle ear surgeries without successful
hearing gain. Cochlear implantation performed in two patients resulted in significant hearing improvement. Genetic analysis
revealed four novel EYA1 mutations and a large deletion encompassing the EYA1 gene.

Conclusions: Auditory rehabilitation in BOR/BO syndrome should be individually tailored keeping in mind the high failure
rate after middle ear surgeries. Successful outcome can be expected with cochlear implantations in patients with BOR/BO
syndrome who cannot benefit from hearing aids. The novel EYA1 mutations may add to the genotypic and phenotypic
spectrum of BOR syndrome in the East Asian population.
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Introduction

Branchio-oto-renal (BOR) syndrome (OMIM 113650) or

branchio-otic (BO) syndrome (OMIM 602588) is one of the most

common forms of autosomal dominant syndromic hearing loss

with an incidence of 1:40,000 and is responsible for causing 2% of

profoundly deaf children [1]. The clinical manifestations of BOR

syndrome include hearing loss (93%), preauricular pits or tags

(82%), renal anomalies (67%), branchial fistulae (49%), and pinnae

deformity (36%) [2]. Diagnostic criteria proposed by Chang et al.

[3] in 2004 are most widely used for the clinical diagnosis of BOR

syndrome. In 1997, Abdelhak et al. [4] reported the human

homolog of the Drosophila eyes absent gene (EYA1) as the causative

gene of BOR syndrome and identified novel mutations of the

EYA1 gene in seven families demonstrating typical features of

BOR syndrome. Mutations of the EYA1 gene are found in

approximately 40% of patients with BOR syndrome [3]. In

addition to the EYA1 gene, mutations in the SIX1 and SIX5 genes

have been reported to cause BOR phenotypes, although the

pathogenic role of the SIX5 gene has been questioned recently

[5,6,7]. SIX1 mutations have been shown to disrupt the EYA1-

SIX1-DNA complexes [5,8].

The EYA1 gene located on chromosome 8q13.3 encodes a

transcriptional co-activator required for eye morphogenesis which

consists of three isoforms (a, b, c) and four transcript variants

(EYA1A–1D) as a result of alternative splicing [9,10]. EYA1C

(transcript variant 3; NM_000503), one of the two variants of

isoform b, is the longest transcript encoded by 16 coding exons

extending over 156 kb [10].

To date, approximately 160 mutations of the EYA1 gene have

been associated with BOR/BO syndrome, and frameshift or
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nonsense mutations are the most commonly detected mutations,

followed by splice-site and missense mutations

[7,11,12,13,14,15,16,17]. Approximately 20% of the patients with

BOR/BO syndrome have been reported to be caused by complex

genomic rearrangements of the EYA1 gene that are not detected

by direct sequencing of the coding region [3]. No specific hot spot

has been demonstrated for EYA1 mutations causing BOR

syndrome and most of the mutations are unique to individual

families [3].

Hearing impairment, the most common phenotypic feature of

BOR syndrome, is found in various forms among which mixed

type of hearing loss is most frequently reported (50%), followed by

conductive (30%) and sensorineural type (20%) [2]. Analysis of

computed tomography (CT) imaging of the temporal bone has

revealed malformations of the middle and inner ear structures in

majority of the patients with BOR syndrome [2,18]. Chen et al. [2]

found cochlear hypoplasia (63%), enlarged vestibular aqueduct

(46%), bulbous internal auditory canal (25%), and ossicular

malposition (50%) or malformation (33%), while Propst et al.

[18] described hypoplastic apical turn of cochlea (100%), medial

deviation of the facial nerve (90.5%), and funnel shaped internal

auditory canals (85.7%) as the most common findings of the

temporal bone in patients clinically diagnosed as BOR syndrome.

Because of the conductive component of hearing loss identified

in most cases of patients with BOR syndrome, attempts have been

made to improve hearing through middle ear exploratory

tympanotomy and ossicular reconstruction. However, there are

only several studies dealing with hearing outcome of exploratory

tympanotomy in patients with BOR syndrome mostly reported

before the identification of genetic causes of BOR syndrome,

which demonstrated unsatisfactory results [19]. Since variable

clinical manifestations concerning onset, degree, type, and

progressiveness of hearing loss can be seen in BOR syndrome,

auditory rehabilitation in these patients have to be carefully

evaluated and managed according to individual conditions. In this

study, clinical analysis was performed in 10 patients with BOR/

BO syndrome focusing on auditory manifestations and rehabili-

tation, and the results of mutational analysis for the EYA1, SIX1,

and SIX5 genes are reported.

Materials and Methods

Subjects
Seven families (10 patients) including one multiplex family

showing hearing loss and one or more of the typical features of

BOR syndrome were included in this study for clinical and genetic

analyses. The clinical diagnosis as typical BOR syndrome was

made when the clinical criteria proposed by Chang et al. [3] were

satisfied, whereas atypical BOR syndrome was diagnosed when

only one or two features of BOR syndrome were present together

with hearing loss. The combined anomalies were thoroughly

reviewed in all patients; however, the results of renal ultrasonog-

raphy were available in 4 of 10 patients. Written informed consent

was obtained from the participating individuals, and this study was

approved by the Institutional Review Board of the Yonsei

University College of Medicine.

