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Abstract

Due to the complexity of biological systems, simulation of biological networks is necessary but sometimes complicated. The
classic stochastic simulation algorithm (SSA) by Gillespie and its modified versions are widely used to simulate the stochastic
dynamics of biochemical reaction systems. However, it has remained a challenge to implement accurate and efficient
simulation algorithms for general reaction schemes in growing cells. Here, we present a modeling and simulation tool,
called ‘GeneCircuits’, which is specifically developed to simulate gene-regulation in exponentially growing bacterial cells
(such as E. coli) with overlapping cell cycles. Our tool integrates three specific features of these cells that are not generally
included in SSA tools: 1) the time delay between the regulation and synthesis of proteins that is due to transcription and
translation processes; 2) cell cycle-dependent periodic changes of gene dosage; and 3) variations in the propensities of
chemical reactions that have time-dependent reaction rates as a consequence of volume expansion and cell division. We
give three biologically relevant examples to illustrate the use of our simulation tool in quantitative studies of systems
biology and synthetic biology.
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Introduction

One of the main objectives in systems biology is to quantitatively

understand the behavior of biological systems, particularly from a

dynamic aspect. Based on the dynamic information of biological

systems, synthetic biology allows for the rationale design of artificial

gene circuits. Improvements in various ‘‘-omics’’ and biophysical

technologies have provided an accumulation of data; this wealth of

knowledge and experimental data enables simulations of gene

regulatory networks in an increasingly accurate manner

[1,2,3,4,5,6,7,8,9,10]. More importantly, the quantitative models could

help us in understanding the general principles regarding how gene

regulation systems are operated [10,11,12,13,14,15]). The classic

stochastic simulation algorithm (SSA) by Gillespie and its later

developments are widely used to simulate the stochastic dynamics of

well-stirred biochemical systems [16,17,18]. The algorithm is easy to

implement on well-stirred reaction volumes involving zeroth-, first- and

second-order elementary reactions that have contributed to its

popularity [16,19]. However, even the simplest gene regulatory circuits

in bacteria possess common features that are not trivial to implement in

a general simulation tool.

The first feature is the cell cycle-dependent gene expression level. It

is caused by variations in gene dosages (due to the gene’s position in the

chromosome) and sometimes has important physiological significance

[20,21]. When a chromosomal gene position is near the replication

origin site, the replication fork passes this position earlier and doubles

the gene copy number, thereby causing this gene to have a higher

average dosage in one cell cycle. Conversely, if a gene is far away from

the replication origin site, the replication fork passes its position later,

resulting in a lower average dosage in one cell cycle [22]. For the E. coli

gene expression system, a higher gene dosage means the opportunity to

express more proteins [20]. Also several bacterial species have

overlapping cell-cycles such that chromosome replication may be

initiated in the grandmother cell, to be able to finish a round of

replication and chromosome segregation before cell division. This

implies that a single gene may have up to eight copies in one cell at high

growth rates [23], which may significantly buffer the low copy number

fluctuations in gene expression.

The second is the variations in the propensities of chemical reactions

as a consequence of volume expansion and cell division. The volume of

E. coli increases exponentially and divides into two daughter cells about

20 minutes (the D-period) after the replication of the chromosomes is

completed. The effects of the gradual change in cell volume influence

the propensity of bi-molecular reactions. For example, the chance for

two molecules to find each other before cell division is doubled than the

chance after cell division, assuming that these two molecules would end

up exclusively in the same cell.

The last but not least feature is the time delay between the regulation

and synthesis of proteins. It is not always possible to break down all

reactions into elementary steps. Since synthesis of macromolecular

polymers such as RNA and proteins involves a large number of
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sequential synthesis steps and the synthesis time is not exponentially

distributed, it is often misleading to approximate all these steps with a

single elementary reaction. Thus, it is highly desired for the multi-step

synthesis processes to introduce a time delay between the start of

synthesis and the emergence of a functional macromolecule. Several

reports have shown that time delays account for memory ability and

instability in biological systems [24,25,26,27,28], especially in those

cases with highly stochastic behavior in gene regulation systems when

molecules exist in low copy numbers [29].

