
Secretome Analysis Defines the Major Role of SecDF in
Staphylococcus aureus Virulence
Chantal Quiblier1, Kati Seidl2, Bernd Roschitzki3, Annelies S. Zinkernagel2, Brigitte Berger-Bächi1,

Maria M. Senn1*

1 Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland, 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich,

University of Zurich, Zurich, Switzerland, 3 Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland

Abstract

The Sec pathway plays a prominent role in protein export and membrane insertion, including the secretion of major
bacterial virulence determinants. The accessory Sec constituent SecDF has been proposed to contribute to protein export.
Deletion of Staphylococcus aureus secDF has previously been shown to reduce resistance, to alter cell separation, and to
change the expression of certain virulence factors. To analyse the impact of the secDF deletion in S. aureus on protein
secretion, a quantitative secretome analysis was performed. Numerous Sec signal containing proteins involved in virulence
were found to be decreased in the supernatant of the secDF mutant. However, two Sec-dependent hydrolases were
increased in comparison to the wild type, suggesting additional indirect, regulatory effects to occur upon deletion of secDF.
Adhesion, invasion, and cytotoxicity of the secDF mutant were reduced in human umbilical vein endothelial cells. Virulence
was significantly reduced using a Galleria mellonella insect model. Altogether, SecDF is a promising therapeutic target for
controlling S. aureus infections.
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Introduction

The Gram-positive pathogen Staphylococcus aureus is one of the

leading causes of nosocomial infections [1]. Due to its acquisition

of various resistance genes treatment of S. aureus infections have

become increasingly difficult. Furthermore, the prevalence of

methicillin-resistant S. aureus (MRSA) has been increasing in recent

years. This has resulted in an alarming rise of community-

associated (CA-) MRSA infections in immunocompetent individ-

uals [2,3,4]. In addition to its adaptive response to antibiotics [5],

the success of S. aureus is based upon its huge array of virulence

factors [6] helping S. aureus to avoid host immunity. These

virulence factors have to be exported across the cytoplasmic

membrane to reach their destined location: the membrane, the cell

wall or the extracellular space. The main transport system is the

Sec translocase, which is conserved in all three kingdoms of life

[7,8]. Currently, the Sec pathway is best described in the Gram-

negative bacterium Escherichia coli (as reviewed in [9,10]). The

translocase consists of i) the heterotrimeric complex SecYEG,

which forms a hydrophilic channel through the cytoplasmic

membrane; ii) the motor protein SecA, an ATPase; and iii) the

heterotrimeric complex SecDF-YajC. Proteins containing an N-

terminal Sec signal peptide (SP) or a hydrophobic transmembrane

segment are targeted to the translocase and transported through

the channel in an unfolded state. For secreted proteins or

membrane proteins with large hydrophilic loops, the driving

energy is provided by the cycling of SecA, whereas ribosome-

bound nascent chains are targeted mainly by inner membrane

proteins [11] and are co-translationally exported powered by the

translating ribosome. Small membrane proteins can also be

inserted by YidC in a Sec-independent manner [12]. The auxiliary

complex SecDF-YajC was shown to associate with SecYEG [13]

as well as with YidC and is therefore believed to act as the linking

molecule between SecYEG and YidC during Sec-dependent

membrane protein insertion [12]. The integral membrane protein

YajC was found to co-crystallize with the well-known E. coli

multidrug exporter AcrB [14], which belongs to the resistance-

nodulation-cell division (RND) superfamily. Deletion of YajC only

showed a weak phenotype and its exact function is still unknown

[15,16].

SecDF also belongs to the RND superfamily and possesses the

typical twelve transmembrane (TM) domains with two extra-

cytoplasmic loops between TM1-2 and TM7-8, respectively [17].

Recently, Tsukazaki et al. resolved the crystal structure of the

membrane protein SecDF of Thermus thermophilus [18]. Two

conformations for the head subdomain P1 are observed, that

seem to occur upon rotation by 120u [18]. Furthermore the P1

head was shown to interact with an unfolded preprotein, thereby

preventing the substrate from backsliding and enhancing the

translocation. This ATP-independent step in the later stage of

protein translocation is driven by the proton motive force (PMF).

Two conserved charged residues Asp519 and Arg247 are crucial

for SecDF activity in E. coli and point mutations of the
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corresponding amino acids in T. thermophilus abolish ion channel

activity [18].

In S. aureus, SecA and SecY have been shown to be essential

[19,20,21]. Deletion of the non-essential secG leads to changes in

the exoproteome, which are enhanced in a secG-secY2 double

mutant [7]. SecY2 together with SecA2 belong to the accessory

Sec pathway, which at present is known to export only one

substrate, the serine-rich adhesin for platelets protein (SraP) [22].

However, virulence of the secG and secY2 single mutants and the

secG-secY2 double mutant in mice is comparable to the parental

strain [7].

We previously reported a S. aureus secDF mutant to have a

pleiotropic phenotype influencing not only protein secretion, but

also transcription and regulatory processes [23]. Resistance

towards b-lactam and glycopeptide antibiotics was reduced.

Furthermore, cell division was impaired and autolysis increased

[23]. To determine the role of SecDF in the secretion of virulence

factors and to assess its importance for pathogenesis, we performed

a secretome analysis using isobaric tags for relative and absolute

quantitation (iTRAQ) with subsequent LC-MS/MS. Major

virulence determinants involved in adhesion to host proteins and

cells, as well as in evasion of the host immune system were found to

be decreased in the exoproteome of the secDF mutant. Important

steps for establishing an infection were shown to be deficient in vitro

in the secDF mutant in both methicillin sensitive and resistant S.

aureus strains. Furthermore, secDF virulence was significantly

reduced in a Galleria mellonella infection model.