Audiologic Evaluation
Serial pure tone audiometries were performed in all patients

and the various clinical manifestations regarding hearing loss were

carefully reviewed. The type, degree, onset, progressiveness and/

or fluctuation of hearing loss were evaluated in each patient. The

threshold of pure tone audiometry was defined as the average of

thresholds at 500, 1000, 2000, and 3000 Hz. The follow-up period

of audiologic evaluations ranged from 3 months to 7.5 years.

Speech audiometry and language evaluations were carried out in

some of the patients whenever possible.

Radiologic Evaluation
The temporal bone CT scan was performed in all of 10 patients

and temporal magnetic resonance imaging (MRI) was available for

analysis in 4 patients. The temporal bone CT scan was performed

with a 16 multidetector row CT scanner (Somatom Sensation 16;

Siemens, Erlangen, Germany) using a standard temporal bone

protocol. Contiguous 0.7-mm scans of the temporal bone were

acquired in the axial plane and reformatted coronally with 1.0-

mm increments. CT images were performed, digitally stored, and

displayed by using the Picture Archiving Communication System

(PACS) (Centricity; GE Healthcare, Milwaukee, WI).

MRI was acquired by using a 3.0-T (Achieva; Philips Medical

Systems, Best, the Netherlands) or 1.5-T system (Intera; Philips

Medical Systems, Best, the Netherlands) with a six-channel

sensitivity encoding (SENSE) head coil. The targeted parasagittal

scan perpendicular to the long axis of the internal auditory canal

was obtained with T2-weighted three-dimensional (3-D) turbo

spin-echo (TSE) sequence with driven equilibrium RF reset pulse

(DRIVE), following routine MR sequences with spin-echo T1- and

T2-weighted images. The sequence parameters for the T2-

weighted 3-D FSE sequence with DRIVE were as follows:

repetition time (TR)/echo time (TE) = 1500/200 ms, 256 acqui-

sition/256 reconstruction, 15-cm field of view, 1.5-mm section

thickness with a 0.75-mm overlap, number of acquisitions = 2, and

the scan time was less than 5 minutes.

The morphologies of the cochlea, vestibule, semicircular canals,

internal auditory canals, vestibular aqueduct, and middle ear

structures were analyzed on temporal bone CT scans. On

temporal MRI, abnormalities of the brain, the cochleovestibular

and facial nerves, as well as the endolymphatic duct and sac were

evaluated.

Gene Screening
All exons and exons-intron boundaries of EYA1, SIX1 and SIX5

gene were amplified by Polymerase Chain Reaction (PCR) with

specific primers (Table S1) designed using Primer 3 software

(http://frodo.wi.mit.edu/). PCR with H taq polymerase (Solgent,

Daejeon, South Korea) proceeded as following cycles: 15 minutes

at 95uC, repeated of 30–40 cycles of denaturation at 94uC for 20

seconds; annealing at * uC for 40 seconds; extension at 72uC for 30

seconds (* is depended by melting temperature of primers). Last

extension step was performed at 72uC for 5 minutes. Particularly,

exons 1 and 2 of SIX5 were amplified using LA taq (TaKara, Otsu,

Shiga, Japan), because these regions have high GC contents. PCR

products were separated on 1.5% agarose gel. The PCR products

were purified using Shrimp alkaline phosphatase (USB, Cleveland,

OH, USA) and exonuclease I at 37uC for 70 minutes and directly

sequenced using the Bigdye Terminator v3.1 Cycle Sequencing

Kit (Applied Biosystems, Foster City, CA, USA). Ethanol

precipitation was used for purification of sequencing reaction

products before running the samples on the 3130xl Genetic

Analyzer (Applied Biosystems, Foster City, CA, USA). The data

was analyzed utilizing Sequencing analysis v5.2 (Applied Biosys-

tems, Foster City, CA, USA) and Chromas Pro v1.5 software

(Technelysium, Pty Ltd., Tewantin, QLD, Australia). Multiple

alignments of the analyzed sequences were performed using CLC

sequence Viewer v.6.0 software (CLC Bio, Aarhus, Denmark).

Molecular and Clinical Analyses of BOR/BO Syndrome
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Splicing Assays
To analyze the splicing pattern, minigene vector was manufac-

tured to include each exon along with about 300 bp of 59- and

300 bp of 39- intronic flanking regions (c.699+5 G.A,

c.1140+1 G.A, c.1598-2 G.A). Amplified wild or mutant type

products digested with BamHI and EcoRI were inserted into

multiple cloning sites between exon A and exon B in pSPL3 or

pSPL3b vectors. For in vitro splicing assay, HeLa cells were

cultured in DMEM (containing 10% FBS, 1% Penicillin/

Streptomycin) at 37uC in 5% CO2 concentration. Prior to

transfection, HeLa cells were seeded at a density of 2.76106 on

a 60 mm culture dish. Hybrid minigenes in pSPL3 or pSPL3b

vector were transiently transfected into HeLa cells using Fugene 6

Transfection reagent (Promega, Madison, WI, USA) at 3 mL per

mg of DNA, and the transfected cells were harvested 24 hours after

transfection. Total RNA was extracted from the transfected HeLa

cells using an RNeasy Mini Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s protocol. Approximately 1 mg of

total RNA was reverse-transcribed into cDNA using a High

Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

Foster City, CA, USA). The cDNA was used as a template for

PCR amplification of pSPL3 or pSPL3b vector-specific primers

SD6 and SA2. The size of amplified normal and mutant fragments

was confirmed on 1.5% agarose gel by electrophoresis.