Simulation methods that consider either volume expansion or time

delays in analyzing reaction systems have been described previously

[30,31,32]. To our knowledge, there is still a lack of methods that can

consider aforementioned features simultaneously. Moreover, there is a

great need to take into account the peculiarities of dynamic gene

dosage effects in cells with overlapping cell cycles. In this study, we

integrate these features together and package them in a user-friendly

simulation tool ‘GeneCircuits’.

Methods

Consideration of Periodic Gene Dosage Changes and Cell
Division

The program takes a deterministic generation time of the cells and

the positions of the relevant genes as inputs and calculates dynamic

changes in gene-dosage throughout the cell cycles. To make the

implementation feasible, we made the following assumptions: the

chromosome replication time (the C-period) is constant (i.e., 40 minutes

[33]); the replication fork moves at a constant speed from the origin of

replication to the terminus; the bacteria are divided after 20 minutes

following the completion of chromosome replication (the D-period)

[33,34,35]. After each simulated event, the algorithm updates the

position of each replication fork and calculates the current gene dosage

of each gene. Once a fork moves through the gene position on the

chromosome, the copy number of this gene is doubled, and the new

instance of the gene copy is created and maintained by the algorithm.

Moreover, the algorithm also creates corresponding reactions for the

new gene copy, including its own transcription process and

corresponding transcription factor association and dissociation from

the promoter for this gene. These new reactions are then pushed into

the reaction queue, giving them the opportunity to be chosen later. It is

noteworthy that the regulation of new copies of this gene is

independent.

Cell division is an important source of noise in the E. coli system

[36,37]. Upon division, the algorithm distributes all free molecules

between the mother cell and the daughter cell according to a binomial

distribution function [38]. Furthermore, the algorithm keeps track of

the initial conditions and relationships between bacteria after cell

division, i.e. if one daughter cell gets more, the other gets less. We used

this information to rebuild the lineage tree. Based on these data, the

software provides analysis methods to mine dynamic information on

the development of E. coli micro-colonies and to analyze correlations

with concentrations over several generations. During cell division, for

example, the states of the individual promoters are inherited by the

daughter cells, whereas freely diffusing molecules and complexes are

randomly partitioned. This function makes it possible to study how

epigenetic states are inherited throughout the cell linage tree.

Cell Volume Increase and Time Delays in the Simulation
of the Gene Expression Process

Since cell volume growth has a great influence to the time-

dependent reaction in the system, and since multi-step synthesis

processes introduces time delays in the dynamics of gene expression

processes, we thus integrated time delays and cell volume increase into

the framework.

A typical reaction system includes both time-dependent and time-

independent reactions. Therefore, we adopted the algorithm by Lu

et al. [30] to sample the next reaction event in the system. Consistent

with the previous notations, we denote the total rate of reactions with

time-dependent propensities by As and that without time-independent

propensities by Aq. In contrast to the classic Gillespie algorithm

approach that calculates the propensity of a combination reaction, we

obtain the current concentration of each element of this combination

reaction at each time step. Equation (1) is used to calculate the

probability of all association reactions and equation (2) is used to

calculate the propensities of the remaining channels.

As~
Xs

i

VNAki
CA

V

CB

V
ð1Þ

Aq~
Xq

i

VNAki
Ci

V
zP0 ð2Þ

Xm~szq

i

av~AszAq ð3Þ

In equations (1), (2) and (3), V is the current volume of the

bacterium, NA is the Avogardro’s number, k is the reaction constant in

the sense of classical kinetics, CA is the copy number of one reactant,

CB is the copy number of the other reactant, P0 is the total rate of

zeroth-order reactions,
Pm~szq

i

avis the total propensity of this system,

and m~szq is the total channel number.

To estimate the time step, we introduce the following definition

p(t,mDX1,::::::,Xn,t)dt~p0(tDY ,t)am(tzt)dt ð4Þ

where p(t,mDX1,::::::,Xn,t)dt is the probability that, given the state

Y~X1,X2::::::,Xn at time t, the reaction Rm will occur in the

infinitesimal time interval (tzt,tztzdt), and am(t)dt is the

probability that reaction Rm will occur within the interval (t,tzdt)

under current state: X1,X2::::::,Xn.

