OPEN a ACCESS Freely available online

@' PLOS ’ ONE

Comparative Proteomic Analysis of Aluminum Tolerance
in Tibetan Wild and Cultivated Barleys

Huaxin Dai’, Fangbin Cao', Xianhong Chen', Mian Zhang", Imrul Mosaddek Ahmed’, Zhong-Hua Chen?,
Chengdao Li3, Guoping Zhang'*, Feibo Wu'*

1 Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China, 2 School of Science and Health,
Hawkesbury Campus, University of Western Sydney, New South Wales, Australia, 3 Department of Agriculture, Government of Western Australia, South Perth, Western
Australia, Australia

Abstract

Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic
diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to
compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/
tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and
translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified
and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage,
transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins
being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase
beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the
significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for
Al tolerance.
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important for soybean [9], tomato [10] and Arabidopsis [11]
plants survival under Al toxicity. However, only limited informa-
tion is available on Al accumulation/translocation and Al
tolerance mechanisms in barley. Moreover, physiological and
proteomic responses to Al stress in Tibetan wild barley genotypes
have never been investigated and compared with elite Al-tolerant
barley cultivars. Thus, precise knowledge of the proteomic basis is
required to dissect the mechanisms underlying acid/Al tolerance
in wild barley. In the present study we examined stress-specific
proteins for acid/Al tolerance in wild barley by comparing the
proteomic responses of the two Tibetan wild barley genotypes
XZ16 (high acid/Al tolerant), XZ61 (acid/Al sensitive) and Al-
tolerant cv. Dayton using two-dimensional gel electrophoresis (2-D)
and mass spectrometry (MS). These results are useful to better
understand the mechanisms of Al tolerance in barley, and provide
an effective pathway for the exploration of Al-tolerant genes in
plants.

Introduction

Tonic aluminum (AI*"), highly toxic to plant growth, is a major
factor limiting crop productivity on acid soils [1]. The strategies
for maintaining production on acid soils include lime application
to raise soil pH and use of plants with high tolerance to acid soils.
Development and planting of Al tolerant cultivars is a cost-
effective and practically acceptable approach for full utilization of
acid soil [2].

Barley (Hordeum vulgare L.) is one of the most Al-sensitive species
among small grain cereals [3]. Al toxicity limits the growth and
productivity of barley on acid soils and its expansion as a crop into
many agricultural areas in the world [4]. In order to breed barley
cultivars tolerant to Al toxicity, it is especially important to identify
genetic resources with Al tolerance. Wild barley germplasm is rich
in useful genes for crop improvement [5]. Tibetan annual wild
barley from Qinghai-Tibet Plateau is regarded as one of the
progenitors of cultivated barley and is rich in genetic diversity [6].
We successfully identified Tibetan wild annual barley genotypes
with high tolerance to both low pH and Al stress [7]. However,
their underlying physiological and molecular mechanisms in Al
tolerance remain unclear.

Materials and Methods

Plant Materials and Experimental Design
Hydroponic experiments were performed using two Tibetan

Comparative proteomic analysis and bioinformatics techniques
provide powerful tools to identify proteins expressed under abiotic
stress [8]. Root proteomic analysis showed that proteins involved
in stress defense, metabolisms and signal transduction were
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annual wild barley X716 and XZ61 (H. vulgare L. ssp. spontaneum),
acid/Al- tolerant and sensitive genotypes, respectively, and one Al-
tolerant-cultivar Dayton. Seeds were surface sterilized in 1%
HyO, for 30 min, rinsed with distilled water, and then germinated
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Figure 1. Al localization in barley roots exposed to different Al levels for 24 h. (A) Al was monitored by morin fluorescence using confocal
laser scanning microscopy. Fluorescence intensity of image analysis was calculated using Image J software. (B) Seedlings were subjected to 0, 25, 50,
100 and 200 puM AICls, respectively, in 0.5 mM CaCl, solution at pH 4.3 for 24 h, and then root tips (0-10 mm) were stained with morin. Images
shown in the Figures are representative of more than fifteen seedlings per treatment. Bar=100 um. Data are means * SD (n=5).

doi:10.1371/journal.pone.0063428.g001

in sterilized moist quartz sand in an incubator at 20+ 1°C. Seven-
day-old uniform seedlings were transplanted into 5-L containers
filled with 4.5 L basal nutrient solution (BNS). The composition of
BNS was described in Wu et al. [12]. The container was covered
with a polystyrol plate with 7 evenly spaced holes (2 plants per
hole) and placed in a greenhouse. Solution was continuously
aerated with pumps and renewed daily after Al addition. The
solution pH was adjusted to 5.8%0.1 with NaOH or HCI, as
required.

On the day 7 after transplantation, seedlings were cultured for
1 din 0.5 mM CaCl, at pH 4.3, and then exposed to 0, 50 or
200 uM Al in 0.5 mM CaCl, at pH 4.3 for 24 h. The plantlets
were kept in a growth room at 25/20°C with a 14/10 h (day/
night) photoperiod and irradiance of 340 pumols m ?s ' light
intensity. A split-plot design was adopted with treatment as the
main plot and genotype as sub-plot with five replicates in each
treatment. At 3 days after treatment, plants were harvested from
each treatment, and roots were washed with distilled water
thoroughly and collected for two 2-DE experiments and qR'T-
PCR analysis. Dry weights of the plants were determined and used
for Al concentration.