Multiplex Ligation-dependent Probe Amplification
Multiplex Ligation-dependent Probe Amplification (MLPA) was

performed to detect copy number variations such as deletions or

duplications. The SALSA MLPA probemix P153-A2 EYA1 kit

(MRC-Holland, Amsterdam, The Netherlands) that was used

includes 17 probes for 14 of the 18 EYA1 exons (probes for exons

1, 8, 13, 16 are not included whereas two different probes exist for

exons 6, 9, 10) and 14 control probes. MLPA was performed

according to the manufacturer’s instructions: denaturation at 98uC
for 5 minutes; stabilization at 25uC; hybridization at 95uC for 1

minute and at 60uC for 16–20 hours, stabilization at 54uC; ligation
at 54uC for 15 minutes, inactivation at 98uC for 5 minutes, and

stabilization at 20uC. PCR was carried out as follows: 35 cycles of

denaturation at 95uC for 30 seconds; annealing at 60uC for 30

seconds; extension at 72uC for 1 minute. Final extension step was

performed at 72uC for 20 minutes. Amplified products containing

GeneScanTM-500 LIZH Size Standard (Applied Biosystems, Fos-

ter City, CA, USA) and Hi-Di Formamide (Applied Biosystems,

Forster City, CA, USA) were separated and quantified by capillary

electrophoresis on the 3130xl Genetic Analyzer (Applied Biosys-

tems, Forster City, CA, USA), and the data were analyzed using

GeneMarker software v1.6 (Softgenetics, State College, PA, USA).

Genotype Analysis of Microsatellite Markers
Four microsatellite markers, D8S1795, D8S1060, D8S1807 and

D8S570, in the region of 2 Mb including the EYA1 gene were

selected from the NCBI database (www.ncbi.nlm.gov) considering

their heterozygosity. PCR with H taq polymerase was performed

using fluorescently tagged primers. Two PCR products of different

fragment size and 0.1 mL of GeneScanTM-500 LIZH Size

Standard (Applied Biosystems, Foster City, CA, USA) were mixed

and diluted with 8.9 mL of Hi-Di Formamide (Applied Biosystems,

Forster City, CA, USA). Final diluted products were separated and

detected by using ABI 3130x genetic analyzer. GeneMapper v4.0

software (Applied Biosystems, Forster City, CA, USA) was used to

analyze genotypes for each marker.

Results

Clinical Presentations
Seven families including 10 patients were analyzed. All of the

patients were females and their age at the time of diagnosis ranged

from 1 to 43 years (Table 1). The clinical features identified in

each patient are shown in Table 2. Nine patients were diagnosed

as typical BOR/BO syndrome according to the criteria by Chang

et al. [3], while one patient exhibited only mixed type of hearing

loss and inner ear anomalies to be classified as atypical BOR/BO

syndrome. Of the major criteria other than hearing loss,

preauricular pit was the most common finding seen in 80%,

followed by branchial anomalies present in 30% of the patients.

Patient 6 aged 14 years and patient 10 aged 43 years had received

excision of bilateral branchial fistulae at other hospitals in

childhood, and demonstrated postoperative scars bilaterally along

the anterior border of the sternocleidomastoid muscle. Patient

9 aged 1 year exhibited nondischarging pits also at the anterior

border of the sternocleidomastoid muscle bilaterally without any

palpable cystic portion. Of the minor criteria, inner ear and

middle ear anomalies detected on temporal bone CT were

identified in all of the patients, whereas external ear anomalies

were observed in only 2 patients.

Results of renal manifestations were evaluated in 4 of 10

patients. In one patient (patient 9), a tiny cyst was seen in the right

renal cortex and mild pelvic dilatation of the right kidney was

identified by renal ultrasonography without any evidence of renal

dysfunction. The other three patients did not reveal any

abnormality on renal ultrasonography or blood testing.

