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Abstract

Collaboration may be understood as the execution of coordinated tasks (in the most general sense) by groups of users, who
cooperate for achieving a common goal. Collaboration is a fundamental assumption and requirement for the correct
operation of many communication systems. The main challenge when creating collaborative systems in a decentralized
manner is dealing with the fact that users may behave in selfish ways, trying to obtain the benefits of the tasks but without
participating in their execution. In this context, Game Theory has been instrumental to model collaborative systems and the
task allocation problem, and to design mechanisms for optimal allocation of tasks. In this paper, we revise the classical
assumptions of these models and propose a new approach to this problem. First, we establish a system model based on
heterogenous nodes (users, players), and propose a basic distributed mechanism so that, when a new task appears, it is
assigned to the most suitable node. The classical technique for compensating a node that executes a task is the use of
payments (which in most networks are hard or impossible to implement). Instead, we propose a distributed mechanism for
the optimal allocation of tasks without payments. We prove this mechanism to be robust evenevent in the presence of
independent selfish or rationally limited players. Additionally, our model is based on very weak assumptions, which makes
the proposed mechanisms susceptible to be implemented in networked systems (e.g., the Internet).
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Introduction

Selfish behavior is becoming a subject of great concern and

practical importance to network designers [1]. Game Theory is the

approach of preference to face the design of communication

systems with (potentially) selfish entities. This has lead to the

proposal of a number of interesting protocols and mechanisms for

networks based on Game Theory concepts [2,3]. However, in the

study of networks under conventional models, a collection of

simplifying assumptions are typically made. For instance, it is

assumed that selfish users are rational, that they are homogeneous,

that they can compute a Nash equilibrium, that their utility

function is known, etc. However, there are many systems in which

these assumptions are not very realistic.

In this paper we revisit the study of communication systems with

selfish users (or players), reevaluating and relaxing the above-

mentioned common assumptions. In particular, we propose the

problem of analyzing and designing a fair collaborative system

under a very weak set of game theoretic assumptions. In this

general context, we propose mechanisms to be used to implement

this collaborative system with provable properties, like the fairness

of the system and the truthfulness of its users. The mechanisms

proposed can be applied to such varied technologies as social and

crowd computing, Web 2.0, P2P, opportunistic networks, and

cloud systems.

As mentioned, we abstract the problem to be solved as the fair

execution of tasks in a decentralized collaborative system. The

main challenge when creating collaborative systems in a decen-

tralized manner is dealing with the fact that system nodes may

behave in selfish ways, trying to obtain the benefits of the tasks but

without participating in their execution. (This is the realm of

Game Theory, which has been instrumental to model collabora-

tive systems and the task allocation problem, and to design

mechanisms for optimal allocation of tasks.) We assume that all

nodes have an interest on having the tasks done. However,

establishing fair mechanisms for sharing the generated work-load

is not immediate. (E.g., in current P2P systems, usually a low

fraction of peers assume most of the required effort, and this causes

reduced performance, lack of reliability, low incentive to

participate for fair users, etc.) It would, therefore, be desirable

that each node could take the responsibility of the execution of a

balanced fraction of the tasks.

The objective is to establish some kind of protocol to share the

task execution costs. For this, we need to consider the concept of

ability or opportunity of execution. Let us assume that each node has

some capacity for timely execution of a given task. This capacity

may vary over time and with the type of task. For example, at a

given time, a node may have free bandwidth but have full

utilization of its CPU, while theits situation could be the opposite

at another time. Hence, at a particular moment, a node may have

greater ability to perform tasks involving communication, while at

a later time itits situation may change to prefer tasks that are more

intensive in CPU computation.
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This opportunity or ability is related with the notion of task

execution cost. In other words, we define the cost as some kind of

metric measuring the capability of executing a particular task at a

given time. Hence, the cost varies from one task to another (even

when the task is the same, but at a later time). In Game Theory,

closely related to cost, there is the notion of utility. We define the

utility as the cost savings associated with a work not done. Hence,

given that all nodes are interested in the execution of the tasks, a

node gets more utility whenever it avoids running tasks, by letting

other nodes running them.

Clearly, when trying to formalize a model based on these

notions, a number of problems arise. First, node’s costs are only

known by the node itself. For external entities it would be difficult

to audit or check if a given particular node has more or less CPU

capacity. In Game Theory, this concept is called private information.

To obtainFor obtaining the private information of a node, the

basic mechanism is to directly ask for it and expect the node to

declare its value correctly.

For us, each node is a computing elementnode that belongs to a

user who can alter her node’s behavior for her own benefit (i.e.,

may declare false costs trying to avoid the execution of tasks).

Whenever this happens, we claim that the user acts in a selfish

way. This selfishness is one of the factors that may distort the

internal workings of a distributed application. The loss of system

performance produced by selfish nodes is a parameter to consider

and it is called price of anarchy [4,5].

Therefore, the problem we face consists of designing a system

capable of assigning tasks to nodes so that all the tasks are

executed, and the total cost incurred is minimal. When the

behavior of nodes is guaranteed to be fair, this is just a simple

optimization exercise. However, when nodes may choose whether

to be selfish the problem becomes much more complex. In this

paper we propose an algorithm that, based on Game Theorybas-

ing on game theory principles, solves this problem. We have called

this algorithm Quid Pro Quo Mechanism (QPQ). The name comes

from a Latin expression commonly used by lawyers and which

may be translated as ‘‘This for that’’ or ‘‘A thing for another’’. This

expression is often used when someone does a job and waits for

anand equivalent compensation in exchange. We used this

expression since it reflects the spirit of the algorithm: due to the

lack of payments in our model, the nodes work for others with the

hope that others will work for them in the future.

1.1 State of the Art
As described above, the problem addressed in this paper is the

allocation of task executions to potentially selfish users. This

problem has been extensively studied in the literature. One

important related work was carried out by Rosenschein et al. [6],

where they define a ‘‘Task Oriented Domain’’. Even though they

obtain fairly relevant conclusions, they do not shed any light on the

specific problem considered here, since their model makes strong

assumptions, such as knowledge of the task costs or a bargaining

power over time. Recently, the use of Game Theory to model

selfish behavior in the design of distributed systems has been

proposed. Some works have appeared using mechanism design, a

branch of mathematics derived from Game Theory, which

provides the required background for the study and design of

distributed systems under the action of selfish nodes (see, e.g., [7–

9]).

Our work falls naturally into the large area of mechanism design

without money (see, e.g., [10]). In this direction, our QPQ

algorithm is similar to the mechanism proposed by Jackson and

Sonnenscheinet al. [11,12]. In that work, they present a new

interesting type of mechanism (called linking mechanism) which,

instead of offering incentives or payments to players, limits the

spectrum of players’ responses to a probability distribution known

by the game designer. In that paper, the authors proved that a

linking mechanism is valid when the players’ possible decisions are

distributed following discrete probabilities. Additionally, the

authors show that a linking mechanism can also be used for

repeated games. Even though the work of Jackson et al. is very

relevant to the problem we consider, it does not offer a method for

the construction of mechanisms when the game is based on

unknown continuous probability distributions, as assumed here. A

second work that explores the idea of linking mechanism is due to

Ferenc [13]. In that paper, he proposes a mechanism which limits

player responses by restricting the first two moments (mean and

variance) of the probability distribution, being that distribution

known to the designer. Both works reflect the main idea behind

the concept of linking mechanism: when a game consists of

multiple instances of the same basic decision problem (e.g., saying

yes or no, choosing among a number of discrete options), it is

possible to define selfishness-resistant algorithms by restricting the

players’ responses to a given distribution. Hence, in that case, the

frequency with which a player declares a particular decision is

known beforehand.

