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Abstract

Globoid-cell Leukodystrophy (GLD; Krabbe’s disease) is a rapidly progressing inherited demyelinating disease caused by a
deficiency of the lysosomal enzyme Galactosylceramidase (GALC). Deficiency of GALC leads to altered catabolism of
galactosylceramide and the cytotoxic lipid, galactosylsphingosine (psychosine). This leads to a rapidly progressive fatal
disease with spasticity, cognitive disability and seizures. The murine model of GLD (Twitcher; GALC2/2) lacks the same
enzyme and has similar clinical features. The deficiency of GALC leads to oligodendrocyte death, profound
neuroinflammation, and the influx of activated macrophages into the CNS. We showed previously that keratinocyte
chemoattractant factor (KC) is highly elevated in the CNS of untreated Twitcher mice and significantly decreases after
receiving a relatively effective therapy (bone marrow transplantation combined with gene therapy). The action of KC is
mediated through the CXCR2 receptor and is a potent chemoattractant for macrophages and microglia. KC is also involved
in oligodendrocyte migration and proliferation. Based on the commonalities between the disease presentation and the
functions of KC, we hypothesized that KC and/or CXCR2 contribute to the pathogenesis of GLD. Interestingly, the course of
the disease is not significantly altered in KC- or CXCR2-deficient Twitcher mice. There is also no alteration in inflammation or
demyelination patterns in these mice. Furthermore, transplantation of CXCR2-deficient bone marrow does not alter the
progression of the disease as it does in other models of demyelination. This study highlights the role of multiple redundant
cytokines and growth factors in the pathogenesis of GLD.
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Introduction

Globoid-cell leukodystrophy (GLD, Krabbe’s disease) is a

rapidly progressive demyelinating disease with an autosomal

recessive inheritance [1]. The disease is caused by a deficiency

of the lysosomal enzyme galactosylceramidase (GALC). In the

absence of GALC activity, the cytotoxic sphingolipid, galactosyl-

sphingosine (psychosine) accumulates in the central (CNS) and

peripheral nervous systems (PNS) [2]. Oligodendrocytes are

particularly susceptible to elevated levels of psychosine [3–5].

Oligodendrocyte dysfunction and subsequent death are prominent

features of GLD [3,6]. The murine model of GLD (the Twitcher

mouse) is deficient in GALC activity and shares many of the

biochemical and histological features of the human disease [7].

Hence, the Twitcher mouse has been widely used to better

understand the underlying pathogenesis and develop effective

therapies for GLD.

CNS inflammation is a prominent histopathologic feature of

GLD and is characterized by the presence of globoid cells

(macrophages with engulfed myelin debris) and activated astro-

cytes in the CNS [8–10]. There is also an increase in pro-

inflammatory cytokines and chemokines as well as an increase of

T-cells and B-cells in the CNS of these animals [11–13]. It appears

that inflammation could be a disease-altering target when

considering treatment for GLD. Deletion of MHC Ia has been

shown to alter the course of the disease in the Twitcher mouse

[14]. Bone marrow transplantation (BMT) is one of the currently

used treatments for the disease. It has been shown that BMT alone

or in combination with gene therapy is associated with reduced

CNS inflammation [9,10]. There is also an associated reduction in

pro-inflammatory cytokines and chemokines that correlate with

the efficacy of therapy [10,15,16].

We show here that Keratinocyte Chemoattractant factor (KC) is

greatly elevated in the brain and spinal cord of Twitcher mice. We

also showed previously that the levels of KC decrease in response

to a relatively effective therapy [10]. Keratinocyte chemoattractant

factor belongs to the CXC family of chemokines and is a potent

macrophage and neutrophil chemoattractant [17–19]. Keratino-

cyte chemoattractant signaling through its receptor, CXCR2,

synergizes with another oligodendrocyte mitogen, platelet derived

growth factor (PDGF) to cause oligodendrocyte precursor cell

(OPC) proliferation, but can also act independently to cause
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migration arrest [20]. Since oligodendrocyte death and dysfunc-