Materials and Methods

Bacterial strains and growth conditions
Bacterial strains and plasmids used in this study are listed in

Table 1. If not mentioned otherwise bacterial cultures were grown

in Luria Bertani (LB) broth (Becton Dickinson, Difco Laboratories,

Franklin Lakes (NJ), USA) at 37 uC. Bacterial cultures were grown

under constant shaking and with a liquid-to-air ratio of 1:5 to

assure good aeration. Media were supplemented with 50 mg/ml

kanamycin (Sigma-Aldrich, St. Louis (MO), USA) or 10 mg/ml

erythromycin (Sigma-Aldrich, St. Louis (MO), USA) when

appropriate.

Sample preparation for secretome analysis
Strains were cultured until late exponential phase, which was

shown to correspond to OD600 1 in an earlier study [23] and

centrifuged at 4 uC for 5 min. The supernatant (SN) was filtered

(0.22 mM PES filter, Techno Plastic Products AG, Trasadingen,

Switzerland) and mini EDTA-free complete protease inhibitors

tablets (Roche, Rotkreuz, Switzerland) were added. For normal-

ization purposes 500 pM enhanced GFP (Ams Biotechnology Ltd,

Abingdon, UK) was added. The SN was concentrated by

trichloroacetic acid (TCA) precipitation and washed twice with

ice cold (220 uC) acetone. The pellet was resuspended in 0.5 M

triethylammonium bicarbonate pH 8.5 (Sigma-Aldrich, St. Louis,

USA) 0.5 mM tris(2-carboxyethyl)phosphine hydrochloride

(TCEP, Sigma-Aldrich, St. Louis (MO), USA). Protein concen-

tration was measured with the Quant-iTTM protein assay kit (Life

Technologies, Invitrogen, Carlsbad (CA), USA).

Proteins were digested and labelled according to the iTRAQ

protocol (AB Sciex, Concord, Canada). Briefly, 75 mg protein were

denatured with 0.1% SDS and reduced with 5 mM TCEP.

10 mM methyl methanethiosulfonate (MMTS) was used as a

cysteine blocking reagent. Protein samples were digested with

trypsin (Promega, Fitchburg (WI), USA) for 14.5 h at 37 uC and

subsequently labelled with a 4-plex-iTRAQ Reagent for 1.5 h at

room temperature. Phosphoric acid was added to stop the reaction

and samples were combined into a fresh Eppendorf tube. Peptides

were fractioned by strong cation exchange (SCX). Solvent A

(7 mM KH2PO4, 25% acetonitrile (ACN), pH 2.7) was added to

the sample and loaded onto a polysulfoethyl A column

(20062.1 mm, 5 mm, 200 Å, PolyLC) of the analytical HPLC

(LC1100, Agilent Technologies, Santa Clara (CA), USA). Peptides

were eluted with an increasing gradient of solvent B (7 mM

KH2PO4, 0.5 M KCl, 25% ACN, pH 2.7) 10–50 min, 0–30%

solvent B; 40–60 min, 30–100% solvent B) and pooled into 12

fractions according to the chromatogram. Peptides were concen-

trated with the SpeedVacH (Eppendorf, Hamburg, Germany),

redissolved in 3% ACN, 0.1% trifluoroacetic acid and desalted

using ZipTips C18 (Merck Millipore, Billerica (MA), USA). After a

further vacuum concentration step the peptides were dissolved in

3% ACN, 0.1% formic acid (FA).

Mass spectrometry
Dissolved samples were injected into an Eksigent-nano-HPLC

system (Eksigent Technologies, Dublin (CA), USA) by an auto

sampler and separated on a self-made reverse-phase tip column

(200 mm6150 mm) packed with C18 material (3 mm, 200 Å, AG,

Bischoff GmbH, Leonberg, Germany). The column was equili-

brated with 99% solvent A (1% ACN, 0.2% FA in water) and 1%

solvent B (0.2% FA in ACN). Peptides were eluted using the

following gradient: 0–3 min; 1–5% B, 3–57 min; 5–35% B, 57–

63 min; 35–50% B and 63–70 min; 50–99% B, at a flow rate of

0.7 ml/min. High accuracy mass spectra were acquired with an

AB Sciex 5600 (AB Sciex, Concord, Canada) in the mass range of

400–1250 m/z. Up to 40 data dependent MS/MS were recorded

in high sensitivity mode of the most intense ions with charge state

2+, 3+ and 4+ using collision induced dissociation. Target ions

already selected for MS/MS were dynamically excluded for 90 s

after tree accuracies. After data collection, the peak lists were

generated and analyzed using ProteinPilotTM 4.0 (AB Sciex,

Concord, Canada). Data was searched against a SwissProt

database (released January 2011). The following search parame-

ters were used: Trypsin digestion, modifications of MMTS labelled

cysteine, 4-plex-iTRAQ modifications of free amines at the N-

termini and of lysine, and 4-plex-iTRAQ modifications of tyrosine.

Biological modifications and single amino acid exchanges were

also included in the search. No normalization for iTRAQ ratios,

such as BIAS correction, was applied, as normalization was

performed by the addition of extrinsic GFP. The peptides without

any 4-plex-iTRAQ label at the N-terminus or at a lysine were

excluded from the analysis. The ProteinPilot cut-off score used was

1.3, which corresponds to a confidence limit of 95%. In total four

biological replicates were analyzed in two independent iTRAQ

experiments. The statistical analysis was assessed by the Student’s t

test.

SDS-PAGE and Western blot
The SN was collected using the secretome sample preparation

method and concentrated with Amicon Ultra-15 centrifugal filter

devices (MWCO 10 kDa Merck Millipore, Billerica (MA), USA).