Determination of Al Concentration and Root Al
Distribution

Al concentrations was determined after digestion in an acid
mixture (HNO3:HCIO4=4:1, v/v) at 150°C for 10 h, using
inductively coupled plasma atomic emission spectrometry (ICP/
ALES) (Thermo Jarrel Ash, San Jose, CA).

Morin staining for Al in the root tip region was determined
according to Zheng et al. [13]. Briefly, 1-cm root tips were stained
with 100 mM morin (Sigma-Aldrich, St. Louis, MO, USA) in
10 mM MES buffer (pH 5.5) for 30 min. Images were acquired
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using a Leica TCS SP2 confocal laser scanning microscope (Leica
Microsystems, Heidelberg, Germany) with excitation at 420 nm
and emission at 515 nm.

Protein Extraction, Quantification, Visualization and
Image Analysis

Total root protein extracts were prepared essentially according
to phenol extraction method [14] with minor modification. Root
sample (3 g) of control and Al treated plants were grounded in a
mortar separately to a fine powder in liquid nitrogen and
homogenized in an extraction buffer containing 30 mg PVPP.
The homogenate was suspended in 7 ml ice-cold phenol
extraction buffer (0.7 M sucrose; 0.1 M KCIl; 50 mM ED-
TA,0.5 M Tris-HCL, 1% w/v DTT, pH 7.5; complete protease
inhibitor cocktail (Roche Applied Science)) and immediately
added 7 ml ice-cold Tris buffered phenol and vortexed for 15 s.
The sample was then vortexed for 10 s every 5 min and repeated
for six times at 4°C. After centrifugation (30 min, 5000 xg, 4°C)
the phenolic phase was collected, and the sample was re-extracted
with 14 ml of extraction buffer (added with the same volume of
phenol extraction as collected items), and vortexed for 10 s every
5 min and repeated for six times at 4°C. After centrifugation
(30 min, 5000xg, 4C) the phenolic phase was collected and
precipitated overnight with five volumes 100 mM ammonium
acetate in methanol at —20°C. After centrifugation at 5000 xg for
30 min at 4°C, the supernatant was removed and the pellet was
rinsed twice in ice-cold acetone/0.2% DTT. Between the two
rinsing steps, the sample was incubated for 60 min at —20°C. The
pellet was air-dried, resuspended in 200 pl lysis buffer (7 M urea,
2 M thiourea, 4% CHAPS, 20 mM Tris-HCI, pH7.4, containing
1% w/v DTT; Amersham Biosciences), and vortexed for 1 h at
room temperature. Protein concentration was determined by

May 2013 | Volume 8 | Issue 5 | e63428



MW (kDa)
A
103
45
23

Proteomics of Al Tolerance in Tibetan Wild Barley

-
4
B
103
45
23
19  om

Figure 2. Representative 2-DE maps of root proteins in XZ16 exposed to Al for 24 h. The proteins were isolated from the root of XZ16
exposed to 50 uM (A, upper) and 200 uM (B, below) Al for 24 h. Total proteins were extracted and separated by 2-DE. In IEF, 100 pug proteins were
loaded onto pH 4-7 IPG strips (24 cm, linear). SDS-PAGE was performed with 12.5% gels. The spots were visualized by silver staining. Differentially
accumulated protein spots are indicated by green sashes. Arrows indicate the differentially expressed protein spots whose expressions were
significantly induced (fold changes =1.5) or unchanged (—1.50< folds <1.5) in XZ16 but down-regulated (folds <—1.50) in XZ61; or up-regulated in
XZ16 but unchanged in XZ61, under 50 pM Al (U1-U24) and 200 uM Al (U25-U44) stress.

doi:10.1371/journal.pone.0063428.9g002

standard Bradford assay using bovine serum albumin as standard
(Bio-Rad, Hercules, CA, USA). All chemicals used were, if not
further specified in the text, p.a. or electrophoresis grade. All
electrophoresis units employed were from Amersham Biosciences.

Protein visualization, image analysis and quantification were
determined according to Bah et al. [15]. For each sample, at least

PLOS ONE | www.plosone.org

three independent protein extracts were prepared after each
treatment and at least three 2-DE analyses were performed for
each protein extract. To analyze the expressed protein patterns,
stained gels were scanned and calibrated using a PowerLook1100
scanner (UMAX), followed by analysis of protein spots using GE
HealthCare Software (Amersham Biosciences). Spot detection was
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Figure 3. Venn diagram illustrating the expression patterns of Al stress-responsive proteins in roots of XZ16, XZ61 and Dayton. The
numbers of differentially expressed spots up- or down-regulated are shown in the different segments. As to protein spots altered by 50 and 200 uM
Al stress, 450, 473, 392 spots (50 uM Al vs control) and 251, 447, 350 spots (200 uM Al vs control) were up-regulated in XZ16, XZ61, Dayton,
respectively; while 347, 306, 442, and 398, 334, 495 spots down-regulated. The abundance of 101, 31 spots increased in both of XZ16 and Dayton

under 50, 200 uM Al stress, respectively, and that of 49, 39 decreased.
doi:10.1371/journal.pone.0063428.g003