In the specific areas of computing and communications, it is

important to remark that most mechanisms proposed for dealing

with selfish agents make unrealistic assumptions [14]. In this

direction, Bauer et al. [15] criticize many of these hypotheses,

reviewing well-known works [16–18] to show that they are not

applicable in real environments. Specifically, they identify two

common strong artificial assumptions:

1. The assumption that the designer of the algorithms has some

knowledge about the preferences of the nodes.

2. The assumption that the interaction among players is limited to

a single round (while it is well known in the literature that a

solution for a single round does not necessarily apply when the

game is repeated).

1.2 Results
In this paper, we face the problem of task allocation relaxing

these (and other) common hypotheses, so that the obtained results

can be applied in real environments. Hence, the contributions of

this paper are twofold. First, to the best of our knowledge, this is

the first work proposing a linking mechanism solution without

prior knowledge of the distribution of the players’ decisions, and

without a payment system among them. Second, we generalize

and improve previous works in the area to provide algorithms

which are susceptible of being applied in the context of repeated

task execution allocation in real communication and computing

systems, even in the presence of selfish or non-rational users.

As we previously claimed, we do not want to restrict our

mechanism to a set of unrealistic hypotheses. Instead, we establish

a number of requirements that our model must satisfy. These

requirements should provide the appropriate flexibility to guar-

antee the applicability of our results in real environments.

N Abstract utility metrics: We assume, as an abstract notion, that the

cost of executing a task for a node (user, player, and node will

be used indistinctly in the rest of the paper) depends on its

interest on the task, its opportunity or ability to execute it, or its

degree of willingness to cooperate. We need to accept that

each node may measure this parameter in its very own metric

and units. Hence, for example, a node may decide on the cost

of a task according to the occupation of its CPU, but another

Quid Pro Quo: Mechanism for Fair Collaboration
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one may prefer to make it depend on its available bandwidth.

In a real scenario, the number of factors that can influence the

execution cost of a task can be extremely large. In this

direction, ourout model must enable each node to define, in a

flexible way, how costs (and utilities) are measured.

N No payment system: Payments are, in its most basic interpretation,

a way of exchanging costs. Many existing mechanisms base

their incentive schemes on the existence of payments. For

payments to be possible, it is necessary that all players manage

a common currency reference (euro, dollar, etc.). However,

given our previous requirement, it is not clear how we can find

that shared currency reference in our model. If a node

measures its costs in terms of, for example, reputation, it can

hardly ‘‘pay’’ to another node that measures its costs on CPU

units. Hence, in our work, we assume that payments are not

possible.

N Players’ rationality: In Game Theory, most of the existing

algorithms require players to be perfectly rational. This means

that a player, using the available information, should always be

capable of selecting the best strategy (the one that maximizes

her utility). However, this is a controversial hypothesis which is

suffering much criticism. Accepting this assumption means that

players are capable of mathematically calculating all alterna-

tives, which in some cases requires solving complex (NP-hard)

problems. Clearly, this is not always feasible for all players.

Hence, we commit ourselves to proposing mechanisms suitable

for finding quasi-optimal task allocation, even in the presence

of rationally-limited players.

N Incentive to participate: In relation to players rationality, even in

the case in which we are able to find global quasi-optimal task

allocation, it is possible that the behavior of rationally-limited

users may harm the benefit of other players. In this direction,

we add a stronger requirement. We force to ensure an

incentive to participate in the game to all nodes, independently

of whether they are rational or not.

N No central entity: A final requirement we impose is the capability

of the system to work without the existence of any kind of

central entity. This means that the proposed mechanisms must

be susceptible of being implemented following completely

distributed schemes.

1.3 Structure
The rest of the paper is structured as follows. First we provide a

formal definition of the problem and define basic terminology.

Then, we present a basic linking mechanism, and evaluate the

issues that need to be faced to make it suitable for our problem.

Next, we present the QPQ mechanism, and formally prove its

properties. Finally, we describe how QPQ could be used in real

environments and present some conclusions.

Analysis

2.1 Definitions
To establish a formal framework for the problem, let us provide

some definitions.

Definition 1 (Problem). The problem of the assignment of

tasks is a tuple ST ,N,CT where:

1. T~ft1,t2, . . .g is the (not necessarily finite) set of tasks that are

issued to the system over time (tk is the task issued at time step

k). We assume tasks to be atomic, independent, and of fixed

duration. (For simplicity, we will assume the durationit equals

i.e, each task takes one time step to be executed.)

2. N~f1,2, . . . ,ng is an ordered list of nodes or players, where N

is assumed to be finite,

3. (C(t))i[N is a vector of costs (or utilities) where Ci(t) is the cost

of executing task t[T by node i. This information is private

(only known by node i).

It is important to remark some aspects of the above definitions.

First, we assume that the set of tasks is not known beforehand.

Tasks appear one by one in a sequence of time steps, which drives

our discrete time evolution. Hence, the arrival of a new task

dictates the start of new a round of our repeated game. We assume

that tasks are independent among them and that the execution of a

task does not influence the cost of the subsequent ones. Moreover,

we force that one task must be completely executed by the time the

next task is issued. For simplicity, we assume that the mechanisms

take negligible time to coordinate the allocation of the tasksto

coordinate the allocation of the tasks take negligible time (with

respect to the time step). Finally, we assume that every node that is

assigned a task by the allocation mechanism actually executes the

task.

Hence, as tasks are issued, each node i[N estimates a sequence

of costs Ci(t1),Ci(t2), . . . ,Ci(tk), . . ., which we assume as inde-

pendent samples of a probability distribution si[D(Si) character-

izing node i’s behavior. In this context, we denote Si as the

distribution support (i.e., the range of values for which the

probability is different than zero) and D(Si) as the set of all possible

probability distributions over Si. From now on, we will consider

that Ci is a real-valued random variable. To simplify the notation,

we define realizations of this random variable as ci(t)~Ci(t), t[T .

When clear from the context, we may remove the task t from the

notation ci(t), as ci.

Given that all players enjoy the result of any task executed in the

system, we can define the utility of a player as the savings obtained

by not executing some tasks (i.e. the benefit obtained from

participating in the cooperative computing scheme and not

making all the work by itself). That is, the utility ui(t) of node i

corresponding to a given task t is given by

ui(t)~
0 if node i executes the task,

ci(t) otherwise,

�
ð1Þ

and the total utility of node i is ui~
P

t[T ui(t). Note that, in

Game Theory it is common to add a discount factor (d) in time.

We have assumed it to be equal to d~1.