Radiologic Findings and Temporal Bone Anomalies
All of the patients with BOR/BO syndrome underwent high

resolution temporal bone CT, and temporal MRI was available

for analysis in four of the patients (Table 3). Cochlear hypoplasia,

enlarged vestibular aqueduct, and facial nerve anomaly were seen

in all of the patients (Fig. 1). In all patients, cochlea demonstrated

less than two turns consistent with cochlea hypoplasia type III

(Fig. 1A) [20]. The modiolus was present but defective in all

patients (Fig. 1D). The enlarged vestibular aqueduct was often

observed as a circular shape with a diameter significantly larger

than the posterior semicircular canal in the axial section of the

temporal bone CT, which differed from the characteristic funnel-

shaped enlargement of vestibular aqueduct seen in patients with

SLC26A4 mutations (Fig. 1B, Fig. S1). This finding could be

related to the pathologic condition in which the main portion of

enlargement is the endolymphatic duct rather than the endolym-

phatic sac. The MRI performed in 4 of the patients supported this

speculation demonstrating bilateral dilation of the endolymphatic

duct without enlarged endolymphatic sac in two patients and with

unilateral mildly enlarged endolymphatic sac in two patients

(Table 3, Fig. S1). The facial nerve ran inferior to the hypoplastic

cochlea and displayed an obtuse angle between the labyrinthine

and tympanic segments (Fig. 1C). Bulbous or funnel-shaped

internal auditory canals were identified in 5 patients (50%). The

vestibule was dilated bilaterally in all patients and severe lateral

semicircular canal dysplasia was found unilaterally in one of the

patients (patient 2). The ossicular chain was malformed or

malpositioned to variable degrees in all of the patients, and the

fusion of the malleoincudal joint and/or ossicular ankylosis to the

epitympanic wall were present in five patients (patients 1–4, 9)

(Fig. 1E). None of the patients exhibited obliteration of the oval

window or round window on temporal bone CT.

Molecular and Clinical Analyses of BOR/BO Syndrome
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Auditory Manifestations
Serial pure tone audiometries revealed variable patterns of

hearing loss. All patients presented with mixed type of hearing loss

ranging from moderate to profound degree (Table 1). The onset

was mostly perilingual or postlingual although congenital hearing

loss was demonstrated in two of the patient. Five of 10 patients

presented variable degrees of progressive hearing loss. Two of

these patients showing progressive hearing loss experienced

sudden aggravation of hearing loss, one of whom improved

hearing after steroid treatment (patient 10) while the other became

profoundly deaf without significant improvement despite steroid

treatment (patient 7). Of the five patients showing stable hearing

loss without significant progression over a period of two to four

years, four patients were members of a single family.

Middle Ear Surgeries and Auditory Rehabilitation
For auditory rehabilitation, five of 10 patients underwent

middle ear surgeries (Table 1). In patient 5, ossiculoplasty was

initially performed on the right ear to correct the conductive

component of hearing loss, during which incudostapedial joint was

found separated. Partial ossicular replacement prosthesis (PORP)

was inserted between the stapes and malleus handle. However,

revision ossiculoplasty was performed after 8 months due to failure

of hearing gain and the location of the previously inserted PORP

Table 1. Auditory manifestations and management of hearing loss in patients with BOR/BO syndrome.

Families Patients Sex/Age*(Yr)Auditory manifestations Middle ear surgery

Auditory
rehabilitation

Type
PTA thresholds (dB
HL) Onset Progression HA CI

I 1 F/2 Mixed 80 (R), 60 (L) Congenital No – (B)

2 F/14 Mixed 65 (R), 90 (L) Postlingual No – (B)

3 F/16 Mixed 60 (R), 75 (L) Postlingual No – (B)

4 F/38 Mixed 90 (R), 85 (L) Postlingual No – (B)

II 5 F/12 Mixed 55 (R), 45 (L) Postlingual Yes Ossiculoplasty (R),
stapedotomy (R)

(B)

III 6 F/14 Mixed 65 (R), 65 (L) Postlingual Yes Ossiculoplasty (R) (B) CI (R)

IV 7 F/13 Mixed 90 (R), 105 (L) Postlingual Yes – (B) CI (R)

V 8 F/9 Mixed 50 (R), 50 (L) Congenital No Ossiculoplasty (L) (B)

VI 9 F/1 Mixed 50 (R), 75 (L) Prelingual Yes Cholesteatoma removal (R) (B)

VII 10 F/43 Mixed 65 (R), 60 (L) Postlingual Yes Stapedotomy (B) (B)

*Age at first visit to our clinic; Yr: year; PTA: pure tone audiometry; dB HL: decibel hearing level; HA= hearing aid; CI = cochlear implantation; R: right, L: left, B: both.
doi:10.1371/journal.pone.0067236.t001

Table 2. Clinical features and diagnostic criteria in patients with BOR/BO syndrome.