tion as well as inflammation are observed in the CNS of Twitcher

mice, we investigated the role of KC and its receptor CXCR2 in

the two inter-related aspects of the disease. Our experiments

demonstrate that global deficiency of KC or CXCR2 does not

significantly influence the progression of GLD in the Twitcher

mouse. We also demonstrate that the lack of KC or the lack of

signaling through the CXCR2 receptor on donor hematopoietic-

derived cells does not affect the disease progression in a bone

marrow transplant setting. Interestingly, we found that there are

several other cytokines and growth factors that are upregulated in

the Twitcher CNS (e.g. MIP-2, PDGF-BB and FGF-2). Since

some of these growth factors and cytokines have redundant

functions in CNS inflammation, demyelination, and remyelina-

tion, it is possible that they fully compensate for the lack of KC

and CXCR2. This study defines the role of KC and CXCR2 in

the progression of inflammation in the Twitcher mouse and

highlights the redundancy inherent in the cytokine/chemokine

system.

Materials and Methods

Animal Procedures
Heterozygous (GALC +/2) mice and mice expressing GFP

under the control of the pCAGGS promoter (GFP mice) were

obtained from The Jackson Laboratory (Bar Harbor, ME) and

maintained under the supervision of M.S.S. at Washington

University School of Medicine. Heterozygous CXCR2 mice

(CXCR2+/2) on the C57Bl/6J background were a kind gift from

Dr. Ann Richmond (Vanderbilt University, Nashville, TN).

Heterozygous KC mice (KC+/2) on the C57Bl/6J background

were a kind gift from Dr. Sergio Lira (Mount Sinai School of

Medicine, New York, NY). All the mice used in this study (KC2/2,

Figure 1. Cytokine and chemokine levels in the CNS of Twitcher mice. The fold-elevation of various cytokines/chemokines in the brain is
shown. Among all the assayed molecules, the chemokine KC showed the greatest fold change in the brains (.15-fold increase) of the Twitcher mice
(A). The levels of KC in the brains (B) and the spinal cords (C) of the Twitcher mice showed a progressive increase with time. The vertical bars
represent the means and the error bars represent one SEM; **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0064647.g001
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CXCR22/2, GALC2/2 and GFP transgenic mice) were

congenic on the C57Bl/6J background.

The mice were housed under standard conditions in a

pathogen-free facility with ad libitum access to food and water.

The Twitcher mice (GALC2/2) were obtained by heterozygous

matings between GALC+/2 mice. The breeding strategy that was

used in order to generate the other experimental animals was as

follows: Homozygous KC2/2 mice were bred with heterozygous

Twitcher (GALC+/2) mice. Progeny were screened for double

heterozygotes (KC+/2GALC+/2). The double heterozygote

mice (KC+/2GALC+/2) mice were bred to obtain KC2/

2GALC+/2 mice. Experimental animals (KC2/2GALC2/2)

were generated by crossing the KC2/2 GALC+/2 mice with

mice of the same genotype. Within the same colony, KC+/

+GALC+/2 animals were used as breeders to obtain KC+/

+GALC2/2 animals. In order to obtain CXCR22/2GALC2/

2 mice, a similar strategy was used, except that the experimental

animals were generated by breeding CXCR2+/2GALC+/2

male and female, or CXCR2+/2GALC+/2 female with

CXCR22/2GALC+/2 male. The CXCR2-deficient mice were

maintained on antibiotic water (Trimethoprim/Sulphamethoxa-

zole) as they are known to be susceptible to infections.

To generate Twitcher-GFP mice, GFP transgenic mice (GFP+)

were bred with GALC+/2 mice. The bone marrow donors were

generated by crossing GALC+/2 GFP+ or GALC+/+GFP+
mice. To generate CXCR22/2GFP+ mice, the CXCR2+/2

mice were bred with GFP+ mice. The CXCR2+/2GFP+ mice

were bred to generate CXCR22/2GFP+ mice. These mice were

maintained as separate colonies and were used as donors for bone

marrow transplantation.

Genotyping
PCR for GALC was done using the protocol described

previously [21]. The following primers were used for genotyping

KC [17]: 59- GAA GAC AGA CTG CTC TGA TGG CAC -39

and 59-CCC TTC TAC TAG CAC AGT GGT TGA-39. The

following primers were used for genotyping CXCR2 [18]: 59-CCT

CGT ACT GCG TAT CCT GCC TCA G-39 and 59-TAG CCA

TGA TCT TGA GAA GTC CAT G-39. The lack of KC or

CXCR2 was confirmed by the presence of NeoR cassette in the

same PCR reaction. The NeoR primers used were: 59-GGA TTG

CAC GCA GGT TCT-39 and 59-GGA CAG GTC GGT CTT

GAC AAA-39. Homozygous deletion of KC protein was

confirmed in two PCR-identified founder mice through Bio-plex

kit (Bio-Rad laboratories, Hercules, CA). Homozygous deletion of

the CXCR2 receptor was confirmed by flow cytometry of bone

marrow from two PCR-identified CXCR22/2 mice using anti-

mouse CXCR2-APC antibody (R & D systems, Minneapolis,

MN). GFP phenotype was determined using an ultraviolet lamp

held on the ventral surface of the newborn mice to detect

fluorescence under the skin.