realized without spot editing. The protein spots were quantified
using the % volume criterion. Only those with significant and
reproducible changes (P<<0.05) were considered to be differentially
accumulated proteins. The target protein spots were automatically
excised from the stained gels and digested with trypsin using a Spot
Handling Workstation (Amersham Biosciences). Peptides gel
pieces were placed into the EP tube and washed with 1:1 mixture
of 50 UL of 30 mM KsFe(CN)s and 100 mM NaS,0O3 for 10—
15 min until completely discolored then washed with 200 puL bi-
distilled water (two times for 5> min each). The washed solution was
drained and washed with 50% ACN (acetonitrile, Fisher A/0626/
17) and 100% ACN rotationally, and then incubated in 25 mM
NH,HCO; (ammonium bicarbonate, Sigma A6141) for 5 min at
37°C. After leaching out of the incubation solvent, 50% ACN and
100% ACN was rotationally added and dried at 40°C for 5 min
respectively. Trypsin digestion was carried out as follows:
sequencing-grade porcine trypsin (Promega, Madison, WI, USA)
was suspended in 25 mM NH,HCO; at a concentration of
12.5 ng per Wl to rehydrate the dried gel pieces. The trypsin
digestion was carried out for 16 h at 37°C. Peptides were extracted
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from the digest as follows for three times: 10 pL of 50% ACN
containing 0.1% TFA (trifluoroacetic acid, GE HealthCare) was
added to each tube and incubated for 5 min at 37°C and the
supernatants were transferred to new EP tube. The extracts were
pooled and then vacuum concentrated for about 2 h. A solution of
peptides was filtrated via Millipore (Millipore ZTC18M096) and
mixed with the same volume of a matrix solution consisting of
saturated o-cyano-4-hydroxycinnamic acid (CHCA) in 50% ACN
containing 0.1% TFA. After the peptides were co-crystallized with
CHCA by evaporating organic solvents, tryptic-digested peptide
masses were measured using a MALDI-TOF-TOF mass spec-
trometer (ABI4700 System, USA). All mass spectra were recorded
in positive reflector mode and generated by accumulating data
from 1000 laser shots. The following threshold criteria and settings
were used: detected mass range of 700-3200 Da (optimal
resolution for the quality of 1500 Da), using a standard peptide
mixture  (des-Argl-Bradykinin =~ Mr904.468, Angiotensin |
Mr1296.685, Glul-Fihrinopeptide B Mr1570.677, ACTH (1-17)
Mr2093.087, ACTH (18-39) Mr2465.199; ACTH (7-38)

Mr3657.929) as an external standard calibration, with laser

May 2013 | Volume 8 | Issue 5 | e63428
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Figure 4. ‘Spot view’ of the abundance of differentially expressed proteins in roots of barley seedlings under 50 or 200 uM Al for
24 h. The images of three genotypes: XZ16, XZ61 and Dayton (indicated with green circles) from control and 50 or 200 uM Al (pH 4.3) treated plants.
Protein spot ID refers to numbers in Figure 4 and Tables 1, 2.

doi:10.1371/journal.pone.0063428.g004
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frequency of 50 Hz, repetition rate of 200 HZ, UV wavelength of
355 nm, and accelerated voltage of 20,000 V. Peptide mass
fingerprint data were matched to the NCBInr database using
Profound program under 50 ppm mass tolerance.

Peptide and Protein Identification by Database Search
Data were processed using the Data Explorer software (Applied
Biosystems) and proteins were unambiguously identified by

searching against a comprehensive non-redundant sequence
database (NCBInr) using the MASCOT software search engine

PLOS ONE | www.plosone.org

Table 1. Proteins whose expression were significantly induced (+) in XZ16 roots but down-regulated (—)/unchanged in XZ61, or
unchanged in XZ16 but down-regulated in XZ61 under 50 uM Al stress.
Accession
Spot ID  Protein name number MW Da pl AASC % mp Folds (Al vs control)
XZ16 XZ61 Dayton

Metabolism

U1 S-adenosylmethionine synthase 3 [Hordeum. vulgare subsp.  gi|122220777 43138 5.51 42 1 +2.39 —244 0.00
vulgare]

u2 Methionine synthase [H. vulgare subsp. vulgare] gi|50897038 84794 568 35 19 —-1.34 —3.39 -223

u3 Methionine synthase [H. vulgare subsp. vulgare] gi[50897038 84794 568 22 12 —1.24 —2.68 +1.02

U4 Glutamine synthetase [Arabidopsis thalianal gi[228456 47123 6.73 15 7 +6.50 —10° -1.09

us v-glutamylcysteine synthetase [Triticum aestivum] gi[57903694 43079 530 20 9 +4.25 —274 —3.50

ue Putative asparate aminotransferase [H. Vulgare subsp. vulgare] gi|89511843 45377 5.75 14 4 +1.80 —1.34 +1.36

u7 Predicted pirin-like protein [Brachypodium distachyon] gi|357114735 41337 9.37 17 8 +1.32 —1.72 +1.36
Energy

u8 0s0690133800 [Oryza sativa japonical gi[115466224 73973 5.44 16 10 +1.07 —1.60 +1.04

u9 ATP synthase beta subunit [Triticum. monococcum] gi[525291 59326 5.56 19 7 +10° 0.00 0.00

u10 Aconitate hydratase 3 [Citrus clementinal gi[285309967 98669 5.89 10 9 —1.03 —2.53 +1.04