Clinical Features Patients

1 2 3 4 5 6 7 8 9 10

Major Critieria

Branchial anomalies – – – – – O – – O O

Deafness O O O O O O O O O O

Preauricular pits O O O O O O – O O -

Renal anomalies* ? ? ? ? ? – ? – O –

Minor Criteria

External ear anomalies O – – – O – – – – –

Middle ear anomalies O O O O O O O O O O

Inner ear anomalies O O O O O O O O O O

Preauricular tags – – – – – – – – – –

Other: facial asymmetry etc. – – – – – – – – – –

Diagnosis

3 Major O O

2 Major +2 Minor O O O O O O O

Typical/Atypical Typical Typical Typical Typical Typical Typical Atypical Typical Typical Typical

*Evaluated for renal anomalies only in patients 6, 8, and 10;
?: renal ultrasonography not performed.
doi:10.1371/journal.pone.0067236.t002
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was adjusted. Persistence of the air-bone gap led to middle ear

exploration, and stapedotomy was performed because of impaired

stapes mobility. Despite multiple middle ear surgeries, hearing

gain could not be achieved and the patient is using hearing aids for

auditory rehabilitation. Bone conduction hearing was slightly

worsened on both sides after multiple surgeries, which was not

thought to be the result of middle ear manipulations. In patient 6,

incudostapedial joint was found fixed during middle ear explora-

tion, which led to the insertion of PORP after the removal of

incus. One year later, revision ossiculplasty was performed to

reposition the PORP but failed to close the air-bone gap.

Subsequently, cochlear implantation was performed on the same

side, which improved her hearing and language ability. During

cochlear implantation, the facial nerve dehiscence was seen at the

tympanic segment which ran anterosuperiorly to the stapes passing

superior to the round window. Perilymphatic gusher occurred

after cochleostomy but was easily controlled by conventional

methods. Two other patients (patients 8 and 10) had a history of

receiving two ossiculoplasties of the same ear and stapedotomy of

both ears, respectively, at other hospitals. Mixed hearing loss was

still observed in both of these patients despite middle ear

operations at the time of initial visit to our clinic. In another

patient (patient 9), a congenital cholesteatoma filling middle ear

space eroding incus and malleus was identified, and incus

interposition was performed after removal of cholesteatoma.

Closure of air-bone gap also failed in this patient who is currently

using hearing aids on both sides for auditory rehabilitation.

Mutation Analysis
All exons and exon-intron boundaries of EYA1, SIX1, and SIX5

genes were sequenced in 7 families with BOR/BO syndrome. One

missense and three splice site mutations were identified in EYA1,

while no mutations were found in either SIX1 or SIX5 gene

(Table 4–5). A novel missense mutation, p.E332G, was identified

in all four affected members of Family I, which caused an adenine

to guanine substitution at nucleotide position 965 converting

glutamic acid to glycine (Fig. 2A–B). This mutation changed the

charge of amino acids from a negative charge to nonpolar. The

conservation of the mutated amino acid was analyzed using the

CLC sequence viewer, which demonstrated that the glutamic acid

at amino acid position 332 is highly conserved in various

vertebrates (Fig. 2C). Three novel EYA1 splice site mutations,

c.1140+1 G.A, c.1598-2 A.C and c.699+5 G.A, were detect-

ed in 3 other families (Table 4, Fig. 3).

Splicing Assay
To investigate the potential pathogenic effect of the three novel

splice site mutations (c.1140+1 G.A, c.1598-2 A.C and

c.699+5 G.A) on normal splicing, each exon and the flanking

intronic sequences sufficient to allow splicing were inserted into a

pSPL3 or pSPL3b vector. Each vector was transfected into the

HeLa cells, and transcribed to mRNA in the cells. All three splice

site mutations were found to disrupt the normal splicing (Fig. 4).

Exons 12 (90 bp), 17 (101 bp), and 10 (140 bp), involved with

mutations c.1140+1 G.A, c.1598-2 A.C, and c.699+5 G.A,

respectively, were inserted between exon A (92 bp) and exon B

Figure 1. The findings of temporal bone CT in patient 7 and
normal control. (A–E) These images are temporal bone CT in patient
7. (A) Cochlear hypoplasia type III with less than two turns is indicated
by a black arrow. (B) The vestibular aqueduct (white asterisk) was
enlarged and seen in a circular shape in the axial view. The lateral
semicircular canal was slightly hypoplastic and the vestibular was

dilated (black arrowhead). (C) The facial nerve ran inferior to the
hypoplastic cochlea and displayed an obtuse angle between the
labyrinthine and tympanic segments (white arrowhead). (D) The
modiolus (white arrow) was present but defective and hypoplastic. (E)
The ossicular chain (white arrow) seen in the coronal view was
positioned in a different angle compared to the normal control. (F–K)
These images are temporal bone CT in normal control.
doi:10.1371/journal.pone.0067236.g001
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Table 3. Radiologic findings in patients with BO/BOR syndrome.