Figure 2. Flow cytometric characterization of inflammatory cells in the KC2/2GALC2/2 brains. The upper row of Panel A contains
representative bivariate contour plots showing CD8 and CD4 T-cells at day 36 in various groups of mice. The lower row in panel A contain
representative bivariate contour plots showing activated microglia (CD45hi CD11b+, upper right quadrant) isolated from the brain at 36 days of age.
There is no significant increase in CD8+ T-cells in KC2/2GALC+/+, KC+/+GALC2/2 or KC2/2GALC2/2 mice compared to the KC+/+GALC+/+ mice
(B). There is no significant difference in the CD4+ T-cells in the brains of the KC2/2GALC2/2 and KC+/+GALC2/2 mice compared to the KC+/
+GALC+/+ mice (C). There is no significant difference between the KC+/+GALC2/2 mice and KC2/2GALC2/2 mice in the number of activated
microglia (D).
doi:10.1371/journal.pone.0064647.g002
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Bone Marrow Transplantation
Animals were genotyped by PCR on postnatal day 9 using

previously published protocols [17,18,21]. Nine-day-old mice

received 900 rads of total body c-radiation from a 137Cs source

for conditioning followed by intraperitoneal injection of 3–

46107 GFP(+), unfractionated bone marrow cells approximately

24 hours after irradiation [22]. Post-transplantation antibiotics

included trimethoprim/sulfamethoxazole added to the water.

Bone marrow donors were sex-matched GALC+/+CXCR2+/+,

GALC +/+CXCR22/2, or GALC2/2CXCR2+/+ mice, all

expressing GFP under the CAGGS promoter [23].

Flow Cytometry
Flow cytometry was used to quantify the hematopoietic-derived

cells in the CNS and measure bone-marrow chimerism with

donor-derived GFP+ cells after transplantation. For quantifying

the hematopoietic-derived cells in the CNS, perfused mice brains

were homogenized with collagenase/DNase buffer and passed

through a 70 mm strainer [24,25]. Collagenase/DNase buffer was

made using 50 mg/ml collagenase D stock, 100 ug/ml TLCK

trypsin inhibitor stock (Sigma, St. Louis, MO), DNase I 1 mg/ml

stock, 1 M Hepes, pH 7.4 and Hank’s buffered salt solution.

Collagenase D stock was made by dissolving 100 mg collagenase

in 2 ml of TESCA buffer (50 mM TES, 0.36 mM Calcium

chloride, pH7.4 at 37uC). DNase stock was made by dissolving

bovine pancreatic DNAase (Sigma, St. Louis, MO) in 0.15 M

NaCl.

The hematopoietic-derived cells were isolated from the

homogenate by separation on a percoll gradient. Total number

of cells isolated were estimated by sampling 20 ml of cells and

counting them using a hemocytometer. The cells were stained with

fluorophore-conjugated antibodies after Fc receptor block (BD

biosciences, San Jose, CA). The following cells were identified and

quantified by flow cytometry: activated microglia/macrophages

(CD45hi CD11b+), resting microglia (CD45lo CD11b+), CD8+ T-

cells, CD4+ T-cells [26,27] and Neutrophils (Gr1hi F4/80–) [28].

The data was acquired on a FACSCalibur flow cytometer (BD

biosciences, San Jose, CA) using Cell Quest software (BD

biosciences, San Jose, CA) and analyzed using FloJo software

(Tree Star, Inc., Ashland, OR). Individual cell counts were

obtained by multiplying the percentages of the various cell

populations obtained by flow cytometry with the total cell counts.

A total number of 3–6 mice per group were used for analysis.

Spleen and bone marrow cells were used for positive controls. For

quantifying donor engraftment, bone marrow was harvested from

the femur and the percentage of GFP+ cells was determined.