U1l Fructose-bisphosphate aldolase [H. vulgare] gi[226316443 39071 6.08 29 7 +1.71 +1.10 +1.16
Cell growth/division

u12 Predicted proliferating cell nuclear antigen-like [Brachypodium gi|357137519 29514 4.61 14 5 +1.69 +1.33 +1.04
distachyon]
Protein biosynthesis

u13 Putative elongation factor 1 beta [H. vulgare] gi[7711024 24716 452 34 7 +1.86 +1.29 +1.18
Protein destination/storage

u14 HSP organizing protein/stress-inducible protein [Dactylis gi[281399029 64793 6.11 10 5 +1.07 —1.81 -1.10
glomeratal

u15 Heat shock protein 93-V [A. Lyrata subsp. lyratal gi[297795893 103611 636 35 30 +1.06 —1.94 +1.12

u16 050190839700 [O. sativa japonica) gi[115440951 19059 534 21 3 —1.03 —1.93 —-1.12

u17 Heat shock protein [Spinacia oleracea] gil425194 71231 5.15 22 12 +2.08 +1.01 +1.10

u18 Cytosolic heat shock protein 90 [H. vulgare] gi[32765549 80654 4.96 27 15 +1.21 —-1.99 +1.63

u19 Cytosolic heat shock protein 90 [H. vulgare] gi[32765549 80654 496 17 9 +1.01 —1.81 +1.03
Signal transduction

u20 RNA-binding Ras-GAP SH3 binding protein [T. aestivum] gi[290579509 45493 4.95 18 7 +1.60 —1.51 —1.11
Unknown

u21 Hypothetical protein SORBIDRAFT_109022570 [Sorghum gi[242096224 47231 6.08 13 7 +1.80 —1.57 —1.03
bicolor]

u22 Hypothetical protein LOC100383520 [Z. mays] gi[293336836 77345 6.03 16 11 +1.59 +1.29 +1.26

u23 Predicted protein [H. vulgare subsp. vulgare] gi[326513540 58531 6.05 22 40  +2.19 +1.23 —1.72

u24 Predicted protein [H. vulgare subsp. vulgare] gi[326513418 35914 506 22 9 +1.08 —2.60 -1.36

AASC, Amino acid sequence coverage; MP, Matched peptides.

Protein spot ID refers to numbers in Fig. 7. Accession number of top database match from the NCBInr database. ‘Al vs control’ referred to fold variation of Al exposed vs

unexposed plants. Fold increase and decrease were calculated as Al/control, and —control/Al for up and down -regulated proteins respectively. All ratios shown are

statistically significant (p<<0.05).

doi:10.1371/journal.pone.0063428.t001

(http://www.matrixscience.com/ cgi/search form.plPFORM-
VER = 2&SEARCH =MIS). Folds of increase and decrease in
Al exposed vs unexposed roots were calculated as treated/control
and -control/treated for up- and down-regulated proteins,
respectively. For single-peptide identified proteins, up- and
down-regulation were assigned when the regulation factors were
above 1.5 (p<<0.05).
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gRT-PCR Analysis

Total RNA was isolated from roots with the TRIzol reagent
following manufacturers’ recommendation (Invitrogen, Karlsruhe,
Germany). cDNA samples were assayed by quantitative real time
PCR (qRT-PCR) in the iCycler iQTM Real-time PCR Detection
System (Bio-Rad, Hercules, CA, USA) using the SYBR Green
PCR Master Mix (Applied Biosystems). The PCR conditions
consisted of denaturation at 95°C for 3 min, followed by 40 cycles
of denaturation at 95°C for 30 s, annealing at 58°C for 45 s and
extension at 72°C for 45 s. Gene-specific primers (Table S1) were
designed using the Primer Express software (Applied Biosystems).
Barley actin gene was used as control (AY145451) fw-5'-
GACTCTGGTGATGGTGTCAGC-3', rv-5'-GGCTGGAA-
GAGGACCTCA-3'".
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Table 2. Proteins whose expression were significantly induced (+) in XZ16 roots but down-regulated (—)/unchanged in XZ61, or
unchanged in XZ16 but down-regulated in XZ61 under 200 uM Al stress.
Accession
Spot ID  Protein name number MW, Da pl AASC % mp Folds (Al vs controls)
XZ16 XZ61 Dayton
Metabolism
U25 (U6*) Putative asparate aminotransferase [H. vulgare subsp. vulgarelgi|89511843 45377 5.75 14 4 +1.71 —1.34 +1.20
U26 (U7) Predicted: pirin-like protein [Brachypodium distachyon] gi|357114735 41337 9.37 17 8 —1.25 —2.05 +1.10
Energy
U27 (U11) Fructose-bisphosphate aldolase [H. vulgare] gi|226316443 39071 6.08 29 7 +2.06 —1.22 +1.11
u28 050990535000 [O. sativa japonica] gi[115480367 32715 6.96 34 9 +10°8 +1.29 0.00
U29 Bp2A protein [T. turgidum subsp. dicoccoides] gi[133872436 25759 5.86 27 5 +1.71 —-1.72 0.00
u3o Phosphoglycerate mutase [T. aestivum] gi[32400802 29615 5.43 52 14 +1.94 +1.38 +1.74
U31 Enolase (2-phosphoglycerate dehydratase) [O. sativa japonicalgi|780372 48299 5.42 18 7 +1.25 -1.72 +2.53
u32 atp1 [Secale strictum] gi[166165274 53979 6.01 31 14 +1.15 —4.10 AF1l. 2
Cell growth/division
U33 (U12) Predicted: proliferating cell nuclear antigen-like [B. distachyonlgi|357137519 29514 4.61 14 5 +2.16 +1.08 -1.15
Protein destination/storage
U34 Heat shock 70 kda protein [Z. mays] gi|226500540 72989 5.62 10 4 +1.21 —1.97 +1.07
U35 (U17) Heat shock protein [Spinacia oleracea] gil425194 71231 5.15 22 12 +1.92 -1.25 -1.01
U36 (U18) Cytosolic heat shock protein 90 [H. vulgare] gi[32765549 80654 496 27 15 +1.12 —291 +1.15
U37 (U19) Cytosolic heat shock protein 90 [H. vulgare] gi|32765549 80654 4.96 17 9 +1.05 -1.76 -1.14
Transporters
u38 Vacuolar proton-atpase D subunit [T. aestivum] gi[108925894 41321 4.89 46 10 +1.05 —1.66 +1.12
Signal transduction
U39 14-3-3D protein [H. vulgare subsp. vulgare] gi|83271056 28742 480 44 9 +1.31 —1.58 +1.10
Disease/defense
u40 Phenylalanine ammonia-lyase [Phyllostachys edulis) gi|224998176 76278 6.15 19 12 +1.21 —3.50 +1.96
Unknown
u41 Predicted protein [H. vulgare subsp. vulgare] gi[326496891 38099 4.83 25 7 +2.08 -1.79 +1.22
u42 Hypothetical protein Sb01g000380 [S. bicolor] gi|242032147 60974 520 21 9 +1.09 —2.03 +1.36
U43 (U23) Predicted protein [H. vulgare subsp. vulgare] gi|326513540 58531 6.05 22 40 +1.84 -1.11 -3.17
U44 (U24) Predicted protein [H. vulgare subsp. vulgare] gi|326513418 35914 506 22 9 —1.32 —334 —1.27
*, Spot U25 is the same protein spots as U6 identified in 50 uM Al stress.
Protein spot ID refers to numbers in Fig. 7. Accession number of top database match from the NCBInr database. ‘Al vs control’ referred to fold variation of Al exposed vs
unexposed plants. Fold increase and decrease were calculated as Al/control, and —control/Al for up and down -regulated proteins respectively. All ratios shown are
statistically significant (p<<0.05).
doi:10.1371/journal.pone.0063428.t002

