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Abstract

The un-biased and reproducible interpretation of high-content gene sets from large-scale genomic experiments is crucial to
the understanding of biological themes, validation of experimental data, and the eventual development of plans for future
experimentation. To derive biomedically-relevant information from simple gene lists, a mathematical association to
scientific language and meaningful words or sentences is crucial. Unfortunately, existing software for deriving meaningful
and easily-appreciable scientific textual ‘tokens’ from large gene sets either rely on controlled vocabularies (Medical Subject
Headings, Gene Ontology, BioCarta) or employ Boolean text searching and co-occurrence models that are incapable of
detecting indirect links in the literature. As an improvement to existing web-based informatic tools, we have developed
Textrous!, a web-based framework for the extraction of biomedical semantic meaning from a given input gene set of
arbitrary length. Textrous! employs natural language processing techniques, including latent semantic indexing (LSI),
sentence splitting, word tokenization, parts-of-speech tagging, and noun-phrase chunking, to mine MEDLINE abstracts,
PubMed Central articles, articles from the Online Mendelian Inheritance in Man (OMIM), and Mammalian Phenotype
annotation obtained from Jackson Laboratories. Textrous! has the ability to generate meaningful output data with even very
small input datasets, using two different text extraction methodologies (collective and individual) for the selecting, ranking,
clustering, and visualization of English words obtained from the user data. Textrous!, therefore, is able to facilitate the output
of quantitatively significant and easily appreciable semantic words and phrases linked to both individual gene and batch
genomic data.
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Introduction

With the increasing experimental prevalence of high-through-

put genomic technologies, researchers are often challenged with

the task of selecting, analyzing, clustering, and interpreting lists of

functionally-relevant genes to a particular experiment at hand [1].

Given that an abundance of information about individual genes is

contained in the text of published literature, with the recent

development of novel informatic procedures literature mining with

natural language processing techniques has become much more

fruitful in recent years [2]. Current developments in this emerging

field include literature-based methods for determining the

functional coherence of a gene set, generating related transcription

factors from microarray derived gene sets, and the functional user-

based clustering of related genes [3–5].

An important aspect of gene set interpretation is the transfor-

mation of large gene sets into interpretable and manageable forms.

Bridging the gap between large gene sets and the English language

is potentially valuable for a variety of applications, including the

discovery of previously unknown biological connections, identifi-

cation of potential research topics, visualization of biological

themes, discrimination between specific data sets, and validation of

existing data. Current software for the interpretation of high-

throughput genomic data share one or more of the following

characteristics: reliance on controlled-languages (Gene Ontology

(GO), Medical Subject Headings (MeSH), BioCarta, Kyoto

Encyclopedia of Genes and Genomes (KEGG)), inability to search

more than a few genes, and use of standard Boolean and co-

occurrence models [6–9]. For example, Gene2MeSH, LigerCat,

AmiGO, and Genes2WordCloud, four tools for generating

enriched biological themes from a gene set, employ Boolean

models or use exclusively terms that are preselected by BioCarta,

GO, MeSH, and KEGG [10–13]. Our development of Textrous! in

no way makes any of these excellent resources redundant.

Therefore Textrous! should, as with other applications, be seen as

a complementary device that should be used in conjunction with

other forms of textual analysis such as the exemplary LigerCat

which facilitates data text extraction using ‘MeSH Cloud’ outputs

[13]. The combined use of multiple data analysis tools is therefore

likely to yield the most comprehensive and meaningful appreci-
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ation of the input data. Similar tools that fall into the same generic

category include the Database for Annotation, Visualization, and

Integrated Discovery (DAVID), PubMatrix, WebGestalt, and

Gene Set Enrichment Analysis [14–17]. All of these important

and useful applications can create structured text interpretations of

complex biological data, but do so using rigid clustering criteria

that may possess considerable redundancy or possess limitations in

their scope.

The use of predefined vocabularies such as GO or KEGG

pathways places limitations on the range of words that can be used

to describe a gene set. In addition, the textual connections implied

by these curated libraries may be added to (e.g. GO terms) or even

rapidly superseded, e.g. for the case of KEGG pathways, by the

acquisition of additional experimental knowledge. Potentially, this

can lead to decreased recall, as infrequent words not suitable for

curation are discarded completely. A co-occurrence model suffers

from disadvantages as well; most notably, such a model is unable

to extract indirect relationships and facilitate new discoveries. To

address these issues, we have developed Textrous!, a web-based

framework for the extraction of semantic meaning from gene sets

without the use of controlled-languages and pathways. Textrous!

employs various natural language processing techniques, including

latent semantic indexing (LSI), sentence splitting, word tokeniza-

tion, parts-of-speech tagging, and noun-phrase chunking, to mine

MEDLINE abstracts, PubMed Central articles, articles from the

Online Mendelian Inheritance in Man (OMIM), and Mammalian

Phenotype annotation obtained from Jackson Laboratories (www.

informatics.jax.org/phenotypes.shtml) [18,19]. From an input of

one or more genes, Textrous! is able to generate words and noun-

phrases and their associated similarity scores, z-scores, and p-

values. In addition, Textrous! can easily create a hierarchical cloud,

combining elements of traditional word clouds and agglomerative

hierarchical clustering, as well as a heat map, illustrating the

pairwise similarities between each gene and word. Textrous!

therefore presents an alternative to rigidly-curated data set

interpretation systems that allows experimenters to generate

additional and more nuanced levels of textual appreciation of

large biomedical data sets.