Patients TBCT MRI

Cochlea Vestibule VA ME FN IAC ED ES

1 CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) Bulbous (B)

2 CH (B) Dilated (B), LSCC
dysplasia (L)

Enlarged (B) Ossicular anomaly (B)Deviated (B) –

3 CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) –

4 CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) –

5* CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) Funnel (R) Enlarged (B) -

6* CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) – Enlarged (B) Enlarged (R)

7* CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) – Enlarged (B) Enlarged (L)

8 CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) Bulbous (L)

9 CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) Bulbous (B)

10* CH (B) Dilated (B) Enlarged (B) Ossicular anomaly (B)Deviated (B) Bulbous (L) Enlarged (B) -

*Patients who performed temporal MRI; TBCT = temporal bone computed tomography; MRI = temporal magnetic resonance imaging; CH= cochlear hypoplasia;
VA= vestibular aqueduct; ME =middle ear; FN = facial nerve; IAC = internal auditory canal; ED = endolymphatic duct; ES = endolymphatic sac; LSCC= lateral semicircular
canal.
doi:10.1371/journal.pone.0067236.t003

Figure 2. Identification of a novel missense mutation in the EYA1 gene. (A) Pedigree of family I comprised of two generations. Squares and
circles indicate females and males, respectively. Filled symbols display affected individuals and the arrow appoints the proband of the family. The
ages of the affected females are marked in years (Yr) next to the symbols. (B) Nucleotide sequence of exon 10 of the EYA1 gene. Black arrow indicates
the heterozygous nucleotide substitution, c.965 A.G, detected in the affected family members. (C) Multiple alignments of the EYA1 homologous
sequences of nine different vertebrates. The amino acid substituted by the missense mutation p.E332G (arrow) is highly conserved among the
different vertebrate species.
doi:10.1371/journal.pone.0067236.g002
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(171 bp) of the pSPL3 or pSPL3b vector. The size of the mutant

mRNA was 263 bp which included only exons A and B of the

vector, meaning that exon skipping occurred for all three splice site

mutations (Fig. 4). These results were confirmed by Sanger

sequencing showing that 263 bp of the mutant mRNA contained

only exons A and B of the vector (Fig. 4).

Identification of EYA1 Deletion
The MLPA analysis was performed in three patients (patients 8–

10) who were found not to carry any mutations in the three genes

(EYA1, SIX1 and SIX5) by direct sequencing, and the results were

compared to the data acquired in one normal control with normal

hearing confirmed by pure tone audiometry. The entire EYA1

gene was suspected to be deleted in patient 8 (Fig. 5). In this

patient, the peak height of all EYA1 probes was lower than half of

the reference peak, and the normalization ratio was approximately

0.5 compared with the reference values. In contrast, all 14 control

probes of the same patient located in other chromosomal regions

demonstrated values same as the reference peak with suitable

normalization ratios (0.8,1.2). The results of the MLPA indicated

that patient 8 had a heterozygous deletion encompassing the

whole EYA1 gene. To investigate the deleted region including

EYA1 in patient 8, genotype analysis using microsatellite markers

was performed. Only patient 8 revealed homozygous alleles for all

4 markers, while all 12 normal controls showed heterozygous

alleles for at least one of the microsatellite markers (Table S2). In

addition, genotypes for all 15 polymorphisms detected in the EYA1

gene were homozygous in patient 8 (Table 5). These results

strongly suggested that patient 8 carried a large deletion including

the whole EYA1 gene, although the range of the deleted

chromosomal region could not precisely be estimated.

Discussion

In this study, 5 of 7 unrelated Korean families clinically

diagnosed as BOR/BO syndrome were identified to carry

mutations in the EYA1 gene, including four novel intragenic

mutations and one large deletion encompassing the whole EYA1

gene. Pathogenic variations of the SIX1 and SIX5 genes were not

found in any of the patients. Clinically, auditory manifestations

known as the most common and characteristic feature of BOR/

BO syndrome were analyzed in detail together with the outcome

of various treatment modalities for hearing improvement such as

middle ear surgeries, cochlear implantations, or hearing aids.

Figure 3. Identification of three novel splice site mutations in the EYA1 gene. The nucleotide sequences of the control (WT/WT) and the
affected individuals (WT/MT) are shown for patients 5 (A), 6 (B), and 7 (C). Each heterozygous mutation is indicated by arrowheads. (A, C) The
mutations c.1140+ G.A and c.699+5 G.A are splicing donor site mutations of exons 12 and 10, respectively. (B) The mutation c.1598-2G.A is
splicing acceptor site mutation of exon 17.
doi:10.1371/journal.pone.0067236.g003

Table 4. Five novel mutations identified in EYA1 gene.

Families Patients Location Nucleotide change Amino acid change Type

I 1–4 Exon 10 c.965 A.G p.E322G Missense

II 5 Intron 12 c.1140+1 G.A – Splice site

III 6 Intron 16 c.1598-2 A.C – Splice site

IV 7 Intron 10 c.699+5 G.A – Splice site

V 8 Whole gene Large deletion

doi:10.1371/journal.pone.0067236.t004
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In contrast to the western population where large cohort studies

have been performed on BOR/BO syndrome, limited information

is available concerning genetic mutations of this syndrome in the

East Asian population, and a total of 16 mutations in the EYA1

gene have been reported including 7 nonsense, 3 frameshift, 3

splice-site, 2 missense mutations, and 1 partial deletion [17]. In

this study, EYA1 mutations were identified in 71% (5 of 7 families)

which is higher than 40% previously reported by Chang et al. [3].

