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Abstract

Accurate estimates of recombination rates are of great importance for understanding evolution. In an experimental genetic
cross, recombination breaks apart and rejoins genetic material, such that the genomes of the resulting isolates are
comprised of distinct blocks of differing parental origin. We here describe a method exploiting this fact to infer genome-
wide recombination profiles from sequenced isolates from an advanced intercross line (AIL). We verified the accuracy of the
method against simulated data. Next, we sequenced 192 isolates from a twelve-generation cross between West African and
North American yeast Saccharomyces cerevisiae strains and inferred the underlying recombination landscape at a fine
genomic resolution (mean segregating site distance 0.22 kb). Comparison was made with landscapes inferred for a similar
cross between four yeast strains, and with a previous single-generation, intra-strain cross (Mancera et al., Nature 2008).
Moderate congruence was identified between landscapes (correlation 0.58–0.77 at 5 kb resolution), albeit with variance
between mean genome-wide recombination rates. The multiple generations of mating undergone in the AILs gave more
precise inference of recombination rates than could be achieved from a single-generation cross, in particular in identifying
recombination cold-spots. The recombination landscapes we describe have particular utility; both AILs are part of a resource
to study complex yeast traits (see e.g. Parts et al., Genome Res 2011). Our results will enable future applications of this
resource to take better account of local linkage structure heterogeneities. Our method has general applicability to other
crossing experiments, including a variety of experimental designs.
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Introduction

Accurate estimates of bare rates of evolutionary processes such

as mutation and recombination are important building blocks in

our understanding of evolution. These rates are known to vary

across genomes; in the case of recombination, changes of orders of

magnitude can occur between nearby loci at recombination

hotspots [1]. As reviewed in depth elsewhere [2,3], a range of

methods have been employed to derive recombination rates from

genome sequencing, including the use of pedigree information

[4,5], sperm typing [6,7], and the application of methods from

coalescent theory [8] to haplotype data [9–11]. Under this latter

approach, probabilities are calculated of observing specific

haplotypes under some mutation and recombination rate, these

rates subsequently being estimated using, for example, maximum

likelihood methods. This, however, only gives estimates of the bare

recombination rates scaled by the effective population size, which

is generally unknown. An alternative approach to learning

recombination landscapes, which can lead to estimates of unscaled

recombination rates, is that of genetic crosses of model organisms

carried out at a large scale [12–16]. Where only two strains are

involved in a cross, measurement of crossing over rates from

individual sequences is straightforward, though where multiple

strains are involved, such a calculation is more difficult. We here

describe a new technique for inferring recombination rates from

the sequences of offspring produced by a genetic cross with

arbitrary initial strains, combining elements of the maximum

likelihood techniques described above with known facts about the

history of the cross population. We then apply our method to new

whole genome sequence data from two yeast crosses. A typical

experimental design, known as an advanced intercross [17], that

produces data suitable for analysis using our method, is shown in

Figure 1.

We consider an experiment in which a population of Np known

parental strains, comprising N randomly mating individuals (other

designs can also be incorporated), have undergone Nc generations

of crossing. We suppose that, from this population, the sequences

of Ns haplotypes have been sampled. Our calculation evaluates as

a function of recombination rate the probabilities of observing,

within the sample, specific two-locus haplotype frequencies. These

two-locus haplotype probabilities are used to estimate the

probabilities of observing L-locus haplotypes, conditional on

recombination rates, via a composite likelihood method [18,19].

This likelihood function, together with the sampled sequences, can

be used to infer local recombination rates.

We applied our method to two different examples of advanced

intercross lines. The first example, described in detail in Ref. [20],

consisted of twelve generations of random mating between West

African (DBVPG6044, denoted WA) and North American
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(YPS128, denoted NA) yeast Saccharomyces cerevisiae strains. This

was denoted the ‘‘two-way’’ cross, or by the sub-index 2w. We

here sequenced 2|96 isolates from two biological replicates of the

experiment to study the recombination landscape underlying the

cross. The second example, which will be described in detail in a

future publication (Cubillos et al. in preparation), consisted of

twelve generations of mating, but with the addition of two extra

parental strains, Wine/European (DBVPG6765, denoted WE)

and Sake (Y12, denoted SA), to the design. This was denoted the

‘‘four-way’’ cross, or by the sub-index 4w. After a first generation

in which only WA|NA and WE|SA were allowed to mate the

remaining eleven rounds were of random mating. Our analyses

allowed a highly comprehensive view of general yeast recombi-

nation patterns and gave insights into specific differences between

the crosses.