Materials and Methods

Generation of ‘‘Gene-Documents’’
Our corpus of ‘‘gene-documents’’ was created from a concat-

enation of all MEDLINE titles, abstracts, full articles, and articles

from the Online Mendelian Inheritance in Man as well as all the

articles from the Jackson Laboratories Mammalian Phenotype

Database. Individual genes were linked to PubMed articles by

manually curated citation cross-reference data in the Entrez Gene

repository. High precision and low recall is expected due to the

manual curation process, as there are far more gene-article links

than curated links [3]. Since a small proportion of MEDLINE

abstracts describe sequencing experiments that specifically men-

tion a disproportionately large number of genes, all PubMed

abstracts that mention more than ten genes are discarded.

Abstracts and articles were downloaded using PubMed’s E-

Utilities, and articles from OMIM and Jackson Laboratories were

downloaded and extracted from their respective FTP dumps.

All gene-documents were kept in the collection and left

unfiltered. Punctuation was stripped from all the gene-documents,

with the exception of hyphens, underscores, and apostrophes.

Words occurring in more than half of all documents, only one

document, or found in Cornell University’s SMART stoplist were

excluded from all documents [20,21]. In addition to Cornell’s

SMART stoplist, a small list of 200 words was manually added to

the stoplist. These words were determined empirically by multiple

experimenters in our laboratory after multiple diverse-user

interrogations of Textrous!. The final corpus consisted of 67412

genes from a variety of plant and animal genomes and 12281

words.

Generation of the Term Document Matrix
A term-document matrix was constructed by applying both

local and global weightings to the frequency of terms across each

document in the corpus. In the term-document matrix, each row

represents an English word, while each column represents a gene

in the gene-document collection. A term frequency (TF) - inverse

document frequency (IDF) weighting scheme was used in the

generation of the term-document matrix. Given our total

collection of words (T), and gene-documents (D), term frequency

can be calculated by the number of times a word appears in a

document:

tf (Ti,d)~DfTi[dgD

The global weighting function, inverse document frequency,

can be calculated as follows:

Figure 1. Singular Value Decomposition (SVD) on a term document matrix and the generation of the U* matrix. (A–C) U and VT contain
the LSI vectors for terms and documents, respectively while S contains the singular values of the original term document matrix. (D) An illustration of
the resulting matrix U*, obtained by the multiplication of Uk and P. Note that the resulting matrix contains the word vectors and phrase vectors in LSI
space, facilitating the comparison between every word/phrase and every other word/phrase entity.
doi:10.1371/journal.pone.0062665.g001
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idf (Ti,D)~
DDD

Dfd[D : Ti[dgD

Weighting functions are applied to each element of the term-

document matrix to increase the significance of words that are

more likely to identify particular genes and decrease the

significance of common, non-descriptive words. Since our corpus

is selected from exclusively biological/biomedical literature,

certain colloquial words have erroneously high global weightings

(‘‘geared’’, ‘‘ready’’, ‘‘book’’) while other seemingly-important words

often demonstrate inappropriately low weightings due to their

relative commonality in biological/biomedical literature (‘‘energy’’,

‘‘metabolism’’, ‘‘cancer’’). To account for this, inverse document

frequency was calculated from two sources: the ‘‘gene documents’’

collection from PubMed, OMIM, Jackson Laboratories, and the

fifteenth edition of Encyclopedia Britannica (www.britannica.

com/). The Encyclopedia Britannica text source was chosen

specifically for its high-quality literary standards, large amount of

text, academic writing, and variety of topics, some of which are not

biomedically-related.

A rank-reduced Singular Value Decomposition (SVD) was

applied to the term-document matrix (M), yielding three matrices,

U, S, and VT (Figure 1A–C) [22]. S is computed by taking the

square root of the eigenvalues of MMT or MTM sorted in

descending order on the main diagonal. U and VT are computed

by taking the eigenvectors of MMT and MTM corresponding to

the eigenvectors in S and placing them into their appropriate

columns and rows, respectively. A rank of 120 was employed and

was empirically determined by testing varying values of k (from

100 to 500). The columns of U and rows of VT can be viewed as

LSI ‘‘concepts’’ or ‘‘topics’’, dimensions by which two terms or

documents can be compared. As such, U and VT are referred to as

the ‘‘term-concept’’ and ‘‘document-concept’’ matrices, respec-

tively.