Splice site mutations were the most common type found in 3 of 7

families, followed by one missense mutation and one large deletion

encompassing the whole EYA1 gene. In the Korean population,

there have been only 3 case reports of patients with BOR/BO

syndrome carrying EYA1 mutations, and this study adds to the

genotypic and phenotypic spectrum of BOR syndrome in the East

Asian population [15,21,22]. As for SIX1 mutations associated

with BOR/BO syndrome, more than 10 mutations have been

identified worldwide, while there is only one missense mutation

reported in the East Asian population [5,7,9,12,23,24]. Consis-

tently, no SIX1 or SIX5 mutation was found in this study

suggesting the limited role of SIX genes as the cause of BOR/BO

syndrome in the East Asian population. Since a large deletion was

identified by MLPA in one patient with BOR/BO syndrome, we

suggest that additional studies should be performed to identify

complex rearrangements or large deletions when no mutation is

found by conventional sequencing techniques.

No clear genotype-phenotype correlation could be demonstrat-

ed in this study in accordance with previous reports, in which no

mutation was found in a patient with all major features of BOR

syndrome (patient 9) whereas a splice site mutation of the EYA1

gene was identified in a patient presenting with only mixed

hearing loss and enlarged vestibular aqueduct (patient 7) [7]. Also,

no definite difference could be identified regarding the severity of

clinical features of BOR/BO syndrome or the presence of

additional phenotypes in the patient who carried a large deletion

encompassing the EYA1 gene (patient 8) compared to the patients

with intragenic EYA1 mutations.

The progression of hearing loss was variable in patients with

BOR/BO syndrome included in this study. Cremers et al. [19]

have reported that the hearing loss in BOR/BO syndrome was

stable without progression or fluctuation. However, half of the

patients included in this study demonstrated various degrees of

progressive hearing loss, and also sudden aggravation of hearing

was demonstrated in one patient. Kemperman et al. [25] have also

reported a patient with BOR syndrome showing progressive

hearing loss and suggested the correlation between the presence of

enlarged vestibular aqueduct and progressive fluctuant hearing

loss. In developmental studies, the expression of murine eya1 in the

sensory hair cells continued after birth and after maturation (P16

in mouse), suggesting an additional role for eya1 in the

differentiation and/or survival of the inner ear cell populations

in particular the sensory cells [26]. This may provide evidence for

the progression of hearing loss demonstrated in some of the

patients with EYA1 mutations considering the possible role of

EYA1 in the maintenance and survival of the hair cells and the

supporting cells. Therefore, we believe that the possibility of

hearing progression should be explained to the patients with

BOR/BO syndrome, and regular auditory tests should be

performed in order to treat these patients with proper modality

of auditory rehabilitation at an appropriate timing.

This study clearly demonstrated the limitation of middle ear

surgeries for hearing improvement in patients with BOR/BO

syndrome consistent with previous reports [19]. The failure may

be explained by several reasons. First, complex multiple anomalies

of the middle ear may have caused the persistence of air-bone gap

after simply reconstructing or modifying the ossicular chain by

performing ossiculoplasty or stapedotomy. Embryologically, mu-

rine eya1 has been reported to be expressed in the mesenchyme

surrounding the cartilage premordia of all three ossicles and also in

the epithelium of the tubotympanic recess which later develops

into the tympanic cavity at E13.5, meaning that mutation in the

EYA1 gene can disrupt normal development of the middle ear in

various aspects [26]. Decreased middle ear space, anomalies of the

oval and round windows, together with the abnormal angle of the

ossicles can all act as hindering factors for successful middle ear

surgeries. For example, abnormal angle of the stapes relative to the

tympanic membrane or abnormal position of the incus relative to

the stapes footplate can interrupt the proper positioning of the

middle ear prosthesis resulting in disturbance of sound transmis-

sion to the inner ear. Even in limited cases showing successful

hearing gain after middle ear surgeries, recurrence of air-bone gap

has been reported to occur, which may be related to the unstable

placement of the middle ear prosthesis inevitably caused by the

multiple structural abnormalities of the ossicles and the middle ear

cavity [19]. Secondly, vestibular aqueduct enlargement that was

seen in all of the patients in this study may have acted as a third

window causing the air-bone gap. As reported in previous studies,

air-bone gap caused by the third window effect cannot be

improved by middle ear explorations [27,28]. Third reason could

be related to the defective modiolus and enlarged internal auditory

canals often seen in these patients, which can be speculated to

cause increased perilymphatic pressure resulting in decreased

mobility of stapes and reduction of sound transmission. Since

typical clinical features of BOR/BO syndrome other than hearing

loss can be easily overlooked before performing initial middle ear

explorations and unsuccessful outcome may be encountered

unexpectedly, careful review of CT findings and history taking

as well as thorough physical examinations should always be

Table 5. Non-pathogenic polymorphisms detected in EYA1
and SIX5 genes.