When no reaction occurs during dt, we can calculate the

probability in the situation as following:

p0(tzdtDY ,t)~p0(tDY ,t)½1{dt
X

s

as(tzt){dt
X

q

aq� ð5Þ

Using the initiation condition: P0(t~0DY ,t)~1, the p0(tDY ,t)
can be derived to:

p0(tDY ,t)~ exp½{
X

s

ðtzt

t

dt
0
as(tzt

0
)� exp½{t

X
q

aq� ð6Þ

Through combining equations (4) and (6), p(t,mDY ,t) can be

described as following,

Simulation of E. coli Gene Regulation Networks

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e62380



p(t,mDY ,t)

~am(tzt) exp½{
X

s

ðtzt

t

dt
0
as(tzt

0
)� exp½{t

X
q

aq�
ð7Þ

Since the cell volume grows following the exponential law

V (tzt)~V (t) exp ( ln (2)t), we can obtain the probability of any

reaction occurring between time t and tzT using the equation (8).

ðT

0

X
m

dtP(t,mDY ,t)~1{ exp½{As(1{ exp½{ct�)=c{TAq� ð8Þ

By generating a uniform random number and letting it be equal

to the right side of equation (8), we use the equations in (9) to

sample when the next reaction will occur.

Figure 1. Schematic diagram of the software architecture. (A) The tool contains three logical levels: the interface level, explanation level and
calculation level. The interface level is an editor to build biological models and integrate necessary information and parameters. The explanation level
is a complier to understand the user’s biological model and translate it into the mathematical model. The calculation level is a computational element
to calculate the model and return the results. (B) The interface of building the model and setting parameters. With a user-friendly interface, the tool
provides an instant visual bio-model building environment. For user convenience, GeneCircuits chose standard icons to present biological elements.
For example, a gene icon is represented by a set of standard sub-symbols, including two regulatory domains (white square), one mRNA (hollow
parallelogram) and one corresponding protein (solid red rounded quadrilateral). Users can define the various roles of each element in the system.
Based on the Petri net representation, each reaction has a horizontal line, which is a representation of the reaction. By double-clicking this horizontal
line, users can set up parameters of the reaction. (C) The user interface for setting parameters.
doi:10.1371/journal.pone.0062380.g001
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t~

w
As

Aq

exp
As

Aq

zc
ln (m1)

Aq

� �� �
{

As

Aq

{c
ln (m1)

Aq

c

if As=0 and Aq=0

t~

ln
As

Aszc ln (1{m1)

� �

c

if As=0 and Aq~0

t~{
ln (m1)

Aq

if As~0 and Aq=0: ð9Þ

In equation (9), m1 is a uniform random number, t is the time

step, c~ ln 2, and w() is the Lambert function, which is the

solution of the equation of x~w()ew().

Using equations (1)–(9), the algorithm samples the interval in time to

the next reaction. Meanwhile, the algorithm also checks whether there

is a reaction with time delay in the delayed queue or a gene replication

event scheduled during the interval. If there is a scheduled delayed

reaction or a replication event that will occur during the interval at time

tn, the algorithm updates the system time to tn. After this, a new event

time is sampled using equation (9). However, if the selected reaction is a

time-delayed reaction scheduled to occur at td~tzd, where t is the

current system time and d denotes the delayed time of this reaction, the

algorithm pushes the reaction into a queue that has been created for

the temporary storage of time-delayed reactions, and the reaction

product will not be released until the system time reaches td .

