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Abstract

Aims: To assess the determinants of exercise training-induced improvements in glucose control (HbA1C) including changes
in serum total adiponectin and FFA concentrations, and skeletal muscle peroxisome proliferator-activated receptor-c
coactivator-1a (PGC-1a) protein content.

Methods: A sub-cohort (n = 35; 48% men; 74% Caucasian) from the HART-D study undertaking muscle biopsies before and
after 9 months of aerobic (AT), resistance (RT), or combination training (ATRT).

Results: Changes in HbA1C were associated with changes in adiponectin (r = 20.45, P = 0.007). Participants diagnosed with
type 2 diabetes for a longer duration had the largest increase in PGC-1a (r = 0.44, P = 0.008). Statistical modeling examining
changes in HbA1C suggested that male sex (P = 0.05), non-Caucasian ethnicity (P = 0.02), duration of type 2 diabetes (r = 0.40;
P,0.002) and changes in FFA (r = 0.36; P,0.004), adiponectin (r = 20.26; P,0.03), and PGC-1a (r = 20.28; P = 0.02) explain
,65% of the variability in the changes in HbA1C.

Conclusions: Decreases in HbA1C after 9 months of exercise were associated with shorter duration of diabetes, lowering of
serum FFA concentrations, increasing serum adiponectin concentrations and increasing skeletal muscle PGC-1a protein
expression.
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Introduction

Type 2 diabetes is as much a disease of disordered lipid

metabolism as a disease of abnormal glucose metabolism [1].

Failure to balance skeletal muscle lipid uptake (free fatty acids,

FFA) and storage in intracellular triacylglycerol with oxidation in

mitochondria is implicated in impaired insulin action [2].

Individuals with type 2 diabetes have a reduced plasma

adiponectin concentrations [3], reduced number of mitochondria

[4], and lower skeletal muscle gene/protein expressions of

peroxisome proliferator-activated receptor-c coactivator-1a
(PGC-1a), a key regulator of mitochondrial biogenesis [5] and

oxidative metabolism [6]. While increased PGC-1a has been

observed with acute exercise in humans [7], studies examining the

effects of chronic exercise training on adiponectin and PGC-1a

and their relationship to the change in glycemic control (HbA1C)

in individuals with type 2 diabetes are absent.

We recently demonstrated in the Health Benefits of Aerobic and

Resistance Training in individuals with type 2 Diabetes (HART-

D) study that 9 months of combined aerobic (AT) and resistance

(RT) training significantly reduced HbA1C levels in individuals

with type 2 diabetes [8]. The HART-D study also included AT

only and RT only training groups that, together with the

combined AT and RT training group, provide a unique

opportunity to examine the influence of factors known to influence

glycemic control, specifically serum FFA and adiponectin, skeletal

muscle PGC-1a protein content, and anthropometric/demo-

graphic measures. We therefore hypothesized that the change in

HbA1C after exercise would be independently associated with

serum FFA and adiponectin and the activation of skeletal muscle
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mitochondrial biogenesis pathways as determined by PGC-1a
protein content.

Methods

Seventy-eight participants from the previously reported HART-

D study volunteered for and were enrolled into an ancillary study

that included the collection of muscle samples at baseline and after

9 months of intervention (Figure 1). Detailed methods as well as

inclusion/exclusion criteria are provided in the main outcomes

paper [8]]. Briefly, 262 sedentary individuals with type 2 diabetes

(HbA1C 6.5% to 11%, inclusive) aged 30 to 75 years were enrolled

into the study. Volunteers were excluded if body mass index was

$48 kg/m2, blood pressure was $160/100 mmHg, fasting

triglycerides were $500 mg/dL, urine protein was .100 mg/

dL, or serum creatinine was .1.5 mg/dL. In addition, volunteers

were excluded if they used an insulin pump or had a history of

stroke, advanced neuropathy or retinopathy, or any other serious

medical condition that prevented them from adhering to the

protocol or exercising safety. Of the original 78 participants, 23

were lost to follow-up due to non-compliance (,80% attendance)

with the study protocol leaving a total of 55 participants with both

baseline and follow-up data. An additional 10 participants

randomized to the control group were excluded from these

analyses. An additional 10 participants’ samples did not have

protein extracted. The final group of 35 participants (17 males and

18 females) aged 57.067.7 y are included in the present analysis.