Ten to 20 mg of protein were separated by SDS (10–15%)

polyacrylamide gel electrophoresis (PAGE) and blotted onto

polyvinylidene fluoride (PVDF) membrane (Immobilon-P, Merck

Millipore, Billerica (MA), USA). Blocking and detection were

performed in phosphate buffered saline (PBS) pH 7.4 (CHIPS,

FnBPA) or in low salt buffer (0.154 M NaCl, 9 mM TRIS, 0.1%

Tween) pH 7.4 (Eap, LytM, SceD and SEA) as described in [23].

The following primary antibodies were used: Mouse anti-CHIPS

antibody (Abcam, Cambridge, UK) 1:1’000, rabbit anti-Eap
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antibody (Abcam, Cambridge, UK) 1:5’000, rabbit anti-FnBPA

antibody (Abnova, Taipei City, Taiwan) 1:2’500, rabbit anti-LytM

antibody (obtained from T. Msadek [24]) 1:50’000, rabbit anti-

SceD antibody (obtained from S. Foster [25]) 1:10’000 and rabbit

anti-SEA antibody (Abcam, Cambridge, UK) 1:1’000. For

detection of the primary antibodies either horseradish peroxi-

dase-(HRP-) goat anti-rabbit IgG (1:10’000, Jackson ImmunoR-

esearch, West Grove (PA), USA) or HRP-goat anti-mouse IgG

(1:5’000, Jackson ImmunoResearch, West Grove (PA), USA) were

used.

Fibrinogen- and fibronectin-binding assay
The binding assay was adapted from O’Neill et al. [26]. Shortly,

100 ml two-fold dilutions of human fibrinogen (Merck, Calbio-

chem, Darmstadt, Germany) in 20 mM sodium citrate-HCl,

pH 7.4 or human fibronectin (Merck, Calbiochem, Darmstadt,

Germany) in PBS pH 7.4 were dispensed in flat-bottom 96-well

Nunclon plates and incubated overnight at 4 uC. Following three

PBS wash steps, the plates were blocked in 2 mg/ml bovine serum

albumin (BSA, Thermo Scientific, Acros Organics, Geel, Belgium)

in PBS for 2 h at 37 uC. Wells were washed three times in PBS. In

the meantime bacterial cultures were grown to OD600 1, washed

twice in PBS and adjusted to OD600 1 in PBS corresponding to

,108 cells/ml. Hundred ml of bacterial suspension was added per

well (107 CFU/well), including a negative control (PBS) and

incubated for 2 h at 37 uC. After repeated PBS washing steps, the

cells were fixed with 25% formaldehyde (Applichem, Darmstadt,

Germany), washed once with PBS and stained for 5 min in 0.5%

crystal violet. Residual dye was removed with distilled water

(dH2O) and plates were air-dried. The crystal violet stained cells

were dissolved in 5% acetic acid and the absorbance measured at

570 nm. The experiment was performed with three technical and

biological replicates, except for the positive control strain Cowan I

in the Newman fibronectin binding assay, which was only

performed with three technical replicates.

Tissue culture
Human umbilical vein endothelial cells (HUVECs) were

purchased from Clonetics (Lonza, Basel, Switzerland) and

maintained as previously described in M199 medium supplement-

ed with antibiotics (penicillin 100 U/ml, streptomycin 100 mg/ml),

glutamine at 2 mM, and 20% foetal calf serum, at 37 uC in a

humidified 5% CO2 atmosphere until they reached confluency

[27]. One day before assays were performed, HUVECs were

seeded at a density of 56104 cells/well into 48-well plates that

were coated with 10 mg/ml fibronectin. Cells were used up to

passage three.

Bacterial adherence and invasion to HUVECs
The capacity of the various strains to invade HUVECs was

determined by the lysostaphin protection assay using conditions

used for the MTT assays (see below) as previously described [28].

Adherence and invasion were expressed as % adherent and

invading cells per well at the time point of measurement.

Adherence and invasion of CHE482 were set to 100% for each

run. Each experiment was performed in duplicate in three

independent assays.

MTT assay
The ability of S. aureus to induce damage in HUVECs was

assessed using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide) assay. MTT is reduced by living cells to

insoluble purple MTT formazan crystals using succinate, and the

pyridine nucleotide cofactors, NADH and NADPH as substrates

[29]. MTT production is therefore inversely related to cell death.

MTT reduction results in a yellow to blue color change that can be

quantified by measuring the absorbance at OD570 [30]. MTT

assays were performed as previously described with some

modifications [31]. Briefly, wells containing HUVECs were rinsed

twice with warm HBSS prior inoculation to remove medium

containing antibiotics. The bacterial strains were grown overnight

on sheep blood agar, resuspended in invasion medium (1%

albumin and 25 mM HEPES, pH 7.3 in M199 without serum or

Table 1. Strains and plasmids used in this study.

Strains Properties Ref.

S. aureus

CHE482 CC45, ST45, SCCmecN1, blaZ (pBla), Far, Mcr, Sxr, Tmr [51,53]

Cowan I NCTC8530, septic arthritis isolate ATCC12598

CQ66 Newman DsecDF [23]

CQ85 Newman pCN34, Kmr [23]

CQ87 Newman DsecDF pCN34, Kmr [23]

CQ89 Newman DsecDF pCQ27, Kmr [23]

CQ92 CHE482 pCN34, Kmr This study

CQ93 ME305 pCN34, Emr, Far, Kmr, Mcr, Sxr, Tmr This study

CQ94 ME305 pCQ27, Emr, Far, Kmr, Mcr, Sxr, Tmr This study

ME305 CHE482 DsecDF::bursa aurealis, Emr, Far, Mcr, Sxr, Tmr [54]

Newman Clinical isolate (ATCC 25904), rsbU+ [83]

Plasmids

pCN34 S. aureus-E. coli shuttle vector, pT181-cop-wt repC aphA-3 ColE1, Kmr, called pEmpty in this study [84]

pCQ27 pCN34 derivative carrying secDF with its endogenous promoter, Kmr, called pSecDF in this study [23]

Abbreviations are as follows: Emr, erythromycin resistant; Far, fusidic acid resistant; Kmr, kanamycin resistant; Mcr, methicillin resistant; Sxr, sulfomethoxazole resistant;
Tmr, tobramycin resistant.
doi:10.1371/journal.pone.0063513.t001
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antibiotics) to McFarland 0.5 (,56107 cells/ml), sonicated and

diluted to the indicated multiplicity of infection (MOIs) [32,33,34].