If the biochemical reactions system does not have time delays and

the interval between adjacent reactions is large enough, the Lambert

function is appropriate to be used to estimate the interval time of two

adjacent reactions. However, in the systems with time-dependent and

delayed time reactions, the precision of calculation of Lambert function

is critical to the correctness of algorithm. For example, there is a delay

reaction in the reaction queue and has been scheduled within the time

interval½tzDti�. In most of cases, Dti is a small interval. If the accuracy

of calculation of Lambert function is dissatisfactory, the algorithm will

return a less accurate result, which leads t always bigger than Dti and

eventually induces the algorithm to only choose delay reactions in the

reaction queue as the next reaction until the queue is empty. However,

there are no chances for other channels to be chosen.

The Flow Chart of the Algorithm
The flow chart of the algorithm is listed below in detail.

(1) Calculate the expected time point of the replication initiation and

termination of the chromosome. For each gene, estimate the

expected replication time point during the whole simulation time.

Push all of these time points into a queue, which stores all of the

scheduled delayed reactions and events, and then sort all of the

elements in this queue.

(2) Input value constants for each reaction: Cu, u~½1::::::m�,
initial state X ½x1::::::xn�, set t~0 and the reaction counter

i~0, where mis the number of reactions and nis the number

of reactants.

(3) Calculate As, Aq and their sum using equations (1), (2) and (3).

(4) Generate uniformly distributed random numbers: u1,u2[½0,1�;
(5) Use equation (9) to estimate t, which denotes the time interval

from the current time until the next reaction.

(6) Check the queue to see if there are delayed reactions or if an event

of gene replication is scheduled during the time interval ½t,tzt�. If

YES and the top element of the queue is a scheduled delayed

reaction, the algorithm updates the system state to the chosen

reaction channel and the system time to td , pops this chosen

reaction from the queue, increases the system volume, set i~iz1
and go to step 3. Otherwise, if YES and the chosen reaction is a

gene replication event, the algorithm updates the state of the gene

promoter, sets the system time to the replication time of this gene,

doubles the gene copy number, creates the corresponding

reactions, fills them into the reaction list, pops the chosen event

from the queue, increases the system volume, sets i~iz1 and

switches to step 3. If NO, go to step 7.

(7) Take C to be the integer for which:
PC{1

v~1

avvu2

Pm
i~1

avv
PC
v~1

av,

where C is the index of the next chosen reaction. If the selected

reaction is delayed, push it into the queue, sort the queue,

increases the system volume, and go to step 3.

(8) Update the system state according to the channel for the next

reaction, advance the system time to tzt, increase the system

volume and let i~iz1. Go to step 3.

Implementation of the Software
We developed a user-friendly C++ software called GeneCircuits. This

tool is designed with three logical levels (see Figure 1): the interface

level, the explanation level and the calculation level. The interface level

is a graphical biological model editor used to reconstruct gene

regulation systems. At this level, the relevant information is integrated

to build a biological model. The explanation level is a model compiler

with the built-in functions to understand the network and translate it

into the corresponding modified Gillespie model. The calculation level

calculates the model parameters and, if required, can also distribute the

task on several cores. This modular design not only makes it easier to

maintain, but also makes it more flexible to incorporate multilevel

parallel computation.

From the viewpoint of software engineering, GeneCircuits is a

distributed memory parallel system, which takes advantage of

Table 1. The rates of parameters used in the auto-regulation
systems.

Symbol Value Unit

Transcription rate a 1 /gene/sec

Translation rate b 1 /mRNA/sec

mRNA degradation rate r1 2 1/sec

Protein decay rate r2 0.01 1/sec

Dimer production rate c 1 mM/sec

Dimer dissociation rate d 1 1/sec

Rate of dimer binding to the promoter K1 100 mM/sec

Rate of dimer dissociation from the
promoter

K2 0.1 1/sec

doi:10.1371/journal.pone.0062380.t001
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Figure 3. Bi-stable system in a double-negative feedback loop. (A) A schematic illustration of a double-negative feedback loop is shown.
Protein A acts as a repressor of gene B, and protein B represses the expression of gene A. (B) For the parameters given in the model, the system is bi-
stable. (C) Two lineage trees (left and right) describe the distribution dynamics for the expression of Genes A and B. The color bar represents the
concentration of the protein, and each bar represents the profile of one protein of one bacterium during one cell cycle. For the unsynchronized initial
states, the lineage trees of the expression of Gene A and B display inverse correlations.
doi:10.1371/journal.pone.0062380.g003