The follow-up bloods draw and muscle biopsy for this ancillary

project occurred approximately 1 week after their last exercise

bout. The study was approved by the Pennington Biomedical

Research Center institutional review board and written informed

consent was obtained prior to study screening. The protocol for

this trial and supporting CONSORT checklist are available as

supporting information; see Checklist S1 and Protocol S1.

Intervention
HART-D participants were randomized to 9 months of aerobic

training (AT), resistance training (RT), a combination of both

(ATRT), or a non-exercise control group. The AT group exercised

3–4 times per week at 50–80% of VO2peak for a total energy

expenditure of 12 kcal?kg21?wk21. The RT group completed 3

days per week of 2 sets of 4 arm exercises, 3 sets of 3 leg exercises,

and 2 sets of back extension and abdominal crunch. The ATRT

group completed 3 sessions of AT (10 kcal?kg21?wk21) and 2

sessions of RT (1 set each of the RT exercises) per week in

conjunction with the Federal Physical Activity Guidelines [9].

Both exercise modalities were progressive in nature whereby the

treadmill speed and grade was increased to maintain the

appropriate intensity, reported in metabolic equivalent tasks

(METS) [10] and the weight lifted on each RT exercise was

increased when a participant could lift 12 repetitions on 2

consecutive sessions.

VO2max and body composition
Maximal cardiorespiratory fitness (VO2max) was assessed at

baseline and after 9 months of intervention on a treadmill

(Trackmaster 425, Newton, KS) with respiratory gases analyzed

using a True Max 2400 Metabolic Cart (Parvomedics, Salt Lake

City, UT). Peak oxygen uptake (VO2peak) was expressed relative to

fat-free mass (mL?kg FFM21?min21). Body composition was

measured by DXA (QDR 4500A, Hologic, Inc. Waltham, MA).

Blood analyses
Blood was collected by venipuncture in the morning after a 10-

hour fast at baseline and after the intervention. Blood samples

were placed into pre-chilled red-top tubes (serum FFA and

adiponectin) or EDTA collection tubes (plasma HbA1C) and

transported to the laboratory on ice (FFA and HbA1C). The blood

samples for FFA and HbA1C were cold centrifuged and the media

was immediately analyzed for FFA and HbA1C (Beckman Coulter

DXC600 Pro; Beckman Coulter Inc., Brea, CA). Blood collected

for total serum adiponectin (Linco, St. Charles, MO) concentra-

tions were transferred to the laboratory at room temperature,

centrifuged, and serum was stored at 280uC until run in a single

batch at the end of the trial. The intra-assay variation for HbA1C,

FFA, and adiponectin was 62.84%, 60.75%, and 66.21%,

respectively.

Figure 1. Consort diagram.
doi:10.1371/journal.pone.0062973.g001
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Muscle analysis
Muscle samples were obtained under local anaesthesia from the

vastus lateralis using the Bergstrom technique and immediately snap

frozen. Samples were homogenized by Kontes Duall tissue

grinders in RIPA buffer with a cocktail of protease and

phosphatase inhibitors (Sigma, St. Louis, MO). Total protein

content was quantified by BCA assay (Pierce, Rockford, IL) and

25 uL was added to each gel for determination of PGC-1a protein

content. PGC-1a protein content quantified relative to GAPDH

(Abcam, Cambridge, MA) was determined by Western blot using

an Odyssey 9120 Imaging System (LI-COR, Lincoln, NE) after

probing with goat anti-mouse IgG Alexa Fluor 680 (Invitrogen,

Carlsbad, CA). No data are available for the intra-assay variability

in PGC-1a or GAPDH protein content as replicates were not run

to preserve the remaining muscle tissue.

Randomization and blinding
After signing the informed consent for the ancillary study,

volunteers had baseline blood drawn and a muscle biopsy

performed. Volunteers were later randomized to an intervention

group according to the randomization schema within the main

HART-D trial resulting in unequal group randomization. The

nature of this intervention study prevents blinding of the exercise

intervention personnel. However, every effort was made to

maintain blinding of the assessment staff from the participant’s

intervention group.