Initial inocula were confirmed by serial fold dilution and plating

on sheep blood agar. After 1 h or 3 h incubation at 37 uC in 5%

CO2, respectively, the number of CFUs per well was determined

to monitor growth. Then, the medium was aspirated, wells were

washed with HBSS and 400 ml of fresh complete M199 medium

containing 10 mg/ml lysostaphin was added [28,33,35]. After a

total incubation time of 22 h at 37 uC in 5% CO2, 100 ml of

5 mg/ml MTT in HBSS were added to each well. 2 h later, the

medium was removed and 150 ml of 0.04 M HCl in absolute

isopropanol were added to solubilize the dye. Uninfected control

wells which underwent the same washes were processed in parallel

and served as negative control. Wells that only contained medium

were used as background correction. Absorbance of 100 ml of the

solution was measured at 570 nm. Specific cytotoxicity was

calculated using the following formula: 1-(OD570 experimental

well/OD570 control well). Each experiment was performed in

triplicate in at least three independent assays.

Galleria mellonella virulence assay
To study the in vivo pathogenicity an invertebrate infection

model was used as previously described by Peleg et al. [36]. Last

instar larval stage G. mellonella were purchased at HRH Fishing

Hebeisen, Zurich, Switzerland and stored at 4 uC until further use.

Cells were grown until exponential phase (OD600 0.5), washed

twice in PBS and resuspended therein. Ten ml of bacterial

suspension, corresponding to 106 CFUs, were injected into the last

left proleg with a repetitive dispensing Tridak Stepper (Intertronic,

Oxfordshire, UK) containing a 1 ml syringe with a 26-gauge

needle. Thirty larvae were infected per strain. A control group was

inoculated with 10 ml of PBS to assure the larvae were healthy and

that death did not occur due to the needle prick or stress. Larvae

were incubated at 37 uC and examined every 24 h for survival;

they were considered dead when no movement occurred in

response to touch. Additional larvae were inoculated separately to

measure the bacterial burden which was monitored after 24, 48

and 72 hours. After incubating the larvae at 220uC, they were

disinfected in 70% ethanol and rinsed with dH2O. The larvae

were homogenized with the TissueLyser (Qiagen, Hombrechtikon,

Switzerland) in 2-ml screw cap tubes containing a 5 mm stainless

steel bead (Qiagen, Hombrechtikon, Switzerland) and 1 ml PBS,

shaking for 10 min at 30 s21. Appropriate dilutions were plated on

LB agar containing 50 mg/ml kanamycin to minimize growth of

the normal flora of the larvae. Three independent experiments

were pooled and analysed by log rank test. The survival-curves

were plotted using the Kaplan-Meier method.

Results

Deletion of secDF leads to an altered exoproteome
To determine the extent of the extracellular proteome affected

by deletion of secDF, a quantitative secretome analysis was

performed for the S. aureus wild type strain Newman and its

mutant strain Newman DsecDF using iTRAQ. The SNs were

collected during late exponential phase, where we found strongest

SecDF expression (data not shown). Samples of four biological

replicates were prepared for LC-MS/MS as described in materials

and methods.

A total of 230 S. aureus proteins were quantified and their

putative localization was determined with different bioinformatics

tools (Table 2, Table S1). Thirty-eight proteins had a predicted SP

[37], 34 thereof were predicted Sec-type SPs [38]. These included

seven cell wall proteins containing the LPXTG cell wall retention

motif (SpA, SdrE, ClfA, IsdA, FnBPA, ClfB) [39,40] or LysM

domains (Sle1/Aaa) [41]. In Newman DsecDF, in comparison to

the wild type Newman, the extracellular levels of 27 proteins were

altered significantly by at least two fold increase (two proteins) or

two fold decrease (25 proteins); 21 of these proteins contained a

Sec-type SP (Figure 1). Of the six remaining proteins, three were

membrane proteins; OatA and the LytR-CpsA-Psr proteins

NWMN_0925 (SA0908) and MsrR [42,43]. Furthermore, the

SP containing, but Sec-independent enterotoxin A (SEA) and the

delta hemolysin (Hld) were identified.

According to their function the majority of the proteins were

classified into three groups: i) Proteins with adhesive properties

(ClfA, ClfB, Coa, Emp, Efb/Fib, FnBPA, Eap/Map, SpA) [44,45];

ii) proteins which are involved in immune evasion (CHIPS, ClfA,

Efb, FLIPr, Eap, OatA, Sbi, SpA, SCIN, SEA, SspB) [46,47] and

iii) autolytic proteins (IsaA, LytM, SceD, SsaA) [25,48,49]. The

autolysin LytM and the lytic transglycosylase SceD were the only

proteins found to be significantly increased in the secretome of

Newman DsecDF. Furthermore, several proteases were decreased

in Newman DsecDF, such as SspB, SspA and ScpA, whereof the

amounts of SspB and ScpA were significantly reduced.