Cytokine Sandwich Immunoassays
The methods used in this study are as described previously

[10,29]. Briefly, animals were perfused with ice cold PBS after

deep anesthesia. The brains and spinal cords were collected and

homogenized in 10 mM Tris, 150 mM NaCl, 1 mM Dithiothre-

itol, 0.2% Triton-X100 and 20 ml/ml of Protease Inhibitor

Cocktail (P8340, Sigma, St. Louis, MO). The supernatant was

diluted to 0.5–2 mg protein/ml and the samples were stored at

270oC until use. The total n of 3–4 samples were used per group.

The concentration of various cytokines and chemokines was

determined using Bio-plex kit (Bio-Rad laboratories, Hercules,

CA). The 23-plex sample kit includes the standards and antibodies

for the following cytokines: IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-5,

IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17, Eotaxin,

G-CSF, GM-CSF, IFN-c, KC, MCP-1, MIP-1a, MIP-1b,

RANTES and TNF-a. A 3-plex kit for analyzing MIP-2, FGF-2

and PDGF-BB was separately used. The supernatant from brain

and spinal cord homogenates was incubated with the fluorescent

beads, washed and then incubated with biotin-labeled antibody

cocktail. The samples were then incubated with streptavidin-

Phycoerythrin and the fluorescence values were read in the Bio-

Plex 2200 system (Bio-Rad laboratories, Hercules, CA). Standard

curves were generated for each cytokine using the standards

supplied with the kit and the individual cytokine concentration in

each sample was estimated. Protein concentrations of the samples

were determined using the Coomasie dye-binding assay (Bio-Rad,

Hercules, CA).

Figure 3. LFB/PAS staining of Twitcher mice lacking KC or CXCR2. Histology of the brains showing LFB staining (blue) and PAS staining (pink)
in the corpus callosum (A-D) and cerebellum (E-H) in the wildtype, Twitcher, KC2/2GALC2/2 mice and CXCR22/2GALC2/2 mice. The KC2/
2GALC2/2 forebrain (C) and cerebellum (G) show histology which is essentially identical to the Twitcher mice (KC+/+GALC2/2; B and F) with
similar myelin staining and distribution of globoid cells. The CXCR22/2GALC2/2 mouse brains also demonstrate similar histology (D, H) compared
to the Twitcher mice (B, F). There is no apparent difference between the KC+/+GALC+/+ and KC2/2GALC+/+ or the CXCR22/2GALC+/+ mice in all
the sections examined (images not shown). Scale bar equals 50 mm.
doi:10.1371/journal.pone.0064647.g003
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Figure 4. Oligodendrocyte precursor proliferation in the lumbar spinal cord of twitcher mice lacking KC or CXCR2. Arrowheads in
panels A-D identify oligodendrocyte precursors expressing NG2 (red) with a more dendritic morphology. Arrowheads also identify the regions
highlighted in the higher magnification insets. Minimal BrdU staining (green) was noted in wildtype mice (A) (scale bar, 25 mm). In B, C and D, the
arrowheads identify proliferating oligodendrocytes that co-stain for NG2 (red) and BrdU (green). Blue represents nuclear staining with DAPI. There is
no statistically significant difference in the total number of NG2+ cells in the spinal cords of various groups (E). A statistically significant (*** p,0.001)
increase in number of NG2+BrdU+ cells/field is seen in the Twitcher and CXCR22/2 GALC2/2 spinal cords compared to WT mice (F). There is no
significant difference in the number of NG2+BrdU+ cells in KC2/2GALC2/2 mice compared to Wildtype, Twitcher, or CXCR22/2 GALC2/2 groups.
doi:10.1371/journal.pone.0064647.g004

Figure 5. Effect of CXCR2 and KC bone marrow chimeras on the progression of GLD. The survival of Twitcher mice transplanted with
CXCR2-deficient bone marrow (green, GALC+/+CXCR22/2 to Twitcher) or KC2/2GALC2/2 mice transplanted with wild type bone marrow (black,
wildtype to KC2/2GALC2/2) is not significantly different from Twitcher mice receiving wild type bone marrow (blue, wildtype to twitcher) (A).
Twitcher mice transplanted with Twitcher bone marrow (red, Twitcher to Twitcher) have a similar survival (median age = 45 days) compared to
untransplanted Twitcher mice (data not shown). The weights of various bone marrow chimeras are not significantly different from each other, but are
significantly decreased compared to the wild type controls (B).
doi:10.1371/journal.pone.0064647.g005

Role of KC and CXCR2 in Krabbe Disease
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Histology and Immunofluorescence
For oligodendrocyte proliferation studies, the animals were

injected with 5 mg/kg BrdU (Bromodeoxyuridine; Sigma, St.