Statistical analysis
Analysis of variance (ANOVA) was used to assess baseline group

differences (JMP 9.0.2, SAS Institute, Inc., Cary, NC) and

dichotomous variables were examined using a x2 test. All exercise

groups were collapsed into a single group for the remaining

analyses since no effect of exercise group was observed in the final

model (P = 0.15), and the addition of exercise group to the final

model did not influence the other factors in the model. Linear

regression (Pearson r) was used to determine the relationships

among change (post-pre) scores. Baseline-adjusted changes in

anthropometric data, HbA1C, PGC-1a protein content, and

fasting adiponectin and free-fatty acids were determined using

analysis of covariance (ANCOVA) with group differences analyzed

using Student-t post-hoc tests. In addition, ANCOVA was used to

examine the relationships between changes in HbA1C and changes

in independent determinants (semi-partial correlation coefficients

(r)). To determine the relationship between changes in HbA1C and

changes in FFA, adiponectin, and PGC1a content, we first

adjusted for baseline HbA1C, sex, ethnicity, and duration of

diabetes; all variables that were adjusted for in the main outcomes

paper [8]. Furthermore, we aimed to determine whether weight,

body composition and/or fitness (VO2peak) further explained the

change in HbA1C or removed any of the existing parameters from

the model. Statistical significance was set at P,0.05 and data are

reported as mean (95%CI) unless noted otherwise.

Results

The average compliance for all exercise groups was 95.066.0%

(mean6SD; range = 80.6% to 100.0%). From Month 2 to Month

9, estimated average METS in AT (AT = 5.761.0 to 7.261.0

METS and ATRT = 5.060.7 to 5.861.0 METS) and total weight

lifted during RT (RT = 56,422617,316 to 73,602625,631 lbs and

ATRT = 1788166345 to 23,90969,532 lbs) increased similarly to

those reported in the main outcomes paper [8].

Baseline data for age, sex, diabetes duration, HbA1C body

composition, and VO2peak (ml/kg FFM) in this subset of HART-D

participants were similar to the main study for participants with an

overall compliance $80% (all P.0.18). However, the percent of

Caucasian participants was higher in this subset compared to the

main study (74.3% vs. 56.7%, respectively, P = 0.045). Baseline

data and baseline-adjusted treatment effects are presented in

Table 1. Age was different across groups at baseline (P = 0.02).

After training, change in VO2peak was not significantly different

between intervention groups in this cohort. Body weight was lower

after AT compared with RT (P,0.05) due to a tendency for RT to

increase FFM (P = 0.05). The baseline-adjusted change in HbA1C

in this cohort was independent of treatment group (P = 0.29). The

change in HbA1C adjusted for baseline HbA1C, age, ethnicity and

type 2 diabetes duration, were similar to those in the larger cohort

[8] albeit, not significant in this subset (exercise group effect,

P = 0.60; 20.15% (20.58%, 0.27%), 20.34% (20.84%, 0.15%),

and 20.49%(21.03%, 0.05%) for RT, AT, and ATRT,

respectively). PGC-1a response tended to differ by intervention

group (P = 0.08; Table 1).

Change in fasting serum adiponectin was inversely associated

with the change in HbA1C (r = 20.45; P = 0.007). Change in

HbA1C was not related to change in fasting serum FFA (r = 0.25;

P = 0.15) or change in PGC-1a protein content (r = 0.05; P = 0.80).

Participants with longer durations of type 2 diabetes had the

largest increase in PGC-1a (r = 0.44; P = 0.008). Last, change in

VO2peak was inversely related with age (r = 20.36; P,0.04). No

other significant relationships exist.

In the process of building our statistical model, we examined the

effect of change in serum FFA and adiponectin, and PGC-1a
protein content, separately, on changes in HbA1C after adjusting

for baseline HbA1C, sex, and ethnic group. The changes in serum

FFA (r = 0.33; P,0.02) and adiponectin (r = 20.30; P,0.03) were

associated with the changes in HbA1C; however, change in PGC-

1a protein content did not reach statistical significance (r = 0.17;

P = 0.24).