Statistical Analysis

Statistical analysis were performed using the Data Processing
System (DPS) Software Package [16]. Statistical significance of the
data was evaluated by two-way ANOVA using Duncan’s multiple
range test (SSR).

Results

Tibetan Wild Barley XZ16 Is Highly Tolerant to Al Toxicity

Time of appearance and severity of Al toxicity symptoms
differed greatly among the three genotypes (Figure S1). XZ16 was
less affected by 24 h exposure to 50 or 200 uM Al (pH 4.3),
whereas XZ61 was obviously affected, as reflected by severe root
growth inhibition. No significant difference between control and
50 or 200 uM Al stressed plants was found in root DW (dry
weight) of XZ16, and the whole plant DW of XZ16 and Dayton.
However, root and the whole plant DW of XZ61 decreased by
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Figure 5. Three root proteins associated with low pH isolated from the root of XZ16. Representative 2-DE maps of root proteins isolated
from XZ16 exposed to pH 4.3 for 24 h (A). ‘Spot view’ of the abundance of differentially expressed proteins that were significantly higher expressed
(+) in XZ16 compared with Dayton roots under control condition at pH 4.3 (XZ16 vs Dayton) but suppressed (—) at pH 6.0 (B).

doi:10.1371/journal.pone.0063428.g005

10.7% and 7.8% (50 uM Al vs control) and by 19.1% and 13.5%
(200 uM Al us control), respectively.

Al localization in barley roots exposed to different Al levels for
24 h was monitored by morin fluorescence using confocal laser
scanning microscopy (Figure 1A), and fluorescence intensity of
image analysis was calculated using Image J software (Figure 2B).
Root Al fluorescence showed that root Al concentration increased
with increasing external Al levels. XZ16 exhibited similar
fluorescent signal in root tips with Dayton, being significantly
(p<<0.05) less than that of XZ61 in both Al levels.

As to root Al accumulation, there was no significant difference
between XZ16 and Dayton, but both exhibited significantly
(p<<0.05) less accumulation than that of XZ61 in the two Al levels
(Figure S2A). Shoot Al accumulation, however, was significantly
lower (p<<0.05) in XZ16 than in Dayton and XZ61 in response to
Al treatments (Figure S2B). The transferring rates from roots to
shoots among them were not differed significantly except that
Dayton showed 18.2% and 13.6% higher than X716 and XZ61
when exposed to 50 and 200 uM Al stress, respectively (Figure
S2C). The above results indicate that Tibetan wild barley X716 is
highly tolerant to Al stress.

Differential Al-induced Protein Expression in Roots of the

Three Genotypes

Approximately 2268 spots, ranging from 2038 to 2642, were
resolved in each of two reproducible SDS-polyacrylamide gels
(Figure 2). Protein spots altered by Al stress in Al-tolerant
genotypes XZ16 and Dayton and Al-sensitive XZ61 or differen-
tially accumulated among the three genotypes under Al stress were
further analyzed and shown in Figure 3. For the protein spots
altered by 50 and 200 uM Al stress, 398, 334, 495 spots (50 UM Al
vs control) and 251, 447, 350 spots (200 uM Al vs control) were up-
regulated in XZ16, X761, Dayton, respectively; while 347, 306,
442, and 398, 334, 495 spots were down-regulated. In X716 and
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Dayton, the abundance of 101 and 31 spots increased and that of
49 and 39 decreased in response to 50 and 200 uM Al,
respectively,.