Louis, MO) every 8 hours for four days starting on day 32 of age.

The lumbar spinal cords were collected after perfusion of the

animals with PBS and 4% paraformaldehyde. The tissue was fixed

in Enhanced Decalcification Formulation (SL85-32, Statlab,

Lewisville, TX) for 2 days and cryoprotected in 30% sucrose.

The tissues were then frozen in O.C.T. compound (Sakura

Finetek, Torrance, CA) and cryosectioned. For immunostaining,

the sections were co-stained with 1:50 dilution of a rabbit anti-

NG2 antibody (ab5320, Millipore, Billerica, MA) and 1:100

dilution of mouse anti-BrdU (B2531, Sigma, St. Louis, MO)

overnight at 4oC. The primary antibodies were detected using an

anti-rabbit antibody conjugated to Alexafluor 555 (A-21428,

Invitrogen, Carlsbad, CA) and a goat anti-mouse antibody

conjugated to Alexa 488 (A-11001, Invitrogen, Carlsbad, CA).

The images were acquired using a Ziess laser confocal microscope

(Carl Ziess Microimaging, LLC, Thornwood, NY). The images

were acquired using LSM/Axioskop software (Carl Ziess Micro-

imaging, LLC, Thornwood, NY). Ten sections from each group

with n = 4 animals per group were used for analysis. The cell

counts were done manually. For luxol-fast blue (LFB) and periodic

acid-Schiff (PAS) staining, the tissues were fixed overnight in 4%

paraformaldehyde after perfusion with ice cold PBS and then

transferred to 30% sucrose. The tissues were embedded in paraffin

and the LFB and PAS staining was done using standard methods.

Statistical Methods
GraphPad prism (GraphPad Software, Inc., La Jolla, CA) was

used for statistical analyses and for generating graphs. Two-way

unmatched ANOVA followed by post-hoc Bonferroni compari-

sons were used for analyzing the cytokine/chemokine data. One-

way ANOVA followed by post-hoc Bonferroni comparisons were

used for comparing various groups analyzed by FACS and for the

analysis of oligodendrocyte progenitors. Log-rank test was used to

compare the Kaplan-Meier survival curves. For statistical analysis

of body weights, repeated measures ANOVA could not be used

because of attrition, therefore one-way ANOVA at pre-deter-

mined time points was used instead.

Results

Altered Cytokine Profiles
Since inflammation is a prominent feature of GLD, and

previous studies [10,12,30] have shown alterations in certain

cytokines, a more comprehensive survey of cytokines and

chemokines in the brains and spinal cords of Twitcher mice was

performed at various time points. Several cytokines/chemokines

were altered in the brains and spinal cords of Twitcher mice at

different time points (Figure 1). Among the altered molecules, the

chemokine KC was elevated 16–25-fold in the Twitcher brain and

spinal cord compared to the wildtype (Figure 1). This elevation is

progressive in both the brains and the spinal cords of Twitcher

mice (Figures 1B and C). Other cytokines that were altered

significantly include IL-12 (p40) and IL-9 in the brain (Figure 1A).

Several other, non-statistically significant changes were observed,

including an increase in the cytokines IL-3, G-CSF, MCP-1, and

MIP-1B and a decrease in the cytokines IL-5, IL-6 and IL-10 in

the brain (Figure 1A).

Inflammation, Histology and Lifespan in KC2/2GALC2/2
Mice

Given the role of KC in macrophage chemotaxis and

oligodendrocyte development and the dramatic elevation in the

Twitcher mouse brain and spinal cord, we hypothesized that KC

contributes to the pathogenesis of GLD. In order to test this

hypothesis, we generated mice lacking KC and GALC (KC2/

2GALC2/2). Since elevated KC correlated with an increase in

activated microglia/macrophages (CD45hiCD11b+) in the

Twitcher mice [10], we further hypothesized that Twitcher mice

lacking KC would have decreased activated microglia/macro-

phages in the CNS and a milder disease course. Surprisingly,

KC2/2GALC2/2 mice did not show any quantitative differ-

ences in the various inflammatory cells in the brain or spinal cord,

when compared with that of KC+/+GALC2/2 mice (Figure 2).