After adjusting for baseline HbA1C, changes in HbA1C were

related to type 2 diabetes duration (r = 0.40, P,0.002; Figure 2A),

changes in fasting serum FFA (r = 0.36, P,0.004; Figure 2B) and,

adiponectin (r = 20.26, P,0.03; Figure 2C) levels, and skeletal

muscle PGC-1a protein (r = 20.28, P = 0.02; Figure 2D) inde-

pendent of sex (20.09% (20.36%, 0.17%) vs. 20.55% (20.92%,

20.17%); women vs. men, respectively; P = 0.05) and ethnicity

(20.00% (20.23%, 0.23%) vs. 20.64% (21.09%, 20.19%),

Caucasian vs. non-Caucasian, respectively; P = 0.02). Together,

these factors explained ,65% of the variance in the change in

HbA1C. The regression equation for the model is presented below.

Changes in fitness (VO2peak) and body composition did not

influence this model.

DHbA1C~{0:48 baseline HbA1Cð Þ{0:23 sexð Þ

z0:32 ethnic groupð Þz0:07 type 2 diabetes durationð Þ

z1:54 DFFAð Þ{0:06 Dadiponectinð Þ

{9:29 DPGC{1að Þz2:52

Conclusions

The novel finding of the present investigation was that the

changes in HbA1C after 9 months of exercise were independently

associated with the duration of type 2 diabetes and changes in

serum FFA and negatively associated with changes in serum

adiponectin and skeletal muscle PGC-1a.

Exercise Training and Glycemic Control
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The change in free-fatty acid concentration was a major

determinant of the change in glycemic control. Free-fatty acid

accumulation in the circulation may be the result of an imbalance

between skeletal muscle uptake and oxidation and defects in

adipose tissue insulin signaling [2]. Lipid oversupply to skeletal

muscle may cause insulin resistance through accumulation of

incompletely oxidized lipid species [11]. In the present investiga-

tion, improved balance between muscle lipid storage and

oxidation (less lipid species storage), as suggested by a decrease

in serum FFA, may be an important contributor to the

improvement in HbA1C.

We observed a strong inverse relationship between the changes

in adiponectin and the changes in HbA1C. Civitarese et al. recently

uncovered a pathway by which adiponectin increases skeletal

muscle PGC-1a, mitochondrial number and oxidative capacity

[12]. Adiponectin may also have beneficial effects, independent of

PGC-1a, by enhancing ceramidase activity, thus reducing the

amount of insulin desensitizing ceramides [13]. Our results

demonstrate a clinically relevant situation in which the change

in serum adiponectin was associated with an improvement in

HbA1C.

A recent review called for more effective and sophisticated

exercise prescriptions for the improvement of glucose control

through increasing intramuscular PGC-1a [14]. Studies demon-

strate increased PGC-1a with aerobic training [7], while others

show no effect or improvements with resistance training [15,16].

We tested different exercise modalities and only resistance training

had a tendency to increase PGC-1a content. Additionally, the

change in PGC-1a was greater in those with longer duration of

type 2 diabetes. In our final model, a greater increase in PGC-1a
and a shorter duration of type 2 diabetes were independently

associated with improved glycemic control. The main results from

the HART-D trial together with this ancillary study suggest that: 1)

a program of combined aerobic and resistance training has the

greatest effect on HbA1C; 2) resistance training may potentiate a

greater change in PGC-1a, and therefore, HbA1C; and 3)

individuals who start an exercise program soon after diagnosis

may see a larger effect on HbA1C levels.

Our investigation is limited by a small sample size with almost

50% of the participants assigned to the resistance training group.

However, we had adequate power to detect independent effects of

substrate (FFA), hormone (adiponectin) and muscle (PGC-1a)

changes on glycemic control after collapsing the exercise groups.