Peptides of the N-terminal region of the glycerol ester hydrolase

Geh were identified and found to be reduced in Newman DsecDF.

Because one of the four prophages in strain Newman is located in

the Geh gene geh, leading to a truncated and inactive enzyme [50],

this finding is not phenotypically relevant in the strain Newman

background. Nonetheless, in other S. aureus strain backgrounds,

deletion of secDF can be expected to reduce lipase activity.

Complementation of the altered virulence factor
expression in the mutant strain Newman DsecDF and
verification of its phenotype in a second strain
background

To validate and further highlight the role of SecDF in S. aureus,

a different, methicillin resistant strain background was included in

the following confirmatory experiments. The low level methicillin

resistant strain CHE482 represents a CA-MRSA [51,52,53]; its

corresponding secDF mutant CHE482 DsecDF carries a transposon

at position 1029 bp leading to a non-functional SecDF protein

[54]. To complement the deletion of secDF, the plasmid pSecDF

(pCQ27) containing secDF with its endogenous promoter from

strain Newman was introduced into the mutant strains Newman

DsecDF and CHE482 DsecDF, yielding Newman DsecDF pSecDF

and CHE482 DsecDF pSecDF, respectively. The empty vector

pEmpty (pCN34) was introduced into the wild type strains

Newman and CHE482 and the secDF mutants Newman DsecDF

and CHE482 DsecDF to ensure no additional effects were caused

by the plasmid (Table 1).

To confirm the secretomics results, Western blot analysis of the

SN from these strains were performed for selected proteins found

to be altered in the secretome of Newman DsecDF. Specific

antibodies were used for the Sec-dependent proteins CHIPS, Eap,

FnBPA, LytM and SceD, as well as the Sec-independent SEA.

As expected, the SN of Newman DsecDF showed reduced

protein amounts of CHIPS, FnBPA, Eap and SEA and increased

amounts of LytM and SceD in comparison to the wild type and

the complemented mutant (Figure 2A). This phenotype was

validated and confirmed for CHIPS, FnBPA and SceD in strain

background CHE482 (Figure 2B).
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Decreased adherence of the secDF mutant to attached
human fibrinogen, fibronectin and endothelial cells

To establish an infection, the ability of S. aureus to adhere to host

proteins and cells is essential and permits the bacteria to invade

into the cells as shown previously for S. aureus [55]. Our

secretomics screen revealed several factors belonging to the

microbial surface components recognizing adhesive matrix mol-

ecules (MSCRAMM) or the secretable expanded repertoire

adhesive molecules (SERAM) to be reduced in Newman DsecDF

(Table 3). Therefore, binding of the secDF mutants to immobilized

human fibrinogen and fibronectin, respectively, was studied in vitro.

Ninety-six-well-plates were coated with various concentrations of

human fibrinogen and fibronectin, respectively. Bacteria were

allowed to adhere to the coated wells, washed, fixed and coloured

with crystal violet as described in materials and methods.

Binding of Newman DsecDF pEmpty to fibrinogen was reduced

by up to 50% in comparison to the wild type strain Newman

pEmpty and the complemented mutant Newman DsecDF pSecDF

Figure 1. Differential extracellular protein amounts in Newman DsecDF in comparison to the wild type Newman. Proteins identified to
be significantly and more than two-fold changed in Newman DsecDF compared to the wild type Newman. The mean values of four independent
experiments are shown with their standard deviation given, except for NWMN_1019 and ScpA, which were only found in two biological replicates.
Proteins are colour coded according to the following categories: N-terminal Sec signal peptide (SP), LPXTG-motif, adhesive properties (MSCRAMM
and SERAM), immune evasive properties, autolytic properties and membrane proteins. Proteins confirmed below by Western blot analysis are
highlighted in bold. *, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0063513.g001

Table 2. Localization of identified proteins based on different bioinformatics tools [85,86,87] and Sibbald et al. [38].

Localization Proteins (%) Sec signal peptide Remarks

Cytoplasm 172 (74.8)

Membrane 9 (3.9)

Lipoprotein 2 (0.9)

Cell wall 7 (3.0) 7 6 covalently attached by LPXTG motif

Extracellular 31 (13.5) 27 6 non-covalently bound to the cell wall

Unknown 9 (3.9)

Total 230 (100)

doi:10.1371/journal.pone.0063513.t002
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(Figure 3A). In CHE482, binding of CHE482 DsecDF pEmpty was

reduced at low concentrations of fibrinogen, but not at concen-

trations above 2 mg/ml (Figure 3B). This phenotype was restored

in both strains by the complementing plasmid pSecDF.

Fibronectin binding proteins are not anchored to the cell wall in

strain Newman due to a point mutation leading to an early stop

codon and truncated proteins without sortase motif [56].

Therefore, strain Cowan I was used as a functional control in

the binding assay of Newman to human fibronectin [56]. As

expected, the binding capacity of strain Newman pEmpty to

fibronectin was up to ten times lower as compared to strain Cowan

I (Figure 3A). However, deletion of secDF further reduced binding

Figure 2. Complementation of SecDF-dependent changes. Western blot analysis of extracellular proteins in the SN of two different strain
backgrounds. (A) Newman harbouring empty plasmid pEmpty (pCN34), the mutant strain Newman DsecDF harbouring empty plasmid pEmpty
(pCN34) and the complemented mutant Newman DsecDF mutant harbouring plasmid pSecDF (pCQ27) containing the secDF gene with its
endogenous promoter. (B) CHE482, the mutant strain CHE482 DsecDF and the complemented mutant strain CHE482 DsecDF harbouring plasmid
pSecDF (pCQ27). Specific antibodies against CHIPS, FnBPA, Eap, LytM, SceD and SEA were used. Truncated FnBPA in Newman runs below the 70 kDa
marker band. Putative degradation bands of FnBPA have been observed before [56,80,81,82] and are indicated by a ring. Additional protein bands
due to unspecific binding to protein A or Sbi are indicated by an asterisk.
doi:10.1371/journal.pone.0063513.g002

Table 3. Adhesins, which were reduced in the SN of Newman DsecDF.