Generation of the Phrase Matrix
For each gene-document, all noun-phrases were extracted by

the use of four statistically-based classifiers involved in sentence

splitting, word tokenization, parts of speech tagging, and noun-

phrase chunking. From this, a master list of all noun-phrases was

obtained. This list was processed by eliminating all punctuation

and capitalization with exception of hyphens, underscores, and

apostrophes; stripping all preceding articles; removing duplicate

Figure 2. Web-based user interface for Textrous!. (A) The main navigation bar is on the top-right. The search bar is below the main navigation
bar, and the secondary navigation bar is below the search bar. Features can be accessed by clicking the appropriate menu item, phrases by clicking
on the word hyperlinks, and excluded words by clicking the ‘‘(x genes found)’’ description in the search bar. (B) Primary Cosine Similarity output from
Textrous! user interface. The main navigation bar is on the top-right. The search bar is below the main navigation bar, and the secondary navigation
bar is below the search bar. The ‘Cosine Similarity’ output is demonstrated for the following Gene Symbol input sequence: Lep, Bdnf, Fto, Lepr. After
symbol input into the ‘Search’ box then the cosine similarity word list is generated by pressing ‘Submit’. Automatically the ‘Cosine Table’ is depicted
first. Additional textual output modes can be accessed subsequently using the toolbar. (C) Phrase hyperlinking from Cosine Similarity tables. Each
word term generated from the input query list can be clicked on to link out (in red box) to the phrases in which it resides. The phrases containing the
identified word are ranked according to their cosine similarity as well. (D) In addition to the Cosine Similarity output feature, the resulting word lists
can be assessed by their output Z-score table or the probability scores in their p-value table. In each of these text word output formats each word can
be linked out to its phrase context scoring box as in Figure 5.
doi:10.1371/journal.pone.0062665.g002
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phrases; and discarding all phrases that cannot be formed by the

12281 words in the term-document matrix. The resulting set of

noun-phrases (NP) was used to generate a term-phrase-document

matrix, with phrases and words as rows, gene documents as

columns, and each cell as the presence of a word or phrase in a

document.

A term-phrase-document matrix (P) was constructed as follows:

Pi ,j

1 if i~j ^ jƒm _ Ti[NPj{m ^ jwm

0 otherwise

�

Weighting functions are not applied to avoid the application of

weighting functions twice, because this matrix is left-multiplied by

Uk. The resulting matrix U* can be viewed as a ‘‘term-phrase-

concept matrix’’, with each row representing a word or phrase and

each column representing an LSI dimension (Figure 1D) [23].

Query Processing
Since each word and phrase is represented by a row vector in

U*, a similarity score between any two words and phrases can be

generated by using cosine distance. Cosine distance, defined by the

cosine of the angle between two vectors, was computed as follows:

similarity~
A:B

Ak k| Bk k

Higher cosine scores correspond to a higher degree of similarity

between two words. A user query of a list of genes is then treated

as another hypothetical word in the English language, represented

by a row in the original term-document matrix. All values of this

row vector are positive for genes in the user query, and zero

otherwise. This, in effect, is the same as supposing such a word

existed in all gene documents in the user query. Such a word

would perfectly describe the user’s gene set and thus serves as a

point-of-reference for all other input English words.

Fortunately, recomputation of the SVD is not needed to index

the query into LSI space. Since M = USVT and therefore

MVS21 = U, we can index the query vector by right-multiplying

it by V and S21. The LSI-space query vector can then be

compared to any other word or phrase in U* using cosine distance.

The top associated words and phrases can then easily be retrieved

by identifying the words and phrases with the highest associated

cosine scores. Rudimentary statistical significance was calculated

using a Student’s t-test.

Generation of Hierarchical Word Clouds
Hierarchical clouds are an integration of agglomerative

hierarchical clustering (typically viewed as a dendrogram) with

traditional word clouds. Agglomerative hierarchical clustering was

applied to the top 30 output words of any given gene-based query.

Briefly, the process is defined as the initialization of each word as

its own cluster and the two closest clusters at each step being

iteratively joined into one at each step, forming a tree structure.

Each join is represented by a 261 or 162 HTML table, chosen

randomly. The resulting cloud displays the collection of words via

nested HTML tables. Each cell is color-coded to represent the

time at which joins were made and font sizes are adjusted to be

proportional to the calculated cosine similarities.

Generation of Gene-Word Heat Maps
Two-dimensional heat maps are generated to illustrate the

pairwise differences between specific genes and specific words.