Figure 2. Simulation of a negative auto-regulation system with or without time delay. (A) When the simulation of the system without time
delay is performed, the curves from the deterministic equations and the classic Gillespie method are smooth and approximately equal. The protein
(monomer) copy number of a time series is generated from the deterministic equations (ODE, yellow curve), the classic Gillespie method (Gillespie,
blue curve) and our stochastic algorithm (GeneCircuits, red curve). The curve of GeneCircuits is slightly higher than those of the two other simulations.
(B) Oscillations in the protein concentration are induced at a longer time delay (1000 seconds).
doi:10.1371/journal.pone.0062380.g002
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multithreading technology from the Boost thread library (http://www.

boost.org/). Each cell is simulated by one thread. Each time a daughter

cell is created, a matched thread is accordingly created. Additionally,

the tool remembers the hierarchy relationship between them. With the

multithread technology, GeneCircuits not only efficiently implements the

underlying algorithm, but also holds great promise in further

simulating the communication and cooperative behavior between

bacteria. In the case that the simulation of complex networks requires

huge calculation tasks, the users can also utilize the grid function of the

tool. This grid function distributes the tasks to the client notes so as to

further improve the efficiency.

The software package, source codes, manual and teaching videos,

along with some example models, can be found at (http://ccsb.fudan.

edu.cn/genecircuits/). The teaching videos including all of the basic

operations and some of the advanced operations can help users learn

the software package. Also, comprehensive software test cases are

provided, which have been used to detect bugs so as to prove the

rationality of the simulation results. Users can download the test cases

and the corresponding stochastic and deterministic models from the

above website as well. Since our software takes into account numerous

specific biological details and integrates biologically oriented designs,

Figure 4. The fluctuation of the metabolite concentration due to the gene position of the enzyme on the chromosome. (A) The
biological model with the balanced flux of metabolite M2. There are two enzymes, A and B, and three metabolites, M1, M2 and M3. M1 can be taken
up from the surroundings. Enzyme A and enzyme B can catalyze the input flux and output flux of metabolite M2, respectively. In this figure, we use
‘‘i’’ and ‘‘t’’ to represent the starting point of chromosome replication and termination, respectively. (B) If two enzymes have the same gene position
on the chromosome, the average rate of the input flux and output flux are equal. The fluctuation of M2 concentration is only due to the replication of
the genes and bacterial volume growth. The insert illustrates the gene dosage. (C) The model of unbalanced flux of M2. There is a long distance
between the gene positions of two enzymes on the chromosome. (D) The difference in the temporal expression of two enzymes caused the
inequality of the average input and output flux and enhanced the fluctuation of M2 concentration. The insert shows the gene dosage of A (green
curve) and B (red curve).
doi:10.1371/journal.pone.0062380.g004

Table 2. The parameters used in the metabolic system.

Symbol Value Unit

Update rate of M1 inputfluxM1 100 mM/sec

Output of M1 outputfluxM1

mM/sec

Utilize rate of M1 and M3 r3 1 1/sec

mRNA degradation rate r1 1 1/sec

Enzyme decay rate r2 0.01 1/sec

Enzyme Kcat value Kc 10 1/sec

Enzyme Km value Km 1 mM

mRNA synthetic rate a 1 /gene/sec

Enzyme synthetic rate b 1 /mRNA/sec

Dilution rate m 0.0139 NA

doi:10.1371/journal.pone.0062380.t002
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the efficiency of our tool may not be as high as tools tailored to specific

situations.