Proteins Binding to human fibrinogen Binding to human fibronectin Ref.

MSCRAMM ClfA x [88]

ClfB x [89]

FnBPA x x [80,90]

SpA

SERAM Coa x [91]

Eap x x [92]

Emp x x [93]

Efb x [94]

doi:10.1371/journal.pone.0063513.t003
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to fibronectin in the Newman background and was partially

restored by the complementing plasmid. In CHE482, the secDF

mutant showed a similar concentration dependent phenotype for

fibronectin as for fibrinogen, with the CHE482 DsecDF pEmpty

displaying a reduced binding at lower fibronectin concentrations

(Figure 3B). These findings suggest the presence of additional

fibrinogen and fibronectin binding proteins in the CHE482

background, possibly on mobile genetic elements, which reduce

the effect of a secDF deletion on adhesion to fibrinogen and

fibronectin.

In a next step, we investigated whether the secDF deletion would

also affect adherence to host endothelial cells (human umbilical

vein endothelial cells, HUVECs). Because of the point mutation in

the FnBPs of strain Newman mentioned above, this strain has

been previously shown to be weakly adherent to HUVECs [56].

Therefore, we used the secDF mutant of strain CHE482 to test

adherence and found significantly reduced adherence as compared

to the wild type strain (Figure 4A). This effect was restored in the

complemented mutant CHE482 DsecDF pSecDF. In accordance

with the previous findings [56] adherence by strain Newman was

only 12.766.6% of strain CH482.

secDF inactivation leads to reduced cytotoxicity
Many of the virulence factors produced by S. aureus destroy host

tissue to allow dissemination. Thus, we analyzed the ability of the

secDF mutant to damage endothelial cells using a previously

Figure 3. Impact of SecDF on fibrinogen and fibronectin binding. Binding properties of Newman and CHE482 strain sets to immobilized
human fibrinogen and fibronectin was assessed as described in materials and methods. (A) Newman pEmpty, Newman DsecDF pEmpty and the
complemented mutant Newman DsecDF pSecDF. FnBPs in the Newman background are truncated due to a point mutation leading to a stop codon
before the sortase motif, which is required for cell wall anchoring, and therefore are secreted [56]. Hence, Cowan I was used as a functional control
strain in the fibronectin binding assay. (B) CHE482 harbouring empty plasmid pEmpty (pCN34), the mutant strain CHE482 DsecDF harbouring empty
plasmid pEmpty (pCN34) and the complemented mutant CHE482 DsecDF pSecDF. Mean of three independent experiments are shown with their
standard deviation.
doi:10.1371/journal.pone.0063513.g003
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published MTT assay [31]. This assay measures MTT reduction

by living cells and is inversely related to cell death. We previously

showed that MTT reduction by HUVECs internalized S. aureus is

negligible [31]. To evaluate cytotoxicity of strain Newman, we

used similar conditions as previously described using a MOI of 50

[33]. In this assay, endothelial cells are infected with bacteria for

3 h. Then, extracellular bacteria are killed and damage is assessed

24 h after the addition of the bacteria. Strain Newman did not

induce substantial damage under these conditions (15.8610.9%

damage) and was not suited to study the effect of secDF inactivation

Figure 4. Adhesion, cytotoxicity and invasion in HUVECs. Interactions of Newman and the CHE482 strain set the wild type CHE482, CHE482
DsecDF and the complemented mutant CHE482 DsecDF pSecDF with HUVECs. (A) Effect of secDF inactivation in the CHE482 background on adhesion.
(B) Growth in invasion medium. The arrow indicates the time point at which extracellular bacteria are lysed. (C) Inoculum dependent cytotoxicity of
wild-type strains as determined by the MTT assay. (D) Effect of secDF inactivation in the CHE482 background on cytotoxicity as determined by the
MTT assay. (E) Effect of secDF inactivation in the CHE482 background on invasion. ***, P,0.0001.
doi:10.1371/journal.pone.0063513.g004
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on S. aureus cytotoxicity. We therefore decided to use strain

CHE482, which caused a significant higher damage (69615%)

and the corresponding secDF mutant. However, CHE482 DsecDF

exhibited a growth defect in invasion medium during the 3 h

invasion step (Figure 4B). We therefore decreased the invasion

time to 1 h, while bacteria appeared to be in the lag-phase

showing no measurable difference in OD600 or CFUs between the

strains (Figure 4B). Because these conditions have not been

previously used to study S. aureus-induced endothelial cell damage,

it was essential to identify an optimal MOI. Figure 4C shows the

increasing cytotoxicity of strain CHE482 with increasing MOIs

ranging from 25 to 2500. Again, damage induced by strain

Newman under these conditions was very low. Using an MOI of

2500, we found that secDF inactivation in strain CHE482 led to a

substantial reduction in cytotoxicity (Figure 4D). This phenotype

could be complemented using strain CHE482 DsecDF pSecDF,

which contains the secDF locus on a plasmid. To determine

whether the reduced cytotoxicity of CHE482 DsecDF was due to a

reduction in endothelial cell invasion, invasion was assessed under

similar conditions as for the MTT assay. The mutant strain

CHE482 DsecDF exhibited significantly reduced invasion as

compared to the wild type strain (Figure 4E). This effect was

restored in the complemented mutant CHE482 DsecDF pSecDF.