We define Ui as the random variable associated to the total

utility of node i. In a similar way, we denote by Wi the real-valued

random variable associated to the actual player i’s executed cost

and by wi(t) its concrete realization for task t. Note that each task

is either executed or not by a particular player. Hence,

E½Ci�~E½UizWi�~E½Ui�zE½Wi�: ð2Þ

Finally, we assume that communication between players is

reliable and concurrent. In particular, in the mechanisms we propose

all players exchange their values ci(t). We assume that these values

are correctly received by the players in a time that is negligible

with respect to the time step (hence the reliability property).

Additionally, we assume that each player sends its value before

receiving the value of any of the other players (hence the

concurrency property).

Quid Pro Quo: Mechanism for Fair Collaboration
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2.2 Basic Linking Mechanism
As mentioned above, a linking mechanism is applicable to

repeated games where the decision (also knownknow as message)

of players is restricted to a particular known set. In our problem,

the decision is the cost ci(t) of the task. With this concept in mind,

let us define our first algorithmic attempt to solve the problem by

applying a linking mechanism, presented in Algorithm at table 1.

As it can be observed, for each task, each player estimates the

cost of computing the task and publishes it. Publication means

broadcasting a message with the cost to all players (although any

other means of distribution, like shared memory, can be used). By

assumption, a player send its costs before it receives any of the

others (concurrency, which implies that coststhey do not depend

on each other), and all of the costs are correctly received at each

player (reliability). Then, the algorithm assigns the task to the

player that publishes the lowest cost. If players publish their real

costs, this will produce that the total utility is maximized.

However, this kind of approach could drive selfish users to publish

fake costs in order to avoid executing tasks. For this reason, we add

an acceptance test. When a published cost is not considered

acceptable, then the system generates a random value for the cost

of that node on the round. The implementation of this acceptance

test will be discussed later, however it is important to remark that it

contains the linking part of the mechanism (it depends on the

historical values published by that particular node). Just as an

example, we can imagine that if we force that nodes must publish

costs between 0 and 1 following a uniform distribution, then we

could consider unacceptable values deviating from that distribu-

tion. It is also important to note that all nodes use the same

acceptance test with the same history. Then, they all accept or

reject. Then, if players reject a value cj , the value Random(c{j)

generated is in fact a value deterministically generated from the set

of values c{j~|k=jfckg, so that all players re-generate the same

value for j.

Algorithm at table 1 has the objective of providing intuition on

how we build our mechanism, but it clearly has several issues that

contradict our previously stated requirements. In particular, fair

allocation is not guaranteed. For instance, there is not a way of

defining a notion of fairness within this algorithm, given that costs

may have different meanings for different players. Additionally,

given that costs are abstract notions, we cannot have any a-priori

information on the shape of their corresponding distributions. So,

it is not clear how to implement the acceptance test.

Digging into these problems, it is easy to understand that one of

their causes is the fact that, given our requirements, each player

has the right of measuring her costs on her preferred metric.

(Hence, each player may have different distributions with different

support.) For this reason, cost comparisons cannot be easily made.

Additionally, there is a second aspect that must be addressed. In

the literature about linking mechanisms, authors assume that

instances of the game (rounds) are simultaneous in time. In this

case, defining the acceptance function over the set of values is

easier. However, in our case, tasks are issued (,and hence players

generate their costs), over time. Then, from the point of view of the

designer, it is not clear how to determine the acceptance of a value

by comparing with a certain probability distribution. The issue is

even worse given the fact that this distribution is not known by the

designer. To solve all these problems we propose a novel solution

based on applying a transformation over the utility function.

2.2.1 Utility normalization. Given that the utility is defined

as the work not done by a node, we may use as utility function of a

node its probability distribution of costs. Once this is done, we may

modify Algorithm at table 1 and normalize players’ utilities so that

they may be compared among each other. To normalize we use a

transformation called Probability Integral Transformation (PIT). Our

idea is to use the known fact that any cumulative probability

distribution function has in itself a uniform distribution [19]. More

formally, the PIT is defined as follows

Definition 2 (Probability Integral Transformation) Let X be a

continuous random variable with a Cumulative Distribution

Function (CDF) F ; that is X*F . Then, the Probability Integral

Transformation (PIT) defines a new random variable Y as:

Y~F (X ).
As mentioned above, our interest in the PIT is due to the

following lemma.

Lemma 1 (PIT follows uniform distribution) Let X be a

continuous random variable with CDF F , then F follows a uniform

distribution on interval ½0,1�. That is, the random variable Y defined by the

probability integral transformation Y~F (X ) is a normalized uniform

distribution.

Moreover,Note that X does not need to be a continuous

random variable. In the case that the player’s costs follow a

discrete distribution, it is still possible to perform a similar

transformation called Generalized Distributional Transform [20], whose

properties are equivalent to those of the PIT.

Definition 3 (Generalized Distributional Transform)
Let X be a random variable (not necessarily continuous) with a

cumulative distribution functionprobability F and let V*U(0,1)
be a random variable with uniform distribution in ½0,1�
independent of X . The modified distribution function F (x,l) is defined as

F (x,l)~Pr(Xvx)zlPr(X~x):

From this, we can define the general distributional transform of X
as Y~F (X ,V ), which can be proved to be a uniform distribution

on the unit interval.

Proofs of these properties can be found in [20]. Many studies in

economics use this definition and its properties, such as [21] or

[22]. In our case, to simplify the notation, we just call PIT to both

transformations independently of whether the base distribution is

continuous or discrete.

Coming back to Algorithm at table 1, our idea is to modify it by

applying the PIT on the players’ declared costs. Hence, instead of

Table 1. Simple linking mechanism (code for node i, and a
generic task t, omitted).

1: Estimate and publish the cost ci of the task

2: Wait to receive the costs cj from the other players

3: for all j[N do

4: if not Accepted(cj ,Historicj ) then

5: cj/Random(c{j )

6: end if

7: Historicj/Historicj|fcjg

8: end for

9: d/ argmin
j [ N

cj

10: if d~i then

11: execute the task

12: else

13: do nothing (node d will execute the task)

14: end if

doi:10.1371/journal.pone.0066575.t001

Quid Pro Quo: Mechanism for Fair Collaboration

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e66575



publishing the values from herits real probability distribution, a

player must publish the normalized ones, so that the new

algorithm chooses for running the tasks the player minimizing

the normalized cost values instead of the original costs. Fig. 1

illustrates this process.

Based on these arguments, it is clear that the PIT provides a

mechanism for comparing (normalized) node costs. However, we

may wonder if the proposed transformation is valid, in the sense

that it may not preserve the preferences of the player. To solve this

issue, it suffices to notice that, what we are doing is changing the

space of preferences. Therefore, the PIT somehow means that,

instead of asking the user ‘‘How much does it cost to execute the

task?’’, we inquire for something like ‘‘What percentage of tasks do

you prefer to this one?’’ At the end of the day, and for our

objectives, these questions are requesting the same information,

but the latter is normalized in the interval ½0,1�, which is a great

advantage.

Although from an analytic point of view we assume that players

can compute the PIT perfectly, in a practical set up players do not

need to consider any a priori distribution of probability. They can

simply generate costs using their particular distribution and apply

the PIT using the successive generated samples. This process uses

what in statistics is know as the Empirical Cumulative Distribution

Function (ECDF). We will review this concept later, when we

analyze the practical formulation of QPQ.