Biologically Oriented Features of GeneCircuits
Currently, there are several popular simulation tools available,

such as E_Cell [39], Dizzy [40], Virtual Cell [41], CellLine [15],

STOCHSIM [42] and Dynetica [43]. These tools are user-friendly

and can work well on many biochemical networks and simplified

gene regulatory processes. However, these tools simplify gene

regulatory processes and are not so easily modified for investiga-

tion of gene regulation or biochemical networks with cell cycle

dependent noises, time delay and gene dosage effects. Instead, our

tool presented here is suited to stimulate cell cycle dependent gene

regulation, because we have integrated the following biologically

oriented designs into the framework:

Firstly, our tool considers the relationship among transcription

factor (TF), its cofactors and target genes. The TF affects the

expression of its downstream target gene via association or

dissociation to specific binding sites located in the promoter of the

target gene. Cofactors influence the affinity of the TF to its target

gene through binding or unbinding TF’s active site, which will

eventually regulate the expression of downstream target genes of

TF. GeneCircuits provides the functionality and interfaces that allow

users to keep track of the activity states of promoters in the

presence of transcription factors that themselves can be regulated

transcriptionally or metabolically by binding small molecules.

Secondly, our tool provides the functionality to define the

cooperative law and thus permits the simulations of the dynamic

binding affinity adjustment. This design in GeneCircuits is important

since most of genes are cooperatively regulated by one or more TFs.

Thirdly, in some case the extrinsic noise influences the gene

expression in bacteria [37,44,45]. To approximate the effect of

extrinsic noise, our tool can multiply Ornstein-Uhlenbeck noise to

the reaction rate constants. The extrinsic noise is assumed to be

the same for all genes and have cell cycle-dependent autocorre-

lation time and noise intensity [46,47]. Also, it can provide the

interface by which users can choose to apply or not to impose

simultaneously the activity environmental fluctuations on many

parameters of the network.

Results

To demonstrate the capability of GeneCircuits for exploring

complicated phenomenon of gene regulation systems, we applied

this tool to three biological model systems. Using a negative auto-

regulation system with or without time delay respectively, we first

showed the capability of the tool for demonstrating identified cell

dynamics. Then, we illustrated epigenetic inheritance based on a

bitable switch in a micro colony. Finally, we demonstrated the

effect of gene dosage dependent gene expression with a metabolic

flux balance model. The three examples represent major features

of our proposed algorithm. The model files for simulating these

examples are also available as a part of the software (i.e., in the

‘/model’ folder after GeneCircuits is installed). Below we described

these examples together with the biological significance.

Simulation of Time Delay Processes in a Negative Auto
Regulation System

First, we investigated the performance of GeneCircuits in a negative

auto-regulation system. The model contains four elements: the gene

promoter, mRNA, protein and dimer. The dimer is created by proteins

and has the capability to bind to its own promoter. Once the dimer

binds to the gene promoter, the transcription rate of the gene is

decreased by a factor of 10. The bound TF dissociates from the

promoter after the replication fork passes the gene on the chromosome.

To let the promoter bind again quickly, we set high values for the

dimer binding rate. The parameters of the system are listed in Table 1.

We built the corresponding deterministic mathematical model

(see Matlab code 1, in the Text S1) for this system as follows:

dmRNA

dt
~ a|

1

1zdm|
K1
K2

z0:1|a|
dm|

K1
K2

1zdm|
K1
K2

2
4

3
5

|genedosage{r1|mRNA

dprotein

dt
~b|mRNA{r2|protein

{2|c|protein|proteinz2|d|dm

ddm

dt
~c|protein|protein{d|dm

ð10Þ

In equation (10), we set the gene dosage 0.003 mM (about two

gene copies/cell). The variables mRNA, Genedosage, protein and dm

refer to the concentration of the mRNA, gene copy, protein and

dimer in the system, respectively. The initial values of these

variables are set to zero.

To test the implementation of the algorithm, we first applied

GeneCircuits to the model without time delay and compared the results

from our algorithm with those from the classic SSA (see Matlab code 2

in the Text S1) and the ordinary differential equation (ODE) methods.

We simulated the classic Gillespie model with two copies of a gene. In

the model of our algorithm, we set a long generation time (200 min)

that caused the cell volume to slowly increase so that cell growth could

almost be neglected. We set the gene position near the replication origin

site on the chromosome, leading to a gene dosage approximately equal

to the two above models. As shown in Figure 2A, the results from the

classic Gillespie model are identical to those from the ODE result. The

results from our modified algorithm are similar to, but slightly higher

than, those from the ODE and classic Gillespie methods. The higher

results from our algorithm are as expected; we accounted for the cell

growth volume in our algorithm, and thus the probability of dimer

binding to the target promoter was modulated gradually by time.