In accordance with the low adherence and cytotoxicity of strain

Newman, invasion was only 1.661.0% of strain CHE482.

Inactivation of secDF leads to reduced pathogenicity in
an insect infection model

To assess the influence of SecDF on virulence, Newman strains

were injected into last instar larval stage G. mellonella and survival

of the larvae was monitored over time. Resuspension buffer for

bacterial cultures was used as a negative control. The dimensions

and masses of larvae in one group spanned representative and

comparable ranges, as preparatory experiments did not show any

correlation concerning larval weight and survival (data not shown).

Pathogenicity of Newman DsecDF pEmpty in G. mellonella was

significantly reduced (P,0.001) in comparison to the wild type

Newman pEmpty and the complemented mutant Newman DsecDF

pSecDF (Figure 5A). To ensure that the attenuated virulence was

not due to growth deficiencies of the mutant, the bacterial burden

per larvae was measured after 24, 48 and 72 hours. Variation of

CFU per larvae was rather high within the strains, for instance at

24 hours post infection (hpi) the wild type showed a bacterial

burden ranging from 1.546105 to 4.626107 (Figure 5B). Howev-

er, all three strains were able to multiply in the larvae within a

similar range during the first 48 hpi, with CFUs being even higher

in the secDF mutant after 72 hpi than in the wild type and the

complemented mutant. The different peak time points of CFU/

larvae in the secDF mutant (72 hpi) compared to the wild type or

complemented mutant (48 hpi) was not reflected in the survival of

G. mellonella, further indicating a strongly reduced virulence in

Newman DsecDF pEmpty, that was not compensated by increased

CFU numbers.

Discussion

Secretion of numerous virulence factors such as adhesins,

proteases, autolysins and toxins rely on a functional Sec secretion

system for the export across the cytoplasmic membrane [38]. So

far, most studies of the Sec machinery were performed in the

Gram-negative and Gram-positive model organisms E. coli and B.

subtilis, respectively. This study focused on the impact of the

auxiliary SecDF protein on virulence in the human pathogen

S. aureus by analysing the exoproteome of Newman DsecDF in a

gel-free approach, followed by in vitro and in vivo virulence studies.

Our secretomics results were in good agreement with previous

data [23]. A relatively high number of cytoplasmic proteins was

found in the SN, which has already been observed by other

research groups and in different microorganisms [57,58,59,60].

This occurrence has been assigned to cell wall turnover,

proteolytic processing, shedding, natural lysis and lysis due to

handling [61,62,63]. Nevertheless, we identified several new

Figure 5. G. mellonella virulence assay. (A) Pathogenicity of
Newman pEmpty, Newman DsecDF pEmpty and Newman DsecDF
pSecDF in G. mellonella. Larvae were monitored every 24 hours. PBS
was used as negative control. Three independent experiments were
pooled and plotted as Kaplan-Meier survival curve, P,0.001. (B)
Bacterial burden per (live) larvae was measured in triplicates 24, 48
and 72 h post infection (hpi). The symbols triangle, square, diamond
and line correspond to replicates I, II, III and the average, Ø, respectively.
The inoculum (CFU/larvae) is shown at time point zero.
doi:10.1371/journal.pone.0063513.g005
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proteins to be influenced by SecDF. This was confirmed by

Western blot analysis and could be complemented for the proteins

CHIPS, Eap, FnBPA, LytM and SEA.

Eight out of 11 proteins, identified in both the previously

characterized S. aureus RN4220 secG mutant [7] and Newman

DsecDF, showed a similar trend and were found to be reduced in

both mutants in comparison to the wild types (Sle1, Geh, Hlb,

Hla, HlgB, HlgC, NWMN_1927 and YfnI). Three proteins (IsaA,

Spa and SsaA) were found to be increased in the secG mutant, but

reduced in Newman DsecDF. Different methods, sampling time

points and strain backgrounds could have contributed to those

divergent findings. Another possibility is that SecDF is required for

a subset of proteins deviating from the ones that require SecG. In

addition, since they have different functions in the Sec pathway,

the absence of SecG or SecDF might lead to only partially

overlapping phenotypes.

Two Sec-dependent proteins were found to be increased in

Newman DsecDF; the autolysin LytM and the transglycosylase

SceD. Kouwen et al. had observed, that a B. subtilis LipA hyper-

producing strain could export the normally Sec-dependent LipA,

which also contains a potential Tat RR-SP via both Tat pathways

[64]. S. aureus LytM and SceD do not contain a potential Tat RR-

SP; whether they are secreted by another transport system in

Newman DsecDF remains to be determined.

In the secG mutant only one Sec-independent protein was

identified to be reduced; YfnI/LtaS [7], which was also found

reduced in Newman DsecDF (Table S1). Additionally, the two Sec-

independent proteins Hld and SEA were found to be significantly

reduced upon deletion of secDF. Hld belongs to the phenol-soluble

modulins and has recently been shown to be exported by the ABC

transporter Pmt [65]. The fact that the amounts of certain Sec-

independent proteins were changed in both the secG and the secDF

mutant, points towards indirect effects caused by the deletion of

these Sec translocase constituents. Slightly reduced levels for the

regulatory and Hld-encoding mRNA RNAIII have been shown

previously in Newman DsecDF [23]. Because RNAIII transcription

is regulated by the two-component system accessory gene

regulator (agr) the reduction of RNAIII levels suggest that agr is

indirectly affected by secDF deletion [23,66]. Clearly, more work is

required to confirm this hypothesis and to determine whether

other regulatory processes are influenced directly or indirectly by

the absence of SecDF.