2.2.2 Acceptance test. Once we know the properties of the

PIT, it is clear how we can implement the acceptance test for the

linking mechanism. The idea is that any player applying correctly

the PIT on her real cost distribution, must generate a uniform

distribution on the unit interval on her published normalized cost

values. Hence, from the point of view of the mechanism designer,

the problem consists inon determining whether these published

values follow or not that uniform distribution. There are a wide

range of tests that allow checking that. These tests are called

Goodness-of-Fit (GoF) tests.

Continuing with this argument, we propose to implement the

acceptance test of our algorithm by using some GoF test on the

declared transformed sequence of costs published by the player.

Whenever a player is honest and she declares the values by

applying the PIT transformation on her own distribution, these

values will be uniformly distributed in the unit interval. In that

case (with high probability) the GoF tests will accept the samples.

More important, this process has an error which tends to zero

when the number of samples (rounds) increases for any reasonable

value of the threshold. For the study of our analytic results, we

assume that GoF tests are perfect and this error is zero. (We will

review this concept again in our practical implementation of

QPQ.)

2.2.3 Punishment. In the case that a dishonest player tries to

avoid the execution of tasks, one possible strategy is to generate

0

Figure 1. Two different players. At the top, we can see the execution task cost histograms of two different players. Note that they follow different
probability distributions. At the bottom, we depict the Cumulative Distribution Function (CDF) for both. As it can be noticed through the depicted
arrows, the fact that player A has a smallerminor cost than player B (0:3 versus 11) does not mean that player A will be assigned the task. Instead,
when applying the PIT, player B is the one publishing the lowest normalized cost.
doi:10.1371/journal.pone.0066575.g001
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increasing cost values, so that the PIT transformed values are close

to the unit. However, this type of behavior is quickly detected by

the test. An open question is how to establish a punishment to this

and any other player whose GoF test comes out negative. One

possibility is to force the node to execute the task. Unfortunately,

this policy would force fair players to execute tasks in cases of false

negatives.

Another possibility, inspired byon previous works on linking

mechanisms, is to reject the value declared by the player and

generate a new random value according to the normalized

uniform distribution. Additionally, we require that no central

entity existsexist on the system. For these reasons, we propose to

use a deterministic (repeatable) random generator that any of the

remaining nodes can use to calculate the new value. (We deal with

the practical aspects of this approach below.) At a first sight, this

strategy may seem as a very poor punishment, given that there is

always a chance that a player emerges victorious of a lie. However,

later in this paper we will prove that this is not only enough to

discourage dishonest players, but also a crucial ingredient to

guarantee that our mechanism is strategy-proof.

2.3 The Quid Pro Quo Mechanism
After describing the different ingredients of our solution, we are

able to propose the final algorithm, which we call the Quid Pro Quo

(QPQ) mechanism. The details can be observed in Algorithm at

table 2.

Note that we use �cci to denote the PIT-normalized cost to bethe

published, while ci is the actual cost. We also hold in �cci the

pseudorandom value that replaces the value published by i when it

does not pass the acceptance test. (Hopefully context will allow

disambiguation.) It is important to notice that the algorithm is the

same for all participants, and that it is based on information known

by all of them. Therefore, no central entity is required. When a

task is issued, each node can estimate its own cost and publish its

PIT-normalized value. This value is then received by all other

players. When a player has all the values, she checks whether any

player published a dishonest value by applying the GoF test. If the

value does not pass the test, it is regenerated as described above,

by using a pseudorandom generator (that allows all players to

generate the same value) of uniformly distributed values in ½0,1�.
With these reviewed values, the player proceeds to determine if

herits own value is the minimum, in which case it executes the

task, publishing the results to the rest of the nodes if necessary.

In the following sections, we formally study the expected harm

(or reduction of benefit) that dishonest behavior causes on QPQ.

Intuition says that the loss due to a dishonest player should be

comparable to having that player executing tasks at random.

Indeed, we show below that, independently of their behavior,

nodes may never expect a profit of less than the one obtained

through a mechanism in which tasks are randomly assigned. This

property is very useful in case the node is not capable of accurately

evaluating theits costs (it is non-rational).

Another important aspect is that QPQ guarantees a minimum

benefit to the entire system, even if one or more players are non-

rational or rationally limited. In this sense, we will show that the

best strategy for any player is to act as if the rest of the players were

rational and fair. That is, incorrect behaviorbehaviors of some

players does not alter the strategy of correct players. In the next

section, we prove all these claims in a formal way.

2.4 Formal Analysis of QPQ
Our QPQ algorithm is strongly inspired by the work of Jackson

and Sonnenscheinet al. [11,12]. Hence, some of our proofs have

been adapted from the ones provided there. We review now the

most relevant properties of the QPQ mechanism presented in

Algorithm at table 2. Assuming that the number of rounds (tasks) is

large enough, and that the players’ costs are independent to each

other, we prove the following properties.

1. QPQ is optimal in the sense that it minimizes the total work

done when all players are honest.

2. For any player, the rest of the players can be seen as a single

aggregated player. For each task, the aggregated player’s cost is

the smallest of its members’. These costs follow a Beta

distribution.

3. The best strategy of a player is independent of the behavior of

the rest.

4. The strategy that optimizes the utility of a player is being

honest. In Game Theorygame theory terminology, this means

that QPQ is strategy-proof.

5. Each player always obtains a positive expected utility, which is

determined by the number of players.

6. An irrational or rationally-limited player always obtains a

positive profit.

7. The system is fair in the allocation of tasks and in normalized

effort. That is, all the players will run the same number of tasks

and perform a similar normalized effort (in expectation).

8. When the number of player is high enough, QPQ ensures very

attractive performance.

To address the mathematical analysis of the algorithm we will

assume that the PIT and GoF steps are perfect. In fact, with a

large number of samples, these processes have errors close to zero.

Another aspect that will simplify our analysis, is the idea of

aggregated player. We evaluate the performance of a node playing

against a ‘‘fictitious’’ node that aggregates the responses of all the

other nodes. This aggregated player behaves by publishing at each

round the minimum of all the normalized costs of the players in

the aggregation. This approach is compatible with all the

assumptions of the model and is helpful because it significantly

simplifies the analysis.

Table 2. Quid Pro Quo mechanism (code for node i, and a
generic task t, omitted).

1: Estimate the cost ci of the task

2: Publish the normalized cost �cci~PIT(ci)

3: Wait to receive the normalized costs �ccj from the other players

4: For all j[N do

5: if not GoF Test �ccj ,Historicj

� �
then

6: �ccj/Random(�cc{j )

7: end if

8: Historicj/Historicj|f�ccjg

9: end for

10: Let d~ argmin
j [ N

�ccj

11: if d~i then

12: execute the task

13: else

14: do nothing (node d will execute the task)

15: end if

doi:10.1371/journal.pone.0066575.t002
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To make our notation clear,clearer, given a task, we use x to

denote the true normalized cost of player i for that task, while X

(or Xi) is the random variable for that value. When executing

QPQ, players may publish the true value x or ax~�cci or another

false value. When convenient,In that case, we use z to denote that

dishonest value ĉci and also, overloading the notation, the re-

generated random value replacing it when the GoF test fails. We

assume that the z values are realizations of some random variable

Z. Given a task with cost ci, the player obtains a normalized utility

�uui~�cci when she does not execute the task (independently on what

she published) and makes a normalized work of �wwi~�cci when she

executes the task (where �WWi denotes the random variable).