Next, we compared the results from the models with time delay, that

is, the delayed ODE model and our modifier model. Using the same

parameters as those in the above models, we introduced a long time

delay (1000 seconds) into the translation process and simulated the

model for 400 min (two cell cycles). Notably, it is experimental but

without indicated biological significance. As shown in Figure 2B, we

observed obvious oscillations for both models considering time delay.

The long delayed time in the translation process brings the system far

away from its stable point, which results in oscillation around the stable

point to create a limit cycle oscillator [48].

The Impact of Heterogeneity in Micro-colonies
Under natural conditions, the state of each bacterium is sometimes

unsynchronized [22,49]. To approximate the natural conditions, we

further considered a model: two genes can repress each other and their

corresponding product proteins have equal binding abilities to their

target genes (Figure 3A). As shown in Figures 3B, at the beginning

of the simulation, the state of gene expression is random. Because the

regulator circuit is bistable, the pre-existing heterogeneity is then passed

down to later generations. To lay out the sustainable bi-stability, we

displayed two lineage trees describing the protein concentrations

during the entire simulation time in Figure 3C. By comparing two

lineage trees, we found clear asynchrony or inverse correlations

between the expression levels of the two genes.

Simulation of E. coli Gene Regulation Networks
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Large Fluctuations of the Metabolite Pool Caused by
Dynamical Gene Dosage Effects

With the rapid advancement of synthetic biology, many studies

have designed artificial gene circuits or metabolic pathways to

explore the general law of biological networks, thereby improving

the production rate of biochemical products. However, as far as

we know, few studies have considered the location of a gene on the

chromosome. To do so, we applied our modified algorithm to a

dynamic metabolic flux balance model, and demonstrated that our

modified algorithm is able to simulate the gene expression change

affected by the chromosomal location of a gene, and can also

simulate the consequence of this change to artificial system.

We set up a simple metabolic network (Figure 4A), in which

the relative concentration of enzymes has a great impact on the

metabolism levels since the enzymes operates close to saturation

[50]. In this metabolic network, the system can uptake metabolite

M1 from the surrounding environment, enzyme a catalyzes

metabolite M1 to metabolite M2, and enzyme b catalyzes

metabolite M2 to metabolite M3. The kinetic parameters for the

two enzymes were set to be equal and the full parameters used in

this metabolic system were listed in Table 2.

Using the Flux balance equations [51], we described the

dynamics of the system as equation (11).

In equation (11), the variables:inputflux, outputflux and utilize

describe the input flux, output flux and utilized rate of each metabolite,

respectively. We applied the Michaelis-Menten equation to define the

input and output fluxes [52,53]. The initial values of the three

metabolites are set to 50 molecules, and the initial values of protein and

mRNA are set to 100 and 10 copies, respectively. We set the system

generation time to 50 minutes and studied the system in two steps.

First, two genes were positioned symmetrically at the middle of

the chromosome. When the expression level of one gene changes

periodically along with the doubling and halving of the gene copy

number, the temporal dynamics of both genes display the same

characteristics; thus, the input flux of metabolite M2 and the

output flux of metabolite M2 maintain a general balance. Under

this balanced condition, the copy number of metabolite M2 stays

at a certain level, and fluctuations in the concentration of

metabolite M2 will be caused by cell volume increase and gene

replication. The results are shown in Figure 4B.

Second, gene a was moved in the direction of the replication origin,

while gene b was moved in the opposite direction toward the telomere

(Figure 4C). Thus, at the beginning of each generation, gene a has

two copies, and its gene copy number will double 40 minutes later.