Gene-word similarities were pre-calculated for all possible

combinations and represented in a heat map format as an HTML

table. In a heatmap, words are sorted by the number of genes with

which they share statistical significance. The strength of gene-word

association is indicated by the color intensity of each pairwise

association. For the output heatmap teal is used as color of gene-

word association. The most popular noun-phrase associations

Figure 3. Diverse Textrous! processing formats. (A) An illustration of the hierarchical cloud displaying multiple themes produced by collective
processing. The hierarchical cloud shows depression and stress at the conjunction between terms related to the central nervous system and terms
related to obesity. Each cell is color-coded to represent the time at which joins were made. Font sizes are adjusted in proportion to the calculated
cosine similarities. (B) An illustration of the heat map produced by individual processing. The top associated (Cosine Similarity) terms are shown, as
well as the relationships amongst genes. Here, the heat map shows that the top words are obesity-related, and that ‘‘Bdnf’’ is dissimilar to the other
genes in the query. Grey color indicates a relative lack of association, while the intensity of teal color corresponds directly to the strength of
correlation of each pairwise association. (C) Each of the output textual terms can be hyperlinked, via clicking on the word, to their associated top-
scoring (Cosine Similarity) phrases. In this panel the output word term ‘hyperphagia’ was linked out to its associated phrase contexts.
doi:10.1371/journal.pone.0062665.g003
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from the identified words can be accessed through a hyperlink

embedded in the gene-word heat map.

Programming Procedures
Generation of gene-documents, including word tokenization,

web crawling, filtering and parsing, was written in Python.

Construction of the term-document matrix was written in Java,

and computation of the SVD was done with SVDLIBC [24]. The

parsing of noun-phrases, generation of the phrase matrix, and

indexing of the phrase matrix into U* was written in Java with the

help of Apache OpenNLP [25]. All web development was

programmed with Python CGI, and resulting data displayed with

HTML and CSS.

Accessing Textrous!
Textrous! is housed on a globally-visible NIH site at: http://

textrous.irp.nia.nih.gov.

Results

Description of the Textrous! User Interface
The current Textrous! website can be accessed at http://textrous.

cit.nih.gov/(Figure 2A). The web interface contains a search box

where the user can input one or more official gene symbols

delimited by whitespace. Textrous! is able to generate words and

noun-phrases and their associated similarity scores, z-scores, and p-

values. After initial Gene Symbol input and activation of ‘Submit’

the Cosine Similarity results are depicted (Figure 2B). Each output

word in the ranking list can be used to link out to the top-scoring

phrases associated with that specific word (Figure 2C). After initial

searching, the user can interact with the results by displaying the

top words Cosine Similarity as well as their Z-score and

probability value tables (Figure 2D). In addition Textrous! allows

the generation of hierarchical word clouds as well as displaying

heat maps: both of these options allow the linking to noun-phrases

from each word. Noun-phrases can then be traced back to their

original PubMed articles. The number of genes found, as well as

the genes excluded from the query, can be viewed from the search

bar. All features are accessible on every page. A list of stopwords

can be found at http://textrous.cit.nih.gov/genes2word/

stopwords or equivalently through the Features page of the main

site.

Data Examples and Applications
Textrous! is able to process multiple genes with two different

methodologies: collective processing and individual processing.

Figure 4. Hierarchical cloud collective processing from large physiological datasets. The hierarchical cloud represents the most strongly
associated words with a large input dataset derived from behavioral experiments investigating learning task-oriented activity in mice. The highest
scoring (Cosine Similarity, Z score, probability) words extracted by Textrous! for the input dataset are indicated next to the hierarchical cloud.
doi:10.1371/journal.pone.0062665.g004
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Figure 5. Multiple comparison of the functional accuracy and specificity of Textrous!-extracted data with other data analysis
modules. The top five most significantly associated words obtained from Textrous! collective analysis of the mouse learning dataset are compared to
the top 5 most significantly enriched, KEGG pathways, GO-biological processes (GObp), WikiPathways, Ingenuity Pathway Analysis (IPA) Canonical
Signaling Pathways (IPA CanPath), Protein Information Resource Keywords (PIR Keywords) and IPA BioFunctions generated using WebGestalt (KEGG,
GObp, WikiPathways), IPA (CanPath, BioFunctions) and NIH-DAVID (PIR Keywords) respectively. The text size and descending sequential orientation
indicate the first to the fifth most significantly enriched group for each analytical mode illustrated.
doi:10.1371/journal.pone.0062665.g005

Figure 6. Textrous!-mediated individual processing output of an exemplary large dataset. The heatmap representation (teal-colored
blocks indicate strongly-associated gene-word interactions in an intensity-sensitive manner: grey blocks indicate no significant interaction) indicates
the gene (vertical)-word (horizontal) interactions within the large mouse learning dataset created with Textrous! individual processing.
doi:10.1371/journal.pone.0062665.g006