Al-responsive protein spots (44 spots, Ul-U24, U25-U44;
Figure 4) were analyzed by MALDI-TOF/TOF MS, and
identified by MS/MS data with significant probability (p<<0.05).
Twenty-four and 20 spots were up-regulated (fold change >1.50)
in XZ16 but unaltered/down-regulated in XZ61, or unaltered in
XZ16 but down-regulated in XZ61 under 50 (U1-U24, Figure 2A,
Table 1) and 200 uM Al (U25-U44, Figure 2B, Table 2),
respectively. The resulting spectra of the 44 protein spots (nine
spots overlapped at 50 and 200 UM Al, as shown in brackets in
Table 2, were identified using MASCO'T software search engine
against H. vulgare and homologous proteins of other green plants in
the NCBI non-redundant (nr) protein database and barley ESTs
databases (Tables 1 and 2). These proteins were classified into nine
groups based on their biochemical functions [17]. The majority of
the protein profile was energy (spots U8-Ul1l, U27-U32) and
metabolism (U1-U7), followed by protein destination/storage
(U14-U19 and U34-U37) and unknown (U21-U24, U4l and
U44). The other six minor groups included signal transduction
(U20 and U39), cell growth/division related proteins (U12),
protein biosynthesis (U13), transporter (U38) and disease/defense
(U40). Further comparison of the 44 identified spots with that of
Dayton revealed that 16 (Spots U1, U4, U5, U6 (U25), U9, Ull
(U27), U12 (U33), U13, U17 (U365), U20, U21, U22, U23 (U43),
U28, U29 and U41; Tables 1 and 2) proteins up-regulated in
XZ16 were surprisingly down-regulated or unaltered in both
Dayton and XZ61. There were a protein uniquely expressed (U9,
ATP synthase beta subunit) in XZ16 and three proteins not
expressed in Dayton [Ul, S-adenosylmethionine synthase 3
(SAMS); U28, a homologue of triosephosphate isomerase (TPI);
U29, Bp2A protein]. On the contrary, three proteins (U18, U31,
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Figure 6. Effect of 50 UM Al on the transcript levels of gene expression encoding selected proteins of three barley genotypes
exposed to 50 UM Al for 24 h. (A) S-adenosylmethionine synthase 3 (SAMS3, spot U1); (B) methionine synthase (MeSe, spot U2); (C) glutamine
synthetase (GS, spot U4); (D) y-glutamylcysteine synthetase (y-GCS, spot U5) and (E) ATP synthase beta subunit proteins in roots (spot U9) of three
barley genotypes exposed to 50 uM Al for 24 h. Error bars represent SD values (n=3).

doi:10.1371/journal.pone.0063428.g006

and U40) were slightly up-regulated in Dayton under Al stress, but
unaltered in XZ16.

Six chaperone-related proteins were identified: heat shock
protein (HSP, U17), HSP 93-V (U15), cytosolic HSP 90 (U18 and
U19), HSP organizing protein (U14) and HSP 70 kDa (U34).
These spots showed normal expression in X716 and Dayton, but
were down-regulated in XZ61 under Al stress (Tables 1 and 2),
indicating that these proteins are involved in Al detoxification in
both XZ16 and Dayton.

In addition, expression of three proteins, classified as the energy
category (Figure 5 and Table S2) was significantly higher in X716
vs Dayton under control condition at pH 4.3, and simultaneously
suppressed at pH 6.0. They are predicted to be 6-phosphogluco-
nate dehydrogenase decarboxylating-like isoform 1 (6-PGDH)
(E1), plastid glutamine synthetase isoform GS2b (E2) and iron
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deficiency specific clone no. 3 (IDS3) (E3). These proteins are
potentially responsible for the low pH tolerance in XZ16
compared with Dayton.

XZ16 Shows Higher Expression of Genes Corresponding
to Al Up-regulated Proteins

To determine whether the changes in protein abundance
detected by 2-DE were correlated with changes at the transcrip-
tome level, quantitative RT-PCR was performed using RNA
1solated from the roots of a separate set of plants treated with 0 or
50 uM Al for 24 h (Figure 6 and Table S2). Transcript levels of
five Al-regulated genes including SAMS3, MeSe, GS, y-GCS and
ATP synthase beta subunit (U1, U2, U4, U5 and U9) were chosen and
successfully detected. Among them, SAM3, MeSe, GS and y-GCS
were up-regulated in XZ16 and down-regulated in XZ61,
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following the expression trend detected by 2-DE (Table 1). Fifty
micromolar of Al significantly up-regulated ATP synthase beta subunit
by 3.2 folds in XZ16 compared to the control, but no change was
detected in XZ61 and Dayton (Figure 6).

For genome mapping, BLASTn and CAP3 were used to blast
the Brachypodium distachyon protein databases. The top hits were
then mapped to barley chromosome based on barley genome
zipper and sequence [18], [19]. Finally, 32 (including 30 of the 35
Al-tolerance related proteins, and 2 of the 3 low pH responsive
spots) out of the above 38 proteins were linked to their
corresponding candidate genes in barley genome (Table S3).
The mapping of these candidate genes provides a short cut for the
identification and transformation of Al responsible genes in future.