In a further step, we applied our method to data from the

crossing experiment of Mancera et al. [14], from which genome-

wide recombination in yeast was previously studied. In this cross,

strains S288c and YJM789 were mated to give a diploid hybrid,

subsequent to which all four spores from 51 meioses were

genotyped at *52 thousand markers (c.f. 52 thousand and 82

thousand segregating sites for the two- and four-way crosses). This

design, denoted here as the ‘‘s-way’’ cross, or with sub-index sw,

substantially differs from the other crosses. Firstly, whereas the

two-way and four-way crosses had a large underlying population

of §106 individuals, the s-way cross was derived from a single

clonal hybrid. Secondly, the s-way cross was not produced via the

same mating process, involving a single round, rather than

multiple rounds, of mating. The non-random mating process in

this case required a simple modification of our method; an

assumption of random mating led to a recombination rate that was

inflated by a factor of two (all first generation matings are between

different parental strains, compared to only half of matings in the

random case). The simplicity of this correction is due to the s-way

design being a one generation cross.

We start by describing results obtained from the application of

our inference method to simulated crosses. We then report the

results of our genome-wide analysis of the cross-specific recombi-

nation profiles, and of our comparisons between them, in detail.

Results

Inferring recombination rates from simulated data
Our method gave accurate inferences of recombination rates for

simulated systems. Inferences of recombination were made for

simulated data of an L-locus system (L~100) with uniform

recombination rate (Figure 2a). The inference returned values

close to the true value of the recombination rate r, although with a

slight underestimation, likely reflecting the composite likelihood

approximation. Further inferences were made for a system

including recombination hotspots (Figure 2b); again the true

profile was closely replicated (empirical error estimates were

derived via bootstrapping).

Our method was extended to cover finite populations by

estimating the likelihoods of observing given haplotypes (see

Methods, Eq. 3) via direct forward simulations. Comparisons of

the likelihood surfaces for varying population sizes suggested that

using the infinite population size limit is a good approximation for

populations where N§105 (see discussion in [21]). However, the

infinite population size analysis produced comparable results to

those of Figure 2a even in smaller populations, albeit with

increased variance in the rate estimates (See Figure S1 in Text S1).

This consistency in performance between small and large

populations implies that, for the crossing parameters considered,

the error induced by our assumption of infinite population size

does not substantially outweigh the error stemming from the

composite likelihood approach.

Our results from simulated data demonstrate the basic ability of

the method to infer simple recombination profiles from offspring

sequences of genetic crosses. Later in the text, we return to the

issue of the consistency of results obtained with our model when

applied to biological recombination landscapes.

Genome-wide statistics of recombination
We first used our method to infer recombination rates for each

of the two advanced yeast intercross lines. The mean recombina-

tion rate, measured genome-wide, was substantially higher in the

four-way cross, at r4w~0:32 cM/kb, compared to r2w~0:17
cM/kb for the two-way cross. The inferred value for the two-way

cross provides an interesting comparison against a previous result,

derived for the same system. On the basis of changes in allele

Figure 1. An example crossing experiment. The initial population has N individuals drawn in some proportions from Np distinct parental
strains. These individuals undergo Nc generations of random mating (multiple crossing protocols, including a funnel design, can be analysed),
following which Ns haplotypes are sampled. We use sequences from the offspring population to infer a recombination rate profile for the cross.
doi:10.1371/journal.pone.0062266.g001
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frequencies resulting from exposure to heat stress (no haplotype

data was available at that time), we inferred recombination rates

for 44 regions of the genome identified as containing variants that

conferred heat tolerance [22]. The mean of these rates was

r~0:16 cM/kb, within 10% of the value reported here.

Analysis of data from the s-way cross of Mancera et al. [14] gave

a mean recombination rate of rsw~0:45 cM/kb, a factor of 1:4
higher than that of the four-way cross. To make a direct

comparison to what was previously reported for this population

[14], we combined their previous genome-wide estimates for

crossover and non-crossover rates (their Figure S5 in Text S1), and

converted the results into our units (per haploid pair rather than

per tetrad, and per kb rather than per base pair). At short

distances, the effective recombination rate between two loci

(measured by effect on linkage disequilibrium) is equal to the sum

of the crossover and non-crossover rates, being dominated at large

distances by the crossover rate. Applying a scaling factor between

0 and 1 to the reported non-crossover rate gave a range for rsw

between 0.305 and 0.475 cM/kb; our estimate, calculated over a

range of distance scales, lies towards the top of this range.

Investigating recombination across chromosomes revealed

substantial variability in mean rates (Figure 3a) with the highest

rates occurring in chromosomes 1, 3 and 6 for all crosses. Total

rates of recombination per chromosome per generation are shown

in Figure 3b). Total rates show a strong positive correlation with

chromosomal lengths (c2w~0:98,c4w~0:99,csw~0:99), recapitu-

lating known yeast biology [23]. The multiple generations of

recombination included in the two-way and four-way crosses lead

to more precise estimates of chromosome-wide rates of recombi-

nation, substantially lowering the variance in each estimate.