Gene Location
Nucleotide
change

Amino acid
change Reference

EYA1 Intron 3 c.125-169T.C – rs.7840811

Intron 7 c.556+78T.A – –

Intron 8 c.639+39T.G rs3779747

Exon 9 c.813A.G p.T271T rs1445398

Intron 11 C.1050+107A.G – rs76660214

Intron 11 c.1050+113G.A – rs2053664

Exon 14 c.1278C.T p.G426G rs4738118

Intron 14 c.1360+53C.T – rs4737312

Intron 15 c.1476-21G.T – rs3735935

Intron 17 c.1699-55G.A – rs10103644

Intron 17 c.1699-23A.G – rs10090382

Exon 18 c.1755T.C p.H585H rs10103397

Intron 18 c.*509_
*512delAAAA

– rs146202037

Intron 18 c.*1324T.C – rs56115941

Intron 18 c.*1581G.A – rs9298163

SIX5 Intron 1 C.803+123C.A – rs3745802

Exon 3 c.1903C.T p.P635S rs.2014576

39 UTR c.*34G.A – –

doi:10.1371/journal.pone.0067236.t005
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performed in patients showing mixed hearing loss. In the future,

patients with BOR/BO syndrome may be good candidates of

active middle ear implants considering the failure of hearing gain

by conventional middle ear reconstruction techniques.

Since patients failed to gain hearing after one or more middle

ear surgeries, most of the patients in this study used bilateral

hearing aids. In two of the patients with severe to profound

hearing loss who could not benefit from hearing aids, cochlear

implantation was performed. In patients with syndromic hearing

loss, multiple factors have to be considered regarding auditory

rehabilitation, including combined mental retardation and devel-

opmental delay in addition to various inner ear malformations.

Cochlear implantation in patients with syndromic hearing loss is

challenging in both surgical and audiologic aspects. Although good

results of cochlear implantation have been reported in these

patients, some of the syndromes associated with cochlear nerve

deficiency or narrow internal auditory canals such as CHARGE

syndrome have shown limited outcome [29,30]. Although the

EYA1 gene is involved in the development of the spiral ganglion

and cochlear hypoplasia often seen in patients with BOR/BO

syndrome has been known to be a poor prognostic factor of

cochlear implantation, successful outcome in terms of speech and

auditory performances could be achieved in our patients after

cochlear implantation [26,31]. In addition, no surgical complica-

tions were encountered despite multiple inner ear and facial nerve

anomalies. Since there is limited data on the outcome of cochlear

implantation in patients with syndromic hearing loss, especially

BOR/BO syndrome, the results of this study may provide some

evidence for recommending cochlear implantation in patients with

BOR/BO syndrome who cannot benefit from hearing aids despite

the conductive component of hearing loss.

Conclusions
Considering the high mutation rate of the EYA1 gene in Korean

patients with BOR/BO syndrome, the mutational analysis of

EYA1 should be an integral part of the diagnosis of BOR/BO

syndrome in the East Asian population. The characteristic inner

ear and middle ear anomalies and mixed type hearing loss may

also provide clinical clues to suspect BOR/BO syndrome even in

the absence of other typical clinical features. The management of

hearing loss and auditory rehabilitation in BOR/BO syndrome

should be individually tailored keeping in mind the high failure

rate of hearing gain achieved by middle ear explorations in

patients with mixed hearing loss. Hearing aids are good options in

patients with mild to severe hearing loss, but regular hearing

evaluations are needed considering the possibility of progression of

hearing loss in order to treat these patients with proper modality of

auditory rehabilitation at an appropriate timing. Successful

outcome can be expected with cochlear implantations in patients

with BOR/BO syndrome who cannot benefit from hearing aids.

The novel EYA1 mutations identified in this study adds to the

genotypic and phenotypic spectrum of BOR syndrome in the East

Asian population and the clinical results of this study may provide

Figure 4. Splicing assays for the three novel splice site mutations in the EYA1 gene. The size of the amplified product of EYA1 minigene
transcripts of splice site mutations c.1140+1 G.A (A), c.1598-2 G.A (B), and c.699+5 G.A (C), were 263 bp which is smaller than that of the wild
type, suggesting exon skipping. The different splicing processes of the wild type and mutant transcripts are shown in a schematic illustration. Partial
nucleotide sequences of the wild and mutant types are presented. MOCK, MOCK vector; WT, wild type; MT, mutant type; NCT, negative control.
doi:10.1371/journal.pone.0067236.g004
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evidence for recommending proper means of auditory rehabilita-

tion in patients with BOR/BO syndrome.

Supporting Information

Figure S1 Temporal bone CT and temporal MRI
findings of patient 10 demonstrating enlarged vestibular
aqueduct in a circular shape. (A–F) Axial view of temporal

bone CT shows enlarged vestibular aqueduct (black arrows)

observed as a circular shape with a diameter significantly larger

than that of the posterior semicircular canal (black arrowhead in

Fig. S1A). (F–K) Axial view of temporal MRI also exhibited

enlargement of the endolymphatic duct (white arrows) whereas the

endolymphatic sac was not enlarged (white arrowhead in Fig.

S1K).

(TIF)

Table S1 Primer information of EYA1, SIX1 and SIX5.

(DOC)

Table S2 Identification of EYA1 deletion by microsatel-
lite marker.

(DOC)
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