However, gene b has only one copy at the beginning of each

generation and will double 30 minutes later. The difference between

the expression levels of the enzymes leads to an unbalanced input and

output flux of metabolite M2. Although the system volume will grow

and the cell will divide, the discrepancy of fluxes gives rise to the

accumulation of metabolite M2, eventually causing the concentration

of metabolite M2 to stay at a higher level much longer. The results are

shown in Figure 4D. In addition to the Genecircuits model, we also

applied the SSA method (please see Matlab code 3 in the Text S1) to

this dynamic Flux Balance system and compared the differences

between the results of the two models.

dM1

dt
~inputfluxM1{outputfluxM1

{utilizeM1{u|M1

dM2

dt
~inputfluxM2{outputfluxM2

{utilizeM2{u|M2

dM3

dt
~inputfluxM3{outputfluxM3

{utilizeM3{u|M3

inputfluxM1~100uM= sec

inputfluxM2~Kc|M1|enzymea

|
1

KmzM1
~outputfluxM1

outputfluxM2~Kc|M2|enzymeb

|
1

KmzM2
~inputfluxM3

outputfluxM3~0

utilizeM1~r3|M1

utilizeM2~0

utilizeM3~r3|M3

denzymeamRNA

dt
~a|genedosagea

{r1|enzymeamRNA{u|enzymeamRNA

denzymebmRNA

dt
~a|genedosageb

{r1|enzymebmRNA{u|enzymebmRNA

denzymeaprotein

dt
~b|enzymeamRNA

{r2|enzymeaprotein{u|enzymeaprotein

denzymebprotein

dt
~b|enzymebmRNA

{r2|enzymebprotein{u|enzymebprotein

ð11Þ

Even though our modifier model gives better results, it should

be emphasized that this is still a simplified and idealized model. In

a real metabolic system, excessive accumulation and consumption

are a waste of valuable resources and are even deleterious to the

function of a system in some cases, particularly under perturbation

conditions [49,54]. Biological systems develop delicate mecha-

nisms, such as negative feedback of gene regulation systems [55]

and cooperation between metabolic pathways, to avoid excessive

accumulation and consumption [56] and to allow for supporting

systems to function optimally. Usually, E. coli is genetically

engineered by inserting some external enzymes gene on its

chromosome. For this modified strain, our method is able to

mimic such real scenario by simulating the effect of chromosomal

location, which can be used to improve capability of the metabolic

pathway by modification of the gene locations.
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Discussion

In this study, we extended the classic SSA algorithm to the one

that simultaneously takes into account key features during gene

regulation of bacterial cells with overlapping cell cycles. Also, we

developed the simulation tool GeneCircuits, freely available to the

public. The modified algorithm and the biologically oriented

software provide a new way to investigate the dynamics of E. coli

gene regulation and biochemical systems.

With the rapid improvements in synthetic biology [57], there is

a great need to test in silico designs under ‘‘realistic’’ as much as

possible [58]. Enzyme genes, TF genes and other elements have

different time delays in translation and transcription processes,

each with different associated properties. They are positioned at

different places on the chromosome. As chromosome is replicated

and cell volume increases, the gene expression levels and the

propensity of the time-dependent reactions differ at the different

cell cycle phases. Moreover, the time delay in biological processes

further complicates the dynamics of the system. These complex

and coupled factors should be considered simultaneously in the

‘ideal’ design to make sure the functions appropriately. With our

algorithm and the tool GeneCircuits, users can meet their desired

need for the biological system of interest: 1) design biological

elements with a certain expression ability, 2) consider time delay in

translation and transcription processes, and 3) modulate the

chromosomal gene position to test the response of the system.

Therefore, users can choose the optimized gene arrangement on

the chromosome with the best tradeoff between system function

and gene propensity.

As compared to an experimental tube, our simulation method

accounts for several key aspects of gene regulation that needs to be

modeled differently in a living bacterial cell. Even though, there

are still a great number of possible biophysical factors left to be

considered for accurate ab initio simulation of intracellular

processes. To identify these factors, we need to add complexity

over test tube chemistry one level at the time until we reach

convergence with experimental measurements in living cells. The

central features for exponentially growing microorganisms grow-

ing with overlapping cell cycles that we have simulated in this

study represents an important step towards this path.
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