Discussion

The current study showed that Al-tolerant Tibetan wild barley
XZ16 is characterized by less Al accumulation both in roots and
shoots (Figure 1 and Figure S2). Our current data is the first study
to identify Al-responsive proteins in Tibetan wild barley (XZ16)
using a proteomic approach. Barley is one of the most Al sensitive
cereal species and responds to Al toxic ion immediately through
releasing organic acid in roots [3,35]. It is important to successfully
induce Al-tolerant-specific-proteins before visible morphological-
stress-symptoms for plants to achieve tolerance to Al toxicity. In
addition, the micro- and minor- elements, containing in the
nutrient solution for the long term Al exposure of 15 days, trends
to complicatedly react with Al ion compared to simplified adding
Ca?" solution. Furthermore, after long term Al treatment, barley
roots (especially in sensitive genotype) is severely damaged, out of
vigorousness and partly death, thus not suitable for protein
extraction. Therefore, in this study, Al-tolerant-specific-proteins in
wild genotype XZ16 were verified under 50 uM or 200 pM Al
condition for 24 h. The treatment of 200 UM Al on the plants
could provide us the special mechanism (proteins) of Al tolerance
in XZ16 in comparison to Dayton or XZ61 under high Al
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concentration condition. Because Tibetan wild barley X716 and
XZ61 are the two contrasting genotypes with different Al
tolerances, the Al-regulated proteins identified using comparative
proteomics will provide a good foundation to elucidate the
mechanisms involved in Al- tolerance/resistance in Tibetan wild
barley. Here we identified 35 proteins associated with Al-tolerance
in wild barley X716 (Figures 2, 5 and Tables 1, 2). There were 16
proteins, up-regulated in roots of XZ16 but down-regulated or
unaltered in both Dayton and XZ61, indicating their specificity
and importance for Al tolerance in XZ16. Among them, four
proteins (SAMS3, Ul; ATP synthase beta subunit, U9;
0s09g0535000, U28; Bp2A protein, U29), were markedly induced
by Al stress in XZ16 but not in Dayton, while repressed in XZ61.
Obviously, XZ16 has different stress response and defense
mechanisms against Al stress as Dayton did. Further examination
of these proteins may elucidate the mechanism of Al tolerance in
X716 and provide new genetic materials for developing Al-
tolerant crops. The selected stress-responsive proteins are
discussed below according to their function.

Metabolism Category

In the root proteomic analyses, seven of the identified proteins
are involved in metabolism: SAMS3 (Ul), methionine synthase
(MeSe, U2 and U3), glutamine synthetase (GS, U4), y-glutamyl-
cysteine synthetase (y-GCS, U5), putative aspartate aminotrans-
ferase (AST, U6) and predicted pirin-like protein (U7). SAMS, as
an essential enzyme in cellular metabolism, has been long
regarded as a ‘housekeeping’ function and it catalyzes the
nucleophilic substitution reaction between methionine and ATP
into SAM (S’-adenosyl-L-methionine) (Figure 7). SAM serves as an
aminopropyl and methyl donor for ethylene and polyamine (PAs)
[20], [21], [22]. It is well documented that ethylene and PAs are
involved in response to biotic and abiotic stresses in plants [23],
[24]. Thus SAMS plays an important role in Spd and Spm
biosynthesis and stress response in plants [25], [26]. Q1 et al. [27]
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doi:10.1371/journal.pone.0063428.g008

found that over-expression of Suadea salsa SAMSZ in transgenic
tobacco plants leads to an increase in polyamine (PAs) content and
enhancement of salt tolerance. In the present study, SAMS3 was
up-regulated in XZ16 but not expressed in Dayton and repressed
in X761 under 50 uM Al stress, highlighting the function of this
protein in Al tolerance of XZ16. Although SAM is the precursor of
ethylene, the key enzyme of ethylene synthesis is ACCS [28]
(Figure 7). Since ACCS was not identified in this study, further
research is required to determine whether up-regulation of SAMS
is involved in ethylene-mediated inhibition of root growth and/or
the alteration of cell wall and polymer structures in roots under Al
stress. On the other hand, SAMS3 was expressed normally in
Dayton under Al stress as determined by qRT-PCR (Figure 6).
Therefore, Al-induced expression of SAMSS is likely to be
regulated at the post-transcriptional or translational level in
Dayton.

In addition, we also observed that MeSe was depressed in XZ61
(U2 and U3), but not altered in XZ16 under Al stress. Higher
MeSe levels would increase the amount of methionine for SAM
synthesis (Figure 7). Enhanced accumulation of MeSe contributes
to increase PAs biosynthesis, which is critical to plant survival in
many environmental stresses [29]. The decreased accumulation of
MeSe in XZ61 indicates that Al stress triggered damages in barley
roots may be associated with the modification of amino acid
metabolism and synthesis of other amino acids derived metabo-
lites. The next important questions is how SAMS3 and MeSe
elaborate to cope with Al toxicity and which metabolism factors,
e.g., SAM, ethylene, PAs (spermidine or spermine), are responsible
for Al detoxification in conjunction with SAMS3 and MeSe.
Therefore, it is necessary to investigate the accumulation of related
metabolite and enzymatic activities of the SAMS family for a
better understanding of their functions in the Al stress response.

Two glutathione (GSH) synthesis proteins y-GCS and GS (U4
and U5), play a pivotal role in various metabolic processes
involved in plant growth and development and stress responses
including Al toxicity [30], [31]. The pirin-like protein (U7 and
U26) plays important roles in a number of different biological
processes, however, its physiological role in plants remains unclear
[32]. Aspartate aminotransferase (AST, U6 and U25) is a key
antioxidative enzyme for detoxifying reactive oxygen species
(ROS) under abiotic stresses [33]. Similarly, up-regulation of
AST expression was reported in Arabidopsis in response to Al
stress [34]. Under Al stress, y-GCS (U5), GS and AST were
significantly increased in X716, whereas dramatically decreased in
X761 and Dayton (Table 1), again indicating that there a unique
mechanism in Al tolerance for the Tibetan wild barley genotype.