The inflammatory cells from the brains and the spinal cords of the

various groups of mice were isolated and stained for CD4, CD8,

CD11b and CD45 using flourophore-conjugated antibodies.

These cells were quantified using flow cytometry (as described in

Materials and Methods). The upper row in Figure 2A shows the

contour plots of CD4 and CD8 T-cells in the brain. The upper left

and the lower right quadrants in each of these bivariate plots

represent CD4 and CD8 T-cells respectively. Similarly, the lower

row in Figure 2A shows the bivariate contour plots for cells stained

with CD11b and CD45 flourophore-conjugated antibodies. The

lower right and the upper right quadrants represent resting

microglia (CD45loCD11b+) and activated microglia

(CD45hiCD11b+) respectively. There is no significant difference

between KC2/2GALC+/+ and the KC2/2GALC2/2

groups in terms of the CD4, CD8 and the activated microglial

numbers. Similar results are seen in the spinal cords, except for a

significant increase in CD4 T-cells in the spinal cords of KC+/

+GALC2/2 mice compared to KC2/2GALC2/2 mice (data

not shown). In addition, histology of the brain and spinal cord did

not reveal any major differences when examined using LFB

Figure 6. Altered cytokine and growth factor levels in the spinal cord of Twitcher mice that could possibly compensate for the lack
of KC or CXCR2. MIP-2 (CXCL2) (A), PDGF-BB (B), and FGF-2 (C) levels are significantly and progressively elevated in the spinal cords of the Twitcher
mice. Vertical bars represent the mean and the error bars represent one SEM (**p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0064647.g006
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(myelin) or PAS (globoid cells) staining (Figure 3C and G). Finally,

there was no alteration in the lifespan or body weight of KC2/

2GALC2/2 mice when compared with the KC+/+GALC2/2

mice (data not shown).

Inflammation, Histology and Lifespan in CXCR22/
2GALC2/2 Mice

The similarity in the inflammatory profile between Twitcher

mice with and without KC could be due to redundancy amongst

the receptors for KC. KC is known to bind two chemokine

receptors, CXCR1 and CXCR2 [31]. The receptor CXCR2 is

more widely distributed throughout the CNS compared to

CXCR1 and multiple ligands act on the CXCR2 receptor [32].

Deletion of CXCR2 will eliminate signaling by KC through that

receptor as well as signaling by other molecules that could

compensate for the action of KC. Therefore, we would expect that

the consequences of CXCR2 deletion might be more dramatic

than CXCR1 deletion. We hypothesized that Twitcher mice

lacking CXCR2 would have decreased activated microglia/

macrophages in the CNS and a milder disease course. Therefore,

we generated CXCR22/2GALC2/2 mice in order to test the

above hypothesis. When the brains of CXCR22/2GALC2/2

mice were compared to CXCR2+/+GALC2/2 mice, there was

no qualitative difference in LFB/PAS staining between the two

groups (Figure 3D and H). There was also no difference between

the CXCR2-deficient Twitcher mice and CXCR2-positve

Twitcher mice in the profile of inflammatory cells in the brain

as measured by flow cytometry (data not shown). Finally, there was

no difference in lifespan or body weight in the CXCR22/

2GALC2/2 mice when compared to CXCR2+/+GALC2/2

mice (data not shown).

Role of KC and CXCR2 in Oligodendrocyte Proliferation
The striking elevation of KC in the brains and spinal cords of

the Twitcher mice seem to have no apparent effect on the cellular

inflammatory profile in the CNS. Another important function of

KC and CXCR2 is to promote the differentiation and prolifer-

ation of oligodendrocytes [20]. KC and CXCR2 have been shown

to be involved in oligodendrocyte precursor proliferation and

migration in other mouse models of demyelinating diseases such as

the cuprizone model, Jimpy mice (defective proteolipid protein),

and mice with Theiler’s virus-induced demyelinating disease

[33,34]. Consistent with an increase in KC in the CNS, it has

been reported previously that there is an increase in proliferating

oligodendrocytes in the spinal cord of the Twitcher mice [35],

possibly to replace those cells lost in the course of disease.