Additionally, we use y to denote the value min �cc{i published by

an aggregated player. Following mechanism design notation, we

say that the (social) decision function d of QPQ is

d~ argmin
i [ N

�cci:

Then, we define Pr½d~i� as the probability that player i declares

the minimum value and executes the task. When working with the

aggregated player, Y is a vector of random variables, and we use

Pr½Yƒy� to denote the probability that at least one element of Y ,

say j, validates Yjƒy.

With this notation in mind, we can prove that, for any player i,

the expectation of the declared costs is equal to the expected utility

plus the expected work. Additionally, this quantity is a constant.

I.e.,

E½�CCi�~E½ �UUiz �WWi�~E½ �UUi�zE½ �WWi�~
ð 1

0

�ccid �cci~
1

2
: ð3Þ

This means that a player maximizes her utility when she

minimizes her work, and vice-versa. In the following propositions,

we will use this fact.

2.4.1 Players’ normalized costs distributions. We argue

here that all players’ normalized costs follow an independent

uniform distribution on ½0,1�. When players are honest, their

reportedreport values follow a uniform distribution on ½0,1�. This

follows from the properties of the PIT transformation introduced

above. On the other hand, when a player is dishonest, it may

change the distribution of its normalized costs trying to obtain

extra benefit. However, we assume that in this case the GoF test

fails. Then, her attempt will be detected, and the value will be

replaced by a pseudorandom value drawn from an independent

uniform distribution on ½0,1�. A final case is that the dishonest

player may generate fake normalized costscost that follow a

uniform distribution on ½0,1�, hence passing the GoF test. In this

case the normalized cost �cci(t) for a task t is independent from the

values �ccj(t) of the other players since, from concurrency, the value

has to be sent before the others are received. Hence, the following

result.

Proposition 2 The set of final normalized costs �ccj considered in Line

10 of Algorithm at table 2 are drawn from independent and identical

distributed (iid) random variables, with uniform distributions on ½0,1�.
2.4.2 Optimality. The QPQ algorithm is optimal in the

sense that, if all players are honest, it minimizes the total

normalized work done, as shown in the following proposition.

Proposition 3 Assume that all players are honest. For a given set T of

tasks, there is no mechanism M such that E½
Pn

i~1
�WW M

i �vE½
Pn

i~1
�WWi�,

where �WW M
i is the random variable associated with the normalized work done

by player i when using mechanism M .

Proof. The proof is straightforward using contradiction. Assum-

ing that such mechanism M existsexist, there must be, at least, one

task for which �wwM
v�ww, however, the social decision function of

QPQ always selects the player publishing the minimum of the

normalized costs, so it is not possible that M is able to select

another player capable of executing with less cost. So, we conclude

that M cannot exist.

2.4.3 Aggregated player. It is assumed that players’

normalized costs have independent uniform distributions on

½0,1�. Hence, the probability density function of each player i is

fi(�cci)~1 on that interval. Thus, the costs of an aggregate player

for n{1 nodes follow a probability distribution Beta(y; 1,n{1) as

shown.

Proposition 4 The costs Y of the aggregated player of n{1 i.i.d.

players (with uniform distribution on ½0,1�) follow a Beta(y; 1,n{1)
distribution, with probability density probability function f (y)~

(n{1)(1{y)(n{2) and CDF F ½y�~Pr½Yƒy�~1{(1{y)n{1.

Proof. Recall that the cost of an aggregated player is the

minimum of the normalized costs of the players in the aggregation.

The CDF F (:) of that cost can be obtained as follows. Let us

assume that the players in the aggregation are 1 to n{1.

F ½y�~Pr½Yƒy�~1{Pr½Ywy� ð4Þ

~1{ P
n{1

j~1
Pr½Yjwy� ð5Þ

~1{

ð1

y

1dQ

� �n{1

ð6Þ

~1{(1{y)n{1 ð7Þ

Where Yj is the random variable associated with the normalized

cost of node j. Hence, the probability densitydensity probability

distribution is

f (y)~(n{1)(1{y)(n{2):

The Beta distribution is defined as follows [23].

Beta(y; 1,n{1)~
1

B(1,n{1)
y1{1(1{y)(n{1){1 ð8Þ

~
(1z(n{1){1)!

((n{1){1)!
(1{y)n{2, ð9Þ

where B(:,:) is the Beta function. Now, it is easy to check that

f (y)~Beta(y; 1,n{1).
2.4.4 Players’ strategies. Every rational player knows that

the rest of players follow uniform and independent distributions.

The question a selfish rational player makes is which is the best

strategy for obtaining the greatest possible benefit. If a player uses

a distribution other than the uniform, her values will be rejected by

the GoF, and will be re-generated from a uniform distribution.

However, a player could lie following a uniform distribution that is

not independent of her actual values. Note that QPQ does not

know about true normalized costs (they are private) and uses for
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the assignment decision the declared value or the random value

assigned by the system if a lie is detected. In both cases, the

aggregated player observes a random variable Z that must follow a

uniform distribution. We show now that either case drives the

player to worse results than her own honest distribution, so that

the player will notthen that player will no have any incentive to

cheat.

Let us first quantify the expected work done by honest players.

Proposition 5 The expected normalized work E½ �WWi� done by an honest

player i is 1
nzn2.

Proof. Recall that we assume that player i is in the system with an

aggregated player of n{1 nodes. Then, Pr½d~i� is the probability

that player i publishes a normalized cost smaller than the one of

the aggregated player.

E½ �WWi�~
ð 1

0

xPr½d~i�dx ð10Þ

~

ð 1

0

x

ð 1

x

(n{1)(1{y)(n{2)dydx ð11Þ

~
1

nzn2
: ð12Þ

Notice that we use the probability distribution of the aggregated

player derived in Proposition 4.

However, publishing dishonest values independent ofon the real

distribution drives to making an amount of normalized work of 1
2n

.

The following proposition proves this statement.

Proposition 6 When a player i publishes dishonest non uniform values

or values independent of her true normalized uniform distribution, it performs in

expectation E½ŴWi�~ 1
2n

work.

Proof. The values z used to decide whether to assign a task to

player i follow a uniform distribution that is independent of the

actual costs for i. Hence,

E½ŴWi�~
ð 1

0

xPr½d~i�dx ð13Þ

~

ð 1

0

x

ð 1

0

ð 1

z

(n{1)(1{y)(n{2)dydzdx ð14Þ

~
1

2n
ð15Þ

From this result, Proposition 5, and Eq. 3, we directly derive the

following corollary.

Corollary 7 Assume a player i publishes dishonest non uniform values or

values independent of her true normalized uniform distribution. Given that

n§2, it holds that E½ �WWi�~ 1
nzn2 v

1
2n

~E½ŴWi�. Hence, since the sum of

the expected work and expected utility is 1
2
, players obtain higher expected

utilities by being honest than by publishing dishonest normalized costs.

In essence, the previous result shows that, unless the player

cheats declaring values z that follow a uniform distribution and

depend on the true values x, the system will randomly assign tasks

to that player. Hence, the player is better off being honest in that

case. However, it is still pending to study the case in which it

follows a more general dishonest strategy, modeled by a bi-variate

probability density function fx,z(x,z) that relates both values x and

z. As mentioned, the marginal distribution for z must be uniform.