Secretome analysis showed decreased SpA levels in Newman

DsecDF consistent with a previously reported reduction of spa

transcription [23]. In contrast, previous and present Western blot

analysis showed similar levels of full-length SpA in the wild type

and Newman DsecDF. A possible explanation for these seemingly

contradictory findings could be the reduced amounts of SspA

protease in the Newman DsecDF (Table S1). SspA is the main

player of SpA degradation [67]. Higher SpA and SspA levels in

the wild type would lead to more SpA degradation fragments,

which can be detected by secretome analysis and increase the total

protein amounts attributed to SpA, but would be too small to be

detected by Western blot analysis. Whether this is the case still

needs to be investigated.

Several well known virulence factors playing a central role

during the initial steps of an infection were decreased in Newman

DsecDF. These changes led to reduced binding to the two

important human host factors fibrinogen and fibronectin in vitro.

Although the effect of the secDF deletion on the adhesion intensity

varied between the two strains tested and was smaller in CHE482,

we also found significantly reduced adhesion of CHE482 DsecDF

to HUVECs. This was accompanied by a significantly decreased

invasion and must be attributed to the sum of impaired factors in

the mutant and the multitude of additional host matrix factors S.

aureus can bind to. In this study, the two important invasion factors

Eap and FnBPA were found to be reduced [68,69]. While the

receptor of Eap is still unknown, the FnBPs bind via the bridging

factor fibronectin to the host receptor integrins a5b1, which is

sufficient to induce the uptake of staphylococci [68]. Thus, the low

cytotoxicity in HUVECs displayed by CHE482 DsecDF must be

assumed to be at least partially caused by its defective adhesion

and invasion, in addition to a reduced production of toxins. The

decreased levels of numerous virulence factors and the reduced

cytotoxicity, indicative for virulence in mice and rabbits

[33,70,71], suggested the virulence of the secDF mutant to be

attenuated. We therefore determined the pathogenicity of New-

man DsecDF pEmpty in the invertebrate model host G. mellonella,

sharing several features of the innate immune response with

mammalians [72,73]. A positive correlation has been shown

between the pathogenicity of microorganisms in insects and in

mice [74,75] and in recent years this model has been increasingly

used for assessing the virulence of S. aureus [36,76,77,78,79]. As

expected, virulence was significantly attenuated in Newman

DsecDF pEmtpy. The similar bacterial load per larvae indicated

that Newman DsecDF pEmtpy has the ability to multiply as well as

the parent strain and that the generally diminished virulence factor

expression Newman DsecDF pEmtpy is the cause for its reduced

virulence.

Taken together, our data provide new insights on the relevance

of SecDF in S. aureus pathogenicity. We showed that deletion of

secDF affects an important part of the extracellular proteome

leading to reduced adhesion, invasion and cytotoxicity, as well as

reduced virulence in G. mellonella. Because both MSSA and MRSA

secDF mutants are less resistant to well established antibiotics [23],

SecDF is an interesting target for the development of novel

antimicrobial substances.

Supporting Information

Table S1 Proteins found in the supernatant of S. aureus Newman

and Newman DsecDF and their predicted localization.

(PDF)
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74. Salamitou S, Ramisse F, Brehélin M, Bourguet D, Gilois N, et al. (2000) The

plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and

Bacillus cereus in mice and insects. Microbiol 146: 2825–2832.

75. Jander G, Rahme LG, Ausubel FM (2000) Positive correlation between

virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:

3843–3845.

76. Desbois AP, Coote PJ (2011) Wax moth larva (Galleria mellonella): an in vivo

model for assessing the efficacy of antistaphylococcal agents. J Antimicrob
Chemother 66: 1785–1790.

77. Gao W, Chua K, Davies JK, Newton HJ, Seemann T, et al. (2010) Two novel

point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and
switch on the stringent response to promote persistent infection. PLoS Pathog 6:

e1000944.
78. Latimer J, Forbes S, McBain AJ (2012) Attenuated virulence and biofilm

formation in Staphylococcus aureus following sublethal exposure to triclosan.

Antimicrob Agents Chemother 56: 3092–3100.
79. Purves J, Cockayne A, Moody PCE, Morrissey JA (2010) Comparison of the

regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-
phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus.

Infect Immun 78: 5223–5232.
80. Greene C, McDevitt D, Francois P, Vaudaux PE, Lew DP, et al. (1995)

Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-

binding proteins and studies on the expression of fnb genes. Mol Microbiol 17:
1143–1152.

81. McGavin MJ, Zahradka C, Rice K, Scott JE (1997) Modification of the
Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun

65: 2621–2628.

82. Jönsson K, Signäs C, Müller HP, Lindberg M (1991) Two different genes encode
fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide

sequence and characterization of the second gene. Eur J Biochem 202: 1041–
1048.

83. Duthie ES, Lorenz LL (1952) Staphylococcal coagulase: Mode of action and
antigenicity. J Gen Microbiol 6: 95–107.

84. Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, et al. (2004) Novel

cassette-based shuttle vector system for Gram-positive bacteria. Appl Environ
Microbiol 70: 6076–6085.

85. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, et al. (2010) PSORTb 3.0:
improved protein subcellular localization prediction with refined localization

subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:

1608–1615.
86. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0:

discriminating signal peptides from transmembrane regions. Nat Methods 8:
785–786.

87. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting
transmembrane protein topology with a hidden markov model: application to

complete genomes. J Mol Biol 305: 567–580.

88. McDevitt D, Francois P, Vaudaux P, Foster TJ (1995) Identification of the
ligand-binding domain of the surface-located fibrinogen receptor (clumping

factor) of Staphylococcus aureus. Mol Microbiol 16: 895–907.
89. Nı́ Eidhin D, Perkins S, Francois P, Vaudaux P, Höök M, et al. (1998) Clumping
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