Therefore, we hypothesized that KC elevation is important in

promoting oligodendrocyte proliferation seen in the Twitcher

spinal cord. We quantified the number of oligodendrocyte

precursors (NG2+ cells) and the number of proliferating

oligodendrocyte cells by Brdu/NG2 double immunostaining

(Figure 4). There is no significant difference in the total number

of NG2+ cells in the spinal cord of wildtype, Twitcher, KC2/

2GALC2/2 or CXCR22/2GALC2/2 mice (Figure 4E).

However, we found a significant increase in the number of

NG2+BrdU+ cells in the Twitcher spinal cord, compared to

wildtype (Figure 4F). There was no significant difference in the

number of NG2+BrdU+ cells among any of the GALC2/2

groups (Figure 4F). This suggests that the lack of KC and CXCR2

does not significantly influence the proliferation of the NG2+
oligodendrocytic cells in the spinal cord.

Selective CXCR2 or KC Deficiency in the Bone Marrow or
CNS of Twitcher Mice does not Alter the Disease Course

Previous studies have shown that CXCR2+ cells are involved in

demyelination. Transplantation of CXCR2-deficient bone mar-

row decreases the severity of demyelination in the cuprizone

model [36,37]. In the current study, global lack of KC or CXCR2

in Twitcher mice does not alter the activated microglia/

macrophages or prevent demyelination. However, it is possible

that the beneficial effect of KC and CXCR2 deficiency in the bone

marrow and other peripheral tissues are negated by their lack in

the CNS or vice-versa, where they may be important in promoting

repair. Therefore, we hypothesized that selective deficiency of

CXCR2 in the bone marrow compartment or global deficiency of

KC, including the CNS, would lead to decrease inflammation and

alter the course of the disease. In the Twitcher mice, bone marrow

transplantation supplies GALC activity to the CNS, and by itself

prolongs the lifespan [38,39]. Therefore, appropriate transplanta-

tion groups were used to control for this therapeutic effect.

Twitcher mice transplanted with GALC+/+ CXCR22/2 bone

marrow did not have an increased lifespan compared to Twitcher

mice transplanted with GALC+/+CXCR2+/+ bone marrow

(Figure 5A). Likewise, GALC2/2KC2/2 mice transplanted

with GALC+/+CXCR2+/+ bone marrow did not have a

significantly increased lifespan. Hematopoietic chimerism deter-

mined at 36 days of age (26d post-transplant), showed that the

engraftment of various groups is between 40 and 60% (data not

shown). There was also no difference in the weights of the various

groups of Twitcher mice that received transplantation (Figure 5B).

Elevation of other Chemokines and Growth Factors
Since neither KC nor CXCR2 deficiency in the CNS had any

measurable effects on the disease progression, other cytokines or

growth factors, or both might be compensating for these

deficiencies. Measurement of cytokines that could potentially act

on CXCR2 (for e.g., CXCL2 or MIP-2), and other oligodendro-

cyte mitogens such as FGF-2 and PDGF-BB (Figure 6) show that

there is a significant and progressive elevation in their levels with

time in the spinal cord of Twitcher mice.

Discussion

We show here that KC is highly elevated in both the brain and

spinal cord of Twitcher mice. The elevation of KC in the Twitcher

mouse was similar to that seen in other mouse models of

demyelinating disease with infiltrating immune cells like Jimpy

mice [34], Theiler’s encephalitis and EAE mice [40]. We

previously showed that KC levels were nearly normalized in the

brains of Twitcher mice following a relatively efficacious therapy

(BMT combined with AAV-mediated gene therapy) [10]. A

similar increase in KC was observed in an independent study

performed in the Twitcher mouse [16]. In that study KC was not

significantly decreased when Twitcher mice were transplanted

with GALC+/+ mesenchymal stem cells (MSC). The differences

between those two studies were the mode of treatment and the

degree of response. The combination of BMT and gene therapy

resulted in an increase in median life span of ,82 days whereas

the increase in life span following MSC transplantation was

,5 days. Collectively, these data indicate that KC is responsive to

a relatively effective treatment regimen and imply that KC might

be involved in the disease pathogenesis.

Macrophage (globoid cell) infiltration into the brain and spinal

cord is a hallmark of GLD, and it is believed to be pathogenic.