The first step is to show that the expected work assigned to the

aggregate player does not depend on this function.

Proposition 8 The total expected normalized work assigned to an

aggregate player j (aggregating n{1 nodes), with costs x~�ccj , does not change

when a player i (not in the aggregation) declares dishonest values z~ĉci.

Proof. Given that fx,z(x,z) has uniform marginal distribution for

z, we have that,

fz(z)~

ð 1

0

fx,z(x,z)dx~1: ð16Þ

Hence, the expected work assigned to by j is

E½ŴWj �~
ð 1

0

yPr½d~j�dy ð17Þ

~

ð 1

0

y(n{1)(1{y)(n{2)

ð 1

0

ð 1

y

fx,z(x,z)dzdxdy ð18Þ

~

ð 1

0

y(n{1)(1{y)(n{2)

ð 1

y

ð 1

0

fx,z(x,z)dxdzdy, ð19Þ

where E½ŴWj � is the expected work assigned todone by the

aggregated player j when player i lies. But, as we have uniform

marginals, from Eq(16) the above expression becomes

E½ŴWj �~
ð 1

0

y(n{1)(1{y)(n{2)

ð 1

y

1dzdy ð20Þ

~

ð 1

0

y(n{1)(1{y)(n{2)(1{y)dy ð21Þ

~

ð 1

0

y(n{1)(1{y)(n{1)dy ð22Þ

~
n{1

nzn2
: ð23Þ

Which is equal to the total work assigned todone by the aggregated

player j when i is honest, that can be computed as follows.

ð 1

0

y(n{1)(1{y)(n{2)

ð 1

y

1dxdy~

ð 1

0

y(n{1)(1{y)(n{1)dy ð24Þ

~
n{1

nzn2
: ð25Þ

%
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In summary, an aggregate player j expects to be assigned the

same amount of work, independently of the behavior of a given

player i not in the aggregation. I.e., its expected work is not

affected by whether i is honest or dishonest. A similar argument

can be used to prove that the same expected work will be assigned

to player i independently of the behavior of the aggregate player j.

Proposition 9 The total expected normalized work assigned to player i,
does not depend on the strategies of the other n{1 players, and therefore on the

perceived strategy of the aggregate player j.

This allows us to prove that the optimal strategy for a player is

to be honest.

Theorem 10 A player i never does more normalized work (in

expectation) by being honest. That is,

E½ �WWi�ƒE½ŴWi�, ð26Þ

where E½ŴWi� is the expected work performed by player i when it is

dishonest.

Proof. For the sake of contradiction, let us suppose this

proposition is false. Hence, there is some set of tasks for which,

if i is not honest, it performs less work in expectation. I.e.,

E½ �WWi�wE½ŴWi�. From Proposition 9, this holds for any strategy of

the aggregate player j, and in particular when all its players are

honest. Hence, we can consider in the rest of the proof that the rest

of n{1 players behave honestly. Additionally, using Proposition 8,

we know that the aggregated player, j, will do the same expected

work, i.e., E½ �WWj �~E½ŴWj �. Now we can define a new mechanism

M that assigns a task to player i (when i is honest and declares x)

with the same probability as QPQ assigns the task to the player i

when she declares a false value z. Then, E½ �WW M
i �~E½ŴWi� and

E½ �WW M
j �~E½ŴWj �. Hence, it follows that

E½ �WWi�zE½ �WWj �wE½ŴWi�zE½ŴWj � ð27Þ

~E½ŴWi�zE½ �WWj � ð28Þ

~E½ �WW M
i �zE½ �WW M

j � ð29Þ

However, in this case QPQ would not be optimal, since

mechanism M a mechanism that reproduces the same task

assignments done under i lying (in presence of honest players)

would have less expected work. Clearly, this is in contradiction of

Proposition 3. Therefore, the best strategy for a player (the one

minimizing her normalized work done) is to be honest. %

2.4.5 Real expected utility. Note that the normalized work

done by ana honest player, as calculated above, is equal to 1
nzn2.

But we may wonder what is the real (not normalized) work done.

We can easily calculate it in terms of real utility as follows.

Theorem 11 For each player i, the real expected utility is

E½Ui�~
ð
V

xfi(x)(1{(1{Fi(x))n{1)dx:

where the real cost of player i is a continuous random variable with support V,

probability density function fi(:), and CDF Fi(:).
Proof. Let Yj~PIT(Xj)~Fj(Xj) be the uniform random

variable that gives the normalized cost for player j=i at the time

of assigning the tasks (Line 10), and Y~ minj=ifYjg. Then, the

expected (real) utility of player i is the following:

E½Ui�~
ð
V

xfi(x)Pr(YƒFi(x))dx

~

ð
V

xfi(x)(1{(1{Fi(x))n{1)dx,

where we have used that Pr½Yƒy�~1{(1{y)n{1 (Proposition

4). %

2.4.6 Fairness. The following result, combined with Propo-

sition 2, will be used to show that all players execute, on

expectation, the same number of tasks, even when some players

are non-rational or dishonest.

Proposition 12 Let X1,X2, . . . ,Xn be n continuous and i.i.d. random

variables, then:

Pr(Xiƒ min
j=i
fXjg)~

1

n
:

Proof.

Pr(Xiƒ min
j=i
fXjg)~

ð?
{?

f (y)

ð?
y

f (x)dx

� �(n{1)

dy

~

ð?
{?

f (y) 1{F (y)ð Þ(n{1)
dy

~

ð?
{?

1{F (y)ð Þ(n{1)
dF (y)

~{
(1{F (y))n

n

� �?
{?

~
1

n

Hence, QPQ not only offers best utility guarantee to honest

rational players, but it also offers good properties in environments

where nodes have difficulty in estimating costs. This is because,

even in environments where the nodes are non-rational, QPQ

divides the work fairly and optimaly with respect to the declared

normalized costs. Clearly, non-rational players run major efforts,

but it is always under completely random task assignments. In

other words, the extra cost of non-rational players is caused by

their own ignorance, not by the wickedness of the other players.

Then, given that players are assigned tasks by choosing the

smallest value from a set of i.i.d. random variables (Proposition 2),

QPQ ensures that the expectation of the number of tasks executed

by each node is DT D=n, where recall that T is the set of tasks and n

the number of players.

Corollary 13 In QPQ, players will execute in expectation a proportion

of 1
n

of the tasks, and thus a total of DT D
n

of tasks.

Proof. Declared values follow continuous and independent

identically distributed (uniform) random variables in ½0,1�, from

Proposition 2, and therefore applying Proposition 12, each player

will execute in expectation a proportion of 1
n

of the tasks.