Textrous!: Extracting Meaning from Gene Sets
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Figure 7. Hierarchical cloud collective processing for compare-and-contrast large datasets. (A) The hierarchical cloud represents the
most strongly associated words associated with the hPTH (1–34)-induced transcriptomic response in murine calvarial bone. The highest scoring
(Cosine Similarity, Z score, probability) words extracted by Textrous! for the input dataset are indicated next to the hierarchical cloud. (B) Hierarchical
cloud representing the most strongly associated words associated with the bPTH (7–34)-induced transcriptomic response in murine calvarial bone.
The highest scoring (Cosine Similarity, Z score, probability) words extracted by Textrous! for the input dataset are indicated next to the hierarchical
cloud. (C) Venn diagram illustrating the distinct nature of collective processing-Textrous!-extracted words for the hPTH (1–34) and bPTH (7–34)
datasets. (D) Venn diagram illustrating the minimal commonality between words from manually-dismantled noun-phrases from hPTH (1–34) and
bPTH (7–34) datasets.
doi:10.1371/journal.pone.0062665.g007

Figure 8. Textrous!-mediated individual processing output of compare-and-contrast large datasets. Individual processing heatmaps for
hPTH (1–34)- and bPTH (7–34)-mediated transcriptomic activity in murine calvarial bone are demonstrated in panels (A) and (B) respectively. Teal-
colored blocks indicate strongly-associated gene-word interactions in a intensity-sensitive manner, while grey blocks indicate no significant
interaction.
doi:10.1371/journal.pone.0062665.g008
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Data tables, hierarchical clouds, and phrasing collectively process an

entire gene set as a whole, while two-dimensional heat maps

individually process each gene. Both methods can be advantageous

for distinct reasons and often times generate idiosyncratically

effective results from the same initial gene set query. Unlike the

previously described gene set annotational applications, e.g.

DAVID or WebGestalt, Textrous! is able to generate biomedical-

ly-relevant word association data from even just one input gene

identity. Such flexibility may be advantageous when minimal

numbers of important genomic and proteomic factors are

extracted from experimental data.

Simple dataset paradigm. Using collective processing, the

features of every gene are combined into an ‘‘average’’ gene, or

equivalently, the sum of the vectors created by each individual

gene. Such dataset management can be likened to a gestalt

appreciation of the whole dataset ‘phenotype’. This serves as a

different method of retrieving words, and leads to potentially

distinct and alternatively meaningful results. Using collective

processing in addition to hierarchical clouds allows the viewing

of distinct themes within a specific gene set. One can quickly

observe the presence of distinct themes in the hierarchical cloud

generated by the query ‘‘Lep Bdnf Fto Lepr’’ (Lep, leptin; Bdnf,

brain-derived neurotrophic factor; Fto, fat mass and obesity

associated; Lepr, leptin receptor): obesity related words in the

upper section, nervous system related words on the lower right,

and, in the conjunction, depression related words on the lower left

(Figure 3A). Additionally, collectively-processed phrasing allows users

to clarify potentially vague terms. For example, expanding the

word ‘‘gain’’ on the query ‘‘Fto’’ yields ‘‘body weight gain’’,

‘‘excessive weight gain’’, and ‘‘weight gain’’ as the top calculated

results. Using the same method, adjectives can be traced back to

the nouns that they describe. Using individual processing, a user is

able to view the relationships between specific words and specific

genes, as well as gene to gene relationships (Figure 3B). For

example, a query of the metabolism- and neurotrophic-associated

genes ‘‘Lep Bdnf Fto Lepr’’ shows not only which genes are

responsible for which output words, with eventual associated

noun-phrases, e.g. hyperphagia (Figure 3C), and at what degree. In

addition from this individual processing it is evident that an

additional nuance of investigation is revealed, i.e. Bdnf is ‘currently’

considered to be relatively dissimilar to the other genes in the

query (Figure 3B).

To further validate the potential utility of Textrous! for dataset

investigation we chose to next employ two considerably larger,

previously validated and investigated transcriptomic datasets

representing diverse molecular signatures. In these two paradigms

Textrous! is challenged with extracting phenotypically relevant

behavioral data as well as demonstrating its capacity to

discriminate between two closely related molecular signaling

datasets.