Energy Category

Similar to the proteomic results of Zhou et al. [10], ATP
synthase beta subunit (U9) was only detected in XZ16 after 24 h of
50 uM Al stress (Table 1), indicating that the energy provided to
ATPase for active Al efflux and detoxification in XZ16 was
increased when exposed to Al stress. qRT-PCR of ATP synthase beta
subunit confirmed a remarkable increase in XZ16 but not in X61
and Dayton under 50 uM Al (Figure 6). Therefore, we conclude

PLOS ONE | www.plosone.org

12

that ATP synthase beta subunit significantly contributes to the
ATPase-mediated active Al efflux and detoxification, and is
regulated at both transcriptional and translational level in XZ16 in
response to Al

In addition to ATP synthase beta subunit, we also identified
another type of ATPase, atpl (U32), which was markedly down-
regulated in XZ61 after Al stress, but remained unchanged in
X716 and Dayton (Table 2). The efflux of Al-induced citrate and
malate is usually mediated by anion channels and ATPase-driven
active co-transporters [35], [36]. Interestingly, a significant
increase in ATP synthase beta subunit and unchanged levels of
atpl in XZ16 were consistent with higher root citrate and malate
efflux, whereas the lack of ATP synthase beta subunit expression
and the Al-induced severe inhibition of atpl in XZ61 were
associated with lower citrate and malate secretion. These results
firmly suggest that high level of ATP synthase beta subunit and
atpl in XZ16, unlike that in Dayton, may partly contribute to the
active OA transport and secretion during protection from Al-
toxicity. Thus, we may speculate that a novel protein synthesis of
ATP synthase beta subunit may be involved only in Al inducing
organic acid secretion in Tibetan wild barley XZ16. Obviously, it
deserves a more detailed investigation in the future.

A BLAST search revealed that Os09g0535000 (U28) is a
homologue of triosephosphate isomerase (TPI). TPI was reported
to be induced in rice [37] and maize [38] under drought stress,
indicating the importance of cellular homeostasis maintenance and
emphasizing the role of this protein in energy production. Enolase
(ENO, U31) is responsive to salt, low and high temperature and
anaerobic stresses [8], [39]. Spot U10, identified as aconitate
hydratase 3 (Aco3), plays a role in regulating resistance to
oxidative stress and cell death in Arabidopsis and Nicotiana
benthamiana [40]. Spot U29, the Bp2A protein, was first identified
in the wheat genome [41]. The present study is the first to examine
Bp2A (U29) expression under Al stress. However, the function of
this protein and its direct involvement in Al tolerance are poorly
understood. Therefore, the mechanisms underlying the differential
expression of this protein in different barley genotypes should be
further explored.

In the glycolytic pathway, the levels of other Al stress responsive
proteins fructose-bisphosphate aldolase (FBA, Ull and U27) and
phosphoglycerate mutase (PGM, U30) were increased in XZ16
under Al treatments, consistent with the findings of Fukuda et al.
[42] in rice under Al stress and Yan et al. [43] in the rice response
to chilling. Down-regulation of Os06g0133800 (U8), a homologue
to transketolase (TK), in XZ61 may reversibly inhibit ribose 5-
phosphate, which is a substrate for nucleic acid synthesis
associated with the synthesis of RNA under Al stress [42].

Taken together, up-regulation of FBA, PGM, TPI, Bp2A, and
ATP synthase beta subunit (Ul1, U27, U30, U28, U29 and U9)
and maintaining the normal expression levels of the other four
energy proteins in XZ16 might help to produce more energy
needed in the defense processes under Al stress conditions. The
higher abundance of all these enzymes catalyzing various reactions
in glycolysis, pentose phosphate pathway, and citric acid cycle in
roots of Al resistant genotypes, suggest less Al-triggered disruption
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of energy metabolism in XZ16 (Figure 8). Up-regulation of ATP
synthase beta subunit, Bp2A, TPI and FBA is of particular
importance to X716 relative to Dayton.

Cell Growth/Division and Protein Biosyntheses Category
Proliferating cell nuclear antigen (PCNA) is an essential
component in eukaryotic DNA synthesis [44]. PCNA interacts
with many proteins and participates in a variety of metabolic
processes, such as cell cycle control, nucleotide excision repair and
post-replication mismatch repair [45]. Translation elongation
factor 1B (EF1B, Ul13) is a highly conserved protein that catalyzes
the exchange of bound GDP for GTP on EF-1a., a required step to
ensure continued protein synthesis. In our study, PCNA (U12 and
U33) and EF1B (U13) were up-regulated in in roots of X716, but
were unchanged in XZ61 and Dayton. It suggests that XZ16
might possess a high actitity of DNA replication machinery in
response to Al stress, and EF1B may play an important role in
maintaining the root elongation rate of XZ16 under Al stress.

In addition, the other specific protein up-regulated in XZ16 is
the RNA-binding Ras-GAP SH3 binding protein (G3BP, signal
transduction category, U20). Zhou et al. [46] reported that the
expression of the G35BP gene was associated with fertility
conversion in male-sterile wheat. However, the exact function of
G3BP in RasGAP-dependent signaling remains to be defined.
These results provide a starting point for further investigation into
the functions of these proteins using genetic and other approaches.

In conclusion, the response and defense mechanisms of Al stress
in X716 appear different from those of Dayton, as reflected by the
different expressions of these specific proteins associated with Al
tolerance under Al stress between XZ16 and Dayton or XZ61.
There are four proteins (i.e. SAMS3, ATP synthase beta subunit,
TPI, Bp2A protein), which are exclusively expressed in X716 not
in Dayton and X761 under Al stress, indicating their crucial role
in development of Al stress tolerance in X716, and novelty of
genetic resource for Al-tolerance. In addition, as the functions of
some differentially expressed proteins and their direct involvement
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