2.4.7 Bounds. Finally, we think that it could be interesting to

define some ratio that measures the efficiency of the QPQ

mechanism. Following concepts similar to the ‘‘price of anarchy’’

[4], we define the measure of efficiency as the ratio between the

utility of an equilibrium (usually the ‘‘worst equilibrium’’) and the

utility of some optimal solution.
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Obviously, the player’s normalized utility must be between 0,

when the node runs all tasks, and 1
2

when the node has not

executed any task. But there are two levels that may be considered

as references to establish the goodness of the algorithm. On one

side, when a node runs completely random 1
n

tasks, the expected

effort is 1
2n

. On the other hand, the maximum benefit a player i

could get occurs when its tasks correspond exactly to her cheapest

tasks. In this case, the expected utility would be

E½ �UU�i �~
1

2
{E½ �WW �

i � ð30Þ

~
1

2
{

ð 1
n

0

xdx ð31Þ

~
1

2
{

1

2n2
: ð32Þ

Although this case has null probability, we propose to use this

value for our definiton of measure of efficiency.

Definition 4 (Measure of efficiency) We define the measure of

efficiency of an algorithm M for tasks assignment under selfish

behavior as the ratio between the expected normalized utility

obtained under some equilibrium and E½ �UU�i �~ 1
2
{ 1

2n2 ~ n2{1
2n2 .

I.e.,

Efficiency~
E½ �UUM �
E½ �UU�i �

~
2n2E½ �UUM �

n2{1
:

Hence, we can compute the efficiency of QPQ as

Efficiency~
2n2( 1

2
{ 1

nzn2 )

n2{1
~

n2{( 2n
nz1

)

n2{1
w

n2{2

n2{1
:

Note that the efficiency of QPQ is close to 1 when the number of

participants is high. For instance, with just 10 nodes the efficiency

of QPQ is 0:991.

Experiments

3.1 Implementing QPQ in Rreal Eenvironments
In this section, our objective is analyzing what are the

restrictions for QPQ to be implemented in real environments.

From the above sections, we may claim that the computation and

communication capabilities required by the algorithm are

affordable with current technology. We do not claim that

implementing such capabilities would be an easy task, since there

are many technological challenges that should be addressed to do

it. Other previous works solve some of them [24]. Thus, our only

claim is that it would be feasible.

However, going beyond the required communication and

computation capabilities, we may see that a number of issues

arise. The first of all is on the definition of selfishness itself. This

paper is mainly focused on detecting and neutralizing users

publishing values not coming from the PIT of their real costs.

However, one can claim that other non-cooperative harmful

behaviors are possible such as, for example, not executing tasks at

all, or executing them incorrectly. Hopefully, most of these evil

conducts can be easily avoided using a two step scheme. First, by

detecting such behaviors (previous works on the area show that it is

possible [25,26]). Second, by establishing a strong enough

punishment to discourage misbehaving players from repeating

them. For example, we may adopt the radical solution of just

sending off misbehaving users. In order to guarantee that

reoffending players do not participate again, all that is needed is

that user identities are unique and cannot change on different

game instances. Note that QPQ does not discard misbehaving

users, because it assumes that the publication of dishonest values

cannot be distinguished from the publication of values generated

from rationally-limited players, and it would not be reasonable to

send off the latter from the game given that, in a realistic scenario,

all players would have some rationally limitations (i.e. it is not

possible to estimate costs with total accuracy). Hence, QPQ’s

approach of keeping them in the system is one of the most difficult

ways of dealing with selfish users.

Coming back to the subtleties of QPQ, another point to

consider is how to re-generate the random value when the system

detects a lie. As we said before, we require a deterministic

(repeatable) random generator that any of the remaining nodes

can use to calculate the new value. One possibility for generating

the random value is to use a hash function over the published

normalized cost of other nodes. Alternatively, it is possible to

request a random value to each player (except the value of player

in question) and apply the hash function on them. Even another

possibility is to use techniques similar to the procedures proposed

by Aumann et al. [27] to generate jointly controlled lotteries. For

example, for two players, we can request random values to both of

them, and replace the value of the liar’s by the sum of these

numbers, if the sum is less than 1, or with the sum minus oneone

minus the sum otherwise. With this scheme, it is easy to show that

when one of the players declares random values according to a

uniform distribution, then this process generates random values

also uniformly over ½0,1�, regardless of what the other player does.

As a conclusion, we may claim that there are several mechanisms

suitable for the generation of the punishment random value

independently on the behavior of a dishonest player.

Another obstacle that stands inon the way of a potential

implementation of the mechanism is the acceptance test. We have

assumed that we have a perfect GoF test function. This is

somewhat similar to assuming that we have a set of samples whose

number is very large (ideally infinite) for detecting lies with the

usual tests. In a real system, this solution is impractical since nodes

would require to store all the historical values of the rest of players,

and initially the number of samples is necessarily limited. As

mentioned before, we propose that players simply generate costs

using their particular distribution and apply the PIT using the

successive generated samples. The CDF used for the PIT is

synthesized from the existing samples yi. This CDF obtained from

samples is known in statistics as the Empirical Cumulative

Distribution Function (ECDF).

Definition 5 (Empirical Cumulative Distribution Function)

The empirical cumulative distribution function (ECDF) Fn for n

observations yi is defined as

Fn(x)~
1

n

Xn

i~1

1fyiƒxg,

where 1fAg is the indicator function or the characteristic function

of event A. In our case, it is defined as
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1fyiƒxg~
1 if yiƒx,

0 otherwise:

�

Obviously, this process has an error which tends to zero when

the number of samples (rounds) increases as, by the it is proved by

Glivenko-Cantelli theorem [28].

Regarding the GoF used, a tremendous number of GoF tests

have been proposed in the scientific literature. Some of them may

be applied over discrete distributions and others require contin-

uous distributions. The Kolmogorov-Smirnov (KS) test [29,30] is

probably the best-known test for continuous distributions, basically

due to its simplicity. The KS test calculates the greatest distance

between the ECDF associated to a sequence of samples and the

CDF we want to check. It may be defined by the following

expression:

D~ max
1ƒiƒn

F (xi){
i{1

n
,

i

n
{F (xi)

� 	

where F (:) is the CDF to check, n is the number samples, and

(x1,x2, � � � ,xn) is the set of samples arranged in increasing order.

What makes the KS test so versatile is that the distribution of the

distance D does not depend on the theoretical probability

distribution (null hypothesis). Several authors, such as Smirnov

[30], Birnbaum and Tingey [31], have obtained exact and

approximate expressions of the distribution of the variable D as a

random function of the number of available samples. Due the

complexity of such expressions, the KS test is often used through

tables containing the most common percentiles.

We propose to use the KS test as the GoF test of QPQ. Hence,

whenever a new normalized cost is issued, we check the KS test of

it, together with the historical sequence of that player, so that we

obtain the corresponding (p-value). Note that, in statistical

significance testing, the p-value is the probability of obtaining a

particular test statistic on the model at least as extreme as the one

that was actually observed. Now, the value is accepted by the test

when that p-value is over a particular acceptance threshold, p{th.

For practical reasons, we need to reduce the history of a user to

a relatively small number of samples. Hence, we propose a slight

modification to the acceptance test of Algorithm at table 2 to make

it implementable in real systems. With this modification, each

node applies the KS test using only a small number of the latest

published values. However, this makes the KS test susceptible of

Figure 2. Shape of the threshold curve. This picture depicts the curves of our elastic p-value thresholds as function of the normalized utility of a
player. When we have a small number of rounds (blue line for 10 rounds) our system is quite tough, but if the number of rounds increases (yellow line
correspond to 100 rounds and green line is for 500 rounds), our proposal is more relaxed, and accepts values if the player’s utility is within a
reasonable range.
doi:10.1371/journal.pone.0066575.g002

Table 3. Implementable Quid Pro Quo mechanism (code for
node i, and a generic task t, omitted).