Physiological large dataset paradigm. To demonstrate

the use of Textrous! for large behavioral datasets we chose a

transcriptomic dataset obtained from murine central nervous

tissue from experimental mice subjected to physical and cognitive

tasks designed to isolate specifically the transcriptomic signatures

associated with cognitive activity from transcriptional effects

induced collaterally by the physical activity required to perform

the cognitive task (i.e. Morris Water Maze) [26]. The dataset for

transcripts significantly altered in the murine cortex in response to

a cognitive task (Morris Water Maze completion) involving

physical activity (swimming) compared to a task involving the

same amount of physical activity with no goal-oriented behavior

(time-controlled random swimming) is available on PubMed

Central [26] and has been included in Table S1. Using this

dataset (392 significantly-regulated transcripts) we derived, using

Textrous!, the significantly associated words linked to this dataset

(Table S2). In addition we also extracted the noun-phrases

associated with the top 10 significantly-associated words from this

list (Table S3). In Figure 4 we demonstrate the hierarchical cloud

and the cosine similarities, Z scores and P values for the words

forming the cloud. The strongest elements in the cloud, e.g. brain-

derived, neurotrophic, neuroprotective and neuroplasticity are all

words consistently linked with physiological activities (e.g. neuro-

synaptic reinforcement, learning, memory) as well as neurochem-

icals (e.g. brain-derived neurotrophic factor) that regulate cognitive

behavior [27–31]. We next compared these Textrous!-derived

hierarchical cloud outputs to a diverse array of other forms of

bioinformatic analysis of the same dataset (Figure 5, Tables S2–

S9). We found that with respect to the actual experimental

paradigm, i.e. assessment of cognitive and learning behavior in

mice [26], the Textrous! output (using the Top 5 lowest P value

scoring words: numbered 1–5) was more tightly associated with the

physical experiment data than the Top 5 lowest P value scoring

outputs using KEGG (Table S4), GO (Table S5), WikiPathways

(Table S6), IPA BioFunction (Table S7), NIH-DAVID PIR

(Protein Information Resource: http://pir.georgetown.edu/) (Ta-

ble S8) or IPA Canonical Pathways analysis (Table S9). In contrast

to Textrous!, the other annotational tools (KEGG) often generate

and prioritize highly generic and poorly-focused outputs, e.g.

metabolic pathways. Therefore Textrous! appears to at least provide

an important additional resource for extracting physiologically-

relevant information from larger-scale datasets via collective

processing. As Textrous! also allows simultaneous individual processing,

via heatmap generation (Figure 6, Figure S1), we also found that

the strongest gene-word associations for this specific transcript set

again exhibited a profound neurophysiological learning phenotype

(Figure S1, red box). For example, the strongest connections were

discovered between neurophysiological words such as: dendrites;

synaptic; plasticity; potentiation and transmitter, with important

neurophysiological genes linked with learning such as: Gria2

(glutamate receptor, ionotropic, AMPA 2) [32]; Nrxn (Neurexin)

[33]; Arc (activity-regulated cytoskeleton-associated protein) [34];

Homer1 (homer homolog 1) [35] and Rasgrf1 (Ras protein-specific

guanine nucleotide-releasing factor 1) [36]. Using this physiolog-

ical model example, Textrous! was able to generate physiologically

accurate textual data extraction and presentation using individual as

well as collective processing techniques from this large dataset.

Compare and Contrast Paradigm. As Textrous! demon-

strated a robust ability to extract physiologically-relevant pheno-

typic data from a single comparison behavioral dataset we next

tested whether Textrous! would be able to facilitate discriminatory

data extraction from two contrasting datasets instead. We have

recently demonstrated that structurally distinct therapeutic mol-

ecules, human parathyroid hormone (hPTH (1–34)) and a

molecular variant (bPTH (7–34)) can activate the same parathy-

roid hormone receptor in bone tissue in a G protein- or b-arrestin-

dependent manner respectively [37]. The functional signaling

pathways and functional sequelae entrained by these two distinct

ligands both support bone development but via clearly distin-

guishable mechanisms. Treatment of mice with hPTH (1–34)

primarily affects signaling activity associated with enhanced bone

formation through collagen synthesis and matrix mineralization,

while bPTH (7–34) primarily affects pathways that promote

expansion of the osteoblast pool, via modulation of cell cycle

regulation, cell survival, and migration. This diverse molecular

activity is one of the first demonstrations of ‘biased agonist activity’

in an in vivo setting. As the molecular pathways of these two ligands

are well characterized and mechanistically distinct we employed
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Textrous! in a compare-and-contrast manner between these two

large datasets (Tables S10, S11). Using the Textrous! collective

processing with the hierarchical clouds we found a clear distinction

between the two datasets (Figure 7A–B). From the hierarchical

cloud output from the hPTH (1–34) dataset that this ligand

induces a classical ‘bone development’ phenotype as the most

significantly associated words extracted are linked with mineral-

ization, matrix synthesis and bone structure including: catenins

[38,39]; calvaria; osteocytes; cadherin [40] and mineral (Figure 7A,

Table S12). In contrast, the words depicted in the hierarchical

cloud from the bPTH (7–34) dataset include words less strongly

associated with classical bone modeling activity but more with the

atypical cell-cycle regulatory activity demonstrated by this ligand

in vivo [37], e.g. cyclin, cyclin-dependent, cdk, m-phase and mitosis

(Figure 7B, Table S13). When we compared the top 100 extracted

word associations from these two datasets we found that no words

were common between the two Textrous! extractions (Figure 7C).