Drug changes were not controlled during the intervention period

resulting in a limitation whereby a tendency to reduce diabetes

medications after the combination intervention reduces the effect

on change in HbA1C levels. Furthermore, dietary assessments were

taken at baseline and follow-up by food frequency questionnaire

thus limiting our ability to determine the impact of dietary

modifications such as changes in caloric intake and dietary

composition. Finally, research suggests that GAPDH gene

transcription may be sensitive to treatments that may influence

PGC-1a protein content, including exercise-induced changes in

insulin sensitivity [17]. However, analysis of the crude and

GAPDH adjusted PGC-1a data yielded similar results providing

evidence that the effects noted in this manuscript were the result of

the exercise intervention on PGC-1a specifically and not

secondary changes in GAPDH. The primary strengths are a

well-controlled exercise training study with high adherence rates

and a wide range of changes in the dependent and independent

variables.

In summary, exercise in individuals with type 2 diabetes should

be initiated soon after diagnosis and include training programs

aimed at improving plasma substrate availability, endocrine

Table 1. Baseline participant characteristics and baseline adjusted changes in anthropometric data, HbA1C, PGC-1a protein
content, and fasting adiponectin and free-fatty acids after 9 months of exercise.

RT AT ATRT P-value

Baseline Change Baseline Change Baseline Change Baseline Change

n 16 11 8

Age, y 60.9 (7.6) 53.8 (6.6) 53.6 (6.4) 0.02a

Sex, male % 8 (50.0) 6 (54.6) 3 (37.5) 0.75

Ethnicity, Caucasian % 12 (75.0) 9 (81.8) 5 (62.5) 0.64

Type 2 Diabetes
Duration, y

9.5 (6.9) 6.0 (4.8) 5.9 (3.4) 0.20

Body Weight, kg 98.5 (15.1) 0.5 (20.7, 1.6) 90.5 (11.0) 21.6 (23.0, 20.2) 100.5 (22.3) 21.3 (22.9, 0.3) 0.32 ,0.05a

Fat Mass, % 37.4 (8.5) 20.9 (21.8, 0.0) 31.7 (8.8) 20.3 (21.4, 0.8) 38.4 (6.6) 20.9 (22.1, 0.4) 0.14 0.67

FFM, kg 61.6 (11.5) 1.3 (0.4, 2.2) 61.6 (9.3) 20.3 (21.4, 0.8) 62.3 (15.6) 20.1 (21.4, 1.2) 0.99 0.05

VO2peak, mL?kg
FFM21?min21

31.3 (4.6) 20.1 (22.1, 1.9) 34.7 (6.6) 2.0 (20.5, 4.5) 30.3 (3.3) 0.6 (22.2, 3.5) 0.13 0.43

HbA1C, % 7.1 (1.1) 0.0 (20.3, 0.4) 7.4 (1.4) 20.2 (20.7, 0.2) 6.9 (0.7) 20.4 (20.9, 0.1) 0.61 0.29

FFA, mmol/L 0.56 (0.21) 20.00
(20.11, 0.11)

0.66 (0.22) 0.04 (20.09, 0.17) 0.54 (0.24) 20.07
(20.22, 0.08)

0.47 0.56

Adiponectin, mg/mL 8.1 (4.2) 20.9 (22.9, 1.0) 6.7 (2.9) 0.3 (22.0, 2.6) 6.4 (3.9) 21.8 (24.5, 0.9) 0.47 0.47

PGC-1a/GAPDH, au 0.04 (0.04) 0.02 (0.00, 0.03) 0.05 (0.04) 0.00 (20.01, 0.02) 0.06 (0.04) 20.01
(20.03, 0.01)

0.53 0.08

All baseline data are means (SD), n (%), and baseline-adjusted change scores are mean (95%CI). Abbreviations: RT, resistance training; AT, aerobic training; ATRT,
combination of aerobic and resistance training; VO2 volume of oxygen consumed in mL per kg fat-free mass (FFM) per minute; HbA1C, glycated hemoglobin A1c; PGC-
1a/GAPDH, peroxisome proliferator-activated receptor-c coactivator-1a adjusted for glyceraldehyde 3-phosphate dehydrogenase protein content; FFA, free fatty acid.
aRT group significantly greater than greater than AT. Blank cells are not applicable.
doi:10.1371/journal.pone.0062973.t001
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function, and skeletal muscle factors shown to improve glycemic

outcomes.
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