1: Estimate the cost ci of the task

2: Publish the normalized cost �cci~PIT(ci)

3: Wait to receive the normalized costs �ccj from the other players

4: for all j[N do

5: Let p{thj/ 1

log(kz1)
d(1{(mj,k {m)

: ffiffi
k
p

)

6: if not KSTest(�ccj ,Historicj ,p{thj) then

7: cj/Random(c{j )

8: end if

9: Historicj/Historicj|f�ccjg

10: end for

11: Let d~ argmin
j [ N

�ccj

12: if d~i then

13: execute the task

14: else

15: do nothing (node d will execute the task)

16: end if

17: for all j[N do

18: recompute mj,kz1

19: end for

doi:10.1371/journal.pone.0066575.t003
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generating inaccurate estimations. For example, a selfish node

could publish values following a Beta distribution (1,0:9). With

high probability, this situation could not be detected with sample

sequences of small length. In addition toof choosing a large

enough sample size (our simulations show that 50 samples are

enough), we play with the threshold to refine the test. The idea is

to modify the acceptance threshold so that it is hardened when the

actual normalized utility of the player is higher than the theoretical

expectation, and it is relaxed when players are losing more than

expected. There are many ways of implementing this idea, but we

propose the following expression

p{thk~
1

log(kz1)d:(1{(mk{m):
ffiffi
k
p

)
, ð33Þ

where d is a tuning parameter, m is the expected normalized utility

of each playerall players and mk is the actual normalized utility of

the player at round k. To illustrate this idea we depict Fig. 2,

which represents the value of this threshold as a function of the

total normalized utility of the player. Clearly, the above formula is

entirely empirical, although the simulations below in this paper

show that it fits well our requirements. The intuition behind

Equation (33) is that, in the initial rounds, a high number of values

are rejected by the GOF test, and thus the assignment of tasks uses

mostly randomly generated values. This property has two nice

features. Firstly, it allows to collect samples to be used in the

statistical tests without allowing the players to take advantage of a

period of incomplete knowledge. Secondly, it implements the One

of the reasons that has led to the development of this proposal has

been the idea that a new player must ‘‘pay’’ some kind of ‘‘fee’’

when she enters into the system. In this way, we want to avoid, or

at least reduce, the problem of low-cost identities or cheap

pseudonyms. With our proposal, at the beginning QPQ assigns

tasks almost randomly, while later, when we have more

information about players, QPQ assigns tasks optimally. Each

player has to ‘‘pay’’ at the beginning working in random

assignments and thus, she has no incentive to exit and reenter

into the system.

The final implementable QPQ algorithm we propose may be

written as presented in Algorithm at table 3.

3.2 Simulations
By performing simulations, we have checked various aspects of

the implementable QPQ. First of all, we wondered if the new GoF

test may punish fair players by generating false negatives. In this

direction, Fig. 3 represents the boxplot of the expectation of the

normalized work done in 100 rounds when all players are honest

and no GoF test is applied. This picture serves as control, and

allows us to compare it with the same game bybut introducing the

GoF test of Algorithm at table 3, using a history of 50 samples for

the KS test and d~2. The results are depicted in Fig. 4. As it can

Figure 3. Two honest players with no control (100 rounds).
doi:10.1371/journal.pone.0066575.g003
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be seen, the performance loss caused by false negatives is minimal

and barely noticeable in these scenarios.

The next question is to which extend selfish users can fool the

algorithm and achieve improvements in their utility. We have

simulated dishonest behavior by using several distributions close to

the uniform but with higher mean by taking advantage of the

properties of the Beta function. T, so that these distributions try to

pass the implementable KS test and, at the same time, obtain some

profit inon the long run. Again, we have run simulations

considering a game with two nodes, one honest (uniform) and

one dishonest, for a set of 1,000 rounds, with historical lengh of 50
samples for the implementable KS test and with d~2. The results

can be seen in Table 4, which depicts the normalized player

utilities for different scenarios. In the table, the name Uniform

represents honest nodes, Random is used for non-rational players

generating random costs and finally, ‘‘Beta’’ and ‘‘Normal’’ are used

for dishonest players following those distributions. As it can be

observed, honest utilities remain quite constant, while non-rational

and dishonest utilities decrease, although never under a given

limit. Interestingly, note that this behavior is maintained even in

the extreme case of a Beta(1,0:9) distribution. Observe that, when

the number of samples is small (around 50), a Beta(1,0:9) is so

similar to a uniform distribution that it is hardly distinguishable to

the eye.

Finally, for the same simulation scenario, in Fig. 5 we compare

the behavior of the implementable KS test of Algorithm at table 3

for fair (uniform) users playing against a node with several

manipulative profiles (Beta distribution variants) as the number of

rounds increase. As it can be observed, the honest player rapidly

gets her values to pass the test, while the dishonest gets into trouble

rapidly because her values are rejected, even with distributions

very similar to the uniform.

Conclusions

Throughout this paper, we have presented QPQ, an algorithm

for optimal allocation and execution of tasks in a distributed

environment with selfish behavior. Unlike many of the preexisting

works, this algorithm proposes a mechanism that does not use

Figure 4. Two honest players with KS control (100 rounds).
doi:10.1371/journal.pone.0066575.g004

Table 4. Honest vs. dishonest utility/cost.

Distributions �UU1
�UU2

Uniform vs. Uniform 0.332 0.332

Uniform vs. Random 0.331 0.250

Uniform vs. Beta(1, 0.9) 0.321 0.258

Uniform vs. Beta(1, 0.7) 0.315 0.264

Uniform vs. Normal 0.352 0.250

doi:10.1371/journal.pone.0066575.t004
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payment or prior information on the behavior of the players. We

have demonstrated that the algorithm is tolerant to dishonest, non

rational or rationally limited behaviors without punishing fair users

and rewarding players proportionally to their degree of truthful-

ness. The proposed algorithm may be adapted using reasonable

approximations so that it can be implemented in real networks

with affordable computational and communication complexity.

For all these reasons, we claim that this algorithm opens new

horizons for the creation of novel computing frameworks where

users can openly and effectively cooperate to achieve a common

goal, based on the collaborative execution of simple atomic

independent tasks.

Despite this, the authors consider necessary to carry out further

research to make QPQ robust to more sophisticated selfishness

scenarios. For example, it would be necessary to consider cases in

which players are not independent, and associate in groups trying

to break the system’s fairness. QPQ can be also made more robust

by tolerating the unreliability of players or the communication

between them. Observe that this can be modeled as a random

process or as a possible strategy of the players. Another aspect that

should be extended is related to the notion of task utility. We have

assumed that all nodes have an interest in having all tasks done.

However, in a real environment, it is possible that only a subset of

tasks are relevant for a given node. Hence, further work should be

developed to relax some of the QPQ hypotheses, and deal with

this aspect. To conclude, another aspect that may be improved is

investigating GoF tests other than the KS to analyze if they can

provide advantages for real implementations of the algorithm (for

instance, using just a smaller set of samples to implement the

acceptance test).
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