When the noun-phrases associated with the top 10 extracted words

were compared between the hPTH (1–34) and bPTH (7–34)

datasets again there were no common noun-phrases (Tables S14

and S15 respectively). Even with a manual dismantling of the

individual words contained in the two noun-phrase lists only a

minimal overlap between the two datasets was observed

(Figure 7D). Therefore the collective processing module of Textrous!

was able to both generate an accurate appreciation of the two

datasets in such a manner that their distinct mechanistic natures

can be confidently compared and contrasted. Indicative of the

potential discovery aspect of Textrous! data extraction a potentially

strong interaction of bPTH (7–34) with neuronal activity is also

suggested by the following extracted words, e.g. glutamatergic,

nmda and post-synaptic. Future experimentation may indeed

demonstrate this potential activity of this parathyroid hormone

variant.

With the individual processing of these contrasting datasets

(Figure 8) we again found a strong distinction of Textrous! output.

There were no common extracted heatmap words between these

two datasets and the phenotypic nature of each signaling paradigm

was clearly indicated. For the ‘classically-acting’ G protein-

dependent hPTH (1–34) we were able to extract G protein

signaling-associated words (gtp-binding, heterotrimer), bone dif-

ferentiation-associated words (collagen, osteogenic, ossification,

periosteum, etc.) and most surprisingly the word ‘pluripotent’

(Figure 8A). This final word is extremely interesting as the hPTH

(1–34) ligand is considered ‘pluripotent’ in its signaling activity

compared to the ‘b-arrestin-focused’ bPTH (7–34) [37]. In

contrast to the hPTH (1–34) dataset, the individual processing

(heatmap output) for the bPTH (7–34) dataset yielded extraction

of words more specifically associated with alteration of cell cycle

activity (s-phase, arrests, prophase, centrosomes) and cell motility

(invasion, rearrangement, cytokinesis, projection). This data

output therefore accurately replicates the actual in vivo data for

the specific activity of this bPTH (7–34) receptor ligand compared

to the standard hPTH (1–34) variant.

Using these three group paradigms (simple data, large

physiological data and compare-and-contrast data) we have found

that Textrous! data analysis is able to facilitate efficient and

physiologically-meaningful data extraction, via multiple processing

techniques, from both small and large input data lists.

Discussion

Textrous! is a novel web-based bioinformatics application that

extracts semantic meaning from gene sets without the use of

potentially outdated curated datasets, signaling pathways, or

controlled languages. It is useful in many different contexts to

help biologists extract impartial and differential knowledge from

large volumes of genes or proteins (using official Gene Symbol

nomenclature). Using an LSI-based approach, we were able to

extract both implicit and explicit links to specific input genomic

factors from diverse forms of scientific literature. Textrous! provides

the user with a wealth of functionality for visualizing words,

identifying themes, interrogating results, and determining statisti-

cal significance. Taken together, the most important aspect of

Textrous! is that it allows genomic and proteomic researchers to

determine word associations to gene sets of arbitrary length in an

objective, standardized, non-biased, and non-curated manner.

Such a technological development therefore may possess consid-

erable advantages over user-defined gene/protein clustering

applications as it is not as reliant upon historically-derived

functional signaling pathway data. It is highly likely that with

further experimental evidence the rigid nature of specific gene/

protein biological annotation will be demonstrated to be more and

more redundant and inaccurate. Therefore in using a non-curated

process, Textrous! provides a less biased and more ‘future-proof’

informatics data set annotation process. In conclusion, when using

complicated large scale datasets Textrous! is able to simply create a

naturalistic and unbiased scientific interpretation of these data.

Supporting Information

Figure S1 Interaction clustering for Textrous!-mediated
individual processing output of an exemplary large
dataset. (A) The individual processing heatmap representation

for the mouse learning dataset created with Textrous! was manually

organized to indicate the clustering strength of the top 20 gene-

word associations (indicated in red box). The top 20 most

commonly associated gene-word combinations are indicated in

panel (B).

(TIF)

Table S1 Relative transcription responses for learning-
based physical activity versus non-learning based phys-
ical activity. Gene transcription z-ratios for the learning task

(Morris Water Maze: Learn) mice compared to time-controlled

non-goal oriented physical activity (Swim).

(DOC)

Table S2 Textrous! output for learning task-oriented
activity transcriptomic dataset. The table indicates the

Cosine similarity with the associated Z-scores and probability P

values for each Textrous!-derived output word.

(DOC)

Table S3 Textrous! noun-phrase output for learning
task-oriented activity. The noun-phrase output from Textrous!

indicated below was generated from the top 10 most-significantly

associated words (Table S2) from the original learning-driven

transcriptomic set.