Since KC and its receptor are known to be involved in

macrophage recruitment [19], we hypothesized that increased

Role of KC and CXCR2 in Krabbe Disease

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e64647



levels of KC exacerbated the disease by recruitment and activation

of microglia/macrophages into the CNS. In contrast to our

prediction, there was neither a decrease in the number of activated

microglia nor was there an alteration in the overall course of the

disease in Twitcher mice lacking KC. Contrary to our expectation,

there were activated microglia/macrophages in the CNS of the

Twitcher mice lacking KC. This implies that KC is not required

for the recruitment/activation of the microglia and macrophages

or there are redundant pathways that can compensate for KC.

Keratinocyte chemoattractant factor functions through either

the CXCR1 or CXCR2 receptor. Although, both CXCR1 and

CXCR2 are known receptors for KC, only CXCR2 is expressed

in the CNS [41]. Since the CXCR1 receptor is not as widely

expressed in the CNS as CXCR2, we believed that CXCR1 would

play less of a role in GLD compared to CXCR2. Furthermore,

several other chemokines (CXCL1–3, 6 and 7) also act on CXCR2

[42]. It is possible that elevation of any of the other four ligands

could compensate for the lack of KC, explaining the lack of effect

observed by eliminating KC. Since there is considerable redun-

dancy among the cytokines and chemokines, we hypothesized that

any compensatory effects of other ligands binding to CXCR2

could be determined by studying the progression of disease in

Twitcher mice lacking the chemokine receptor CXCR2. Similar

to KC-deficiency, there was no alteration in the globoid-cells or

the overall course of the disease in the CXCR22/2GALC2/2

mice compared to the CXCR2+/+GALC2/2 mice. This

observation could be explained again by the redundancy in the

chemokine system. It is possible that KC could act on its

alternative receptor CXCR1 [41] and bring about the same effects

in the absence of CXCR2. Unfortunately, the severity of the

Twitcher and CXCR2-deficient phenotypes precluded the gener-

ation of a mouse triply deficient in GALC, CXCR2, and KC (or

CXCR1).

The chemokine KC and its receptor CXCR2 are also known to

be involved in oligodendrocyte proliferation. The role of KC and

CXCR2 in other animal models of remyelination are complex

[43]. The findings in this study are consistent with a previous study

[35] showing that proliferating NG2+ oligodendrocyte precursors

were increased in the spinal cords of Twitcher mice. However, in

the current study, the lack of KC or CXCR2 had no effect on the

number of proliferating oligodendrocyte precursors compared to

Twitcher mice. Other growth factors like FGF-2 and PDGF-BB

are known to affect oligodendrocyte differentiation and migration

and may compensate for the lack of KC. Interestingly, both FGF-2

and PDGF-BB are highly elevated in the spinal cords of Twitcher

mice.

In a recent study, it was shown that hematopoietic chimeras

using CXCR2-deficient donor bone marrow have reduced

demyelination in response to cuprizone exposure [37]. It appears

that the lack of CXCR2 decreases the number of neutrophils (and

possibly macrophages) that migrate into the CNS and subse-

quently reduces demyelination. When similar bone marrow

chimeras were made in the GALC-deficient mice, no such effect

was seen, possibly implying that the myelin damage in the

Twitcher mouse is very profound with minimal to no effect of the

immune system on the disease progression. Alternatively, the

partial bone marrow chimerism obtained by irradiating 9–10 day

old mice could spare enough CXCR2-positive cells in the bone

marrow to cause demyelination.

To summarize, although KC is highly elevated in the CNS of

the Twitcher mice, its deficiency, and the deficiency of its receptor

CXCR2, has no apparent effect on the inflammation, oligoden-

drocyte proliferation, or on the overall progression of the disease.

These findings highlight the profound and rapid nature of the

disease in the Twitcher mice and emphasize the redundancy

within the chemokine system. It appears that therapies targeting

individual cytokine systems or oligodendrocyte proliferation/

myelin repair would be ineffective if the primary enzyme

deficiency is not corrected. Although effective therapies like

BMT plus CNS-directed gene therapy tend to normalize KC

levels, there may be additional and independent mechanisms by

which the therapeutic effect occurs. The roles of these additional

independent mechanisms have to be explored in future studies. A

more complete understanding of these mechanisms would provide

a better understanding of how therapies like BMT contribute to

the therapeutic benefit in GLD.
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