(DOC)

Table S4 KEGG signaling pathway output for learning
task-oriented activity. KEGG signaling pathway output was

prepared using WebGestalt (http://bioinfo.vanderbilt.edu/

webgestalt/). The table indicates the KEGG pathway output generated

using the original learning task-oriented transcriptomic dataset. The

table indicates the number of reference genes in the KEGG pathway

category (C), number of genes from the input set in the specific

category (O), the expected number in the category (E) based on a

murine background set, the ratio of enrichment (R) and p value (P:

hypergeometric test, p,0.05) adjusted by multiple test adjustment.

(DOC)

Textrous!: Extracting Meaning from Gene Sets

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e62665



Table S5 Gene Ontology term enrichment output for
learning task-oriented activity. Gene Ontology term enrich-

ment output was prepared using WebGestalt (http://bioinfo.

vanderbilt.edu/webgestalt/). The table indicates the GO term

output generated using the original learning task-oriented

transcriptomic dataset. The table indicates the number of

reference genes in the GO term category (C), number of genes

from the input set in the specific category (O), the expected

number in the category (E) based on a murine background set, the

ratio of enrichment (R) and p value (P: hypergeometric test,

p,0.05) adjusted by multiple test adjustment.

(DOC)

Table S6 WikiPathways enrichment output for learning
task-oriented activity. WikiPathway term enrichment output

was prepared using WebGestalt (http://bioinfo.vanderbilt.edu/

webgestalt/). The table indicates the WikiPathways output

generated using the original learning task-oriented transcriptomic

dataset. The table indicates the number of reference genes in the

specific WikiPathway category (C), number of genes from the

input set in the specific category (O), the expected number in the

category (E) based on a murine background set, the ratio of

enrichment (R) and p value (P: hypergeometric test, p,0.05)

adjusted by multiple test adjustment.

(DOC)

Table S7 Ingenuity Pathway Analysis BioFunction en-
richment output for learning task-oriented activity.
Ingenuity Pathway Analysis (IPA: http://www.ingenuity.com/

products/ipa) was employed to generate specific BioFunction

activity output from the murine learning transcriptomic dataset.

The specific significant P value for each enriched BioFunction is

indicated.

(DOC)

Table S8 NIH DAVID PIR Keyword enrichment output
for learning task-oriented activity. The batch gene anno-

tation module of NIH DAVID (http://david.abcc.ncifcrf.gov/)

was employed for the derivation of the fold enrichment (using a

murine background set) and the significant P value (,0.05) for the

specifically enriched PIR keywords extracted from the learning

oriented-task transcriptomic dataset.

(DOC)

Table S9 IPA Canonical signaling pathway enrichment
output for learning task-oriented activity. Ingenuity

Pathway Analysis (IPA: http://www.ingenuity.com/products/

ipa) was employed to generate specific Canonical Signaling

Pathway activity output from the murine learning oriented-task

transcriptomic dataset. The specific significant negative log10 of

the P value, as well as the enrichment ratio for each of the

significantly-populated Canonical signaling pathways is indicated.

(DOC)

Table S10 Parathyroid hormone (hPTH (1–34))-induced
bone transcription response in wild-type mice. The

transcriptomic response data indicates the significantly regulated

genes expressed in calvarial bone extracts from mice intermittently

dosed with hPTH (1–34).

(DOC)

Table S11 Parathyroid hormone variant (bPTH (7–34))-
induced bone transcription responses in wild-type mice.
The transcriptomic response data indicates the significantly

regulated genes expressed in calvarial bone extracts from wild-

type mice intermittently dosed with the parathyroid hormone

variant bPTH (7–34).

(DOC)

Table S12 Textrous! output from hPTH (1–34) calvarial
bone transcription response in wild-type mice. The

Cosine similarity, Z-scores and associated P values for the word

data output (top 100) from hPTH (1–34)-treated mice is indicated

in the table.

(DOC)

Table S13 Textrous! output from bPTH (7–34) parathy-
roid hormone variant calvarial bone transcription
responses in wild-type mice. The Cosine similarity, Z-scores

and associated P values for the word data output (top 100) from

bPTH (7–34)-treated mice is indicated in the table.

(DOC)

Table S14 Textrous! noun-phrase output from hPTH (1–
34) calvarial bone transcription responses in wild-type
mice. The data indicated in the table consists of the Cosine

similarity scores for the most strongly associated noun-phrases

linked to the top 10 most significantly-associated words extracted

by Textrous! from the hPTH (1–134)-induced transcriptome data.

(DOC)

Table S15 Textrous! noun-phrase output from bPTH (7–
34) parathyroid hormone variant-treatment of calvarial
bone transcription responses in wild-type mice. The data

indicated in the table consists of the Cosine similarity scores for the

most strongly associated noun-phrases linked to the top 10 most

significantly-associated words linked to the bPTH (7–34)-induced

transcriptome data.

(DOC)
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