High-resolution statistics of recombination
Sequence polymorphisms between the parental strains gave

more than fifty thousand segregating sites for the two-way cross,

and more than eighty thousand for the four-way cross. Segregating

sites were dispersed fairly uniformly across the genome (see Text

S1 for more information on the data). Combining our likelihood

calculation with optimisation routines from the widely used

recombination rate estimation program LDhat [9], we obtained

an estimated recombination rate for each interval between two

consecutive segregating sites. These estimates were mapped onto

uniform grids at varying scales Dres (0.5, 1.0, 2.0, 5.0 and 10.0 kb).

Genome-wide, a broad spectrum of recombination rates was

observed for genomic regions within all three crosses. Figure 4

shows recombination rates for these crosses measured at 10 kb

resolution. For the two advanced intercrosses, our inferred

distributions of recombination rates are unimodal and show a

range of recombination rates, in this sense being similar to

estimated distributions of recombination rates in humans [24].

Large differences between local recombination rates were evident

genome-wide, with greater variance in the two-way cross; at

10.0 kb resolution a 95-fold difference was observed between 99%

and 1% percentile rates inferred for the two-way cross, while a 38-

fold difference was observed for the four-way cross. The s-way

cross has what appears to be a bimodal distribution with a cluster

of values around a recombination rate of 0.01 cM/kb; later we

demonstrate that this is likely to be an artefact reflecting a lack of

statistical power. As such, the very large 460-fold difference

between 99% and 1% percentiles inferred for this cross is unlikely

to reflect the true range.

Recovering known associations. Examining inferred re-

combination rates genome-wide, previously reported associations

with regions of high recombination [25] were reproduced. For

both the two-way and four-way crosses, the G+C nucleotide

content of the 100 genomic regions (of length 5.0 kb) with highest

recombination rate was significantly higher than the average G+C

content for the whole genome (pv10{5, compared to random sets

of 100 genomic regions). However, the effect size was very small,

with an increase of only 2.1 percentage points in the average G+C

content for the two-way cross, and 2.0 percentage points in the

four-way, very close to the standard deviation in G+C content of

individual 5.0 kb regions (2.1% in each case).

Further, a significant decrease in recombination rate was seen

close to the centromeric regions of each chromosome [25]. In the

two-way cross, the mean recombination rate at loci within 30 kb of

the centromere was just over 60% of the mean rate across the

genome (0.10 compared to 0.17 cM/kb, pv10{5). In the four-

way cross, the mean recombination rate close to the centromere

was close to 65% of the mean across the genome (0.21 compared

Figure 2. Inference of recombination from simulated data. a) A histogram of estimated recombination rates from simulated data under
uniform recombination using our likelihood calculation together with the interval tool from LDhat [9]. Input recombination rates were chosen to
cover a biologically realistic range 0:001,0:01,0:1(kb|generation){1 and were well recovered by the inference. Each of the 100 simulations has 100
segregating sites at 1 kb intervals (other parameters Np~2,Nc~12,N~105,Ns~96). b) Inference of recombination rate for a simulation with varying
rate. The simulated recombination profile (blue) had three recombination hotspots, with (50,25,50)-fold higher rate than the background; other
parameters as before. The inferred profile is in good agreement with the input (red band: 95% confidence interval from 300 bootstrap samples of the
single realisation of the crossing simulation).
doi:10.1371/journal.pone.0062266.g002

Inferring Recombination Landscapes

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62266



to 0.32 cM/kb, pv10{5). Further details are given in Text S1; see

Figures S2 and S3 in Text S1.

Quantifying the shape of the landscapes. Each of the

crosses exhibited a highly rugged recombination landscape. The

width of regions of raised recombination around hotspots was

measured by calculating the mean recombination rate for 0.5 kb

regions within set distances from each of the 100 such regions with

the highest recombination rates. A return to genome-wide mean

rates was observed at a distance of roughly 6.5 kb in the two-way

cross, around 8 kb in the four-way cross, and about 6.5 kb in the s-

way cross (Figure 5). These values were consistent with the overall

statistics of autocorrelation within each recombination landscape.

Autocorrelation functions were used to evaluate the overall

variability of the landscape (measured at 0.5 kb resolution), fitting

inferred rates to the functional form e{D=j, where D is the distance

between sites and j is the correlation length-scale in units of kb.

Across the genome, these statistics had mean values j2w~2:2 kb

Figure 3. Recombination across yeast chromosomes. a) Mean
(cM/kb) and b) total (per generation) rates of recombination across the
chromosomes (chr number given above x-axis). There is substantial
variability across chromosomes, the total rate of recombination
correlating strongly with chromosomal length. Red, blue, and black
squares denote values for the two-way, four-way, and s-way crosses
respectively. Error bars show 95% confidence intervals evaluated via
inferred recombination landscapes for at least 100 bootstrapped
datasets. The multiple generations of recombination led to tighter
estimates of recombination for the two-way and four-way experiments.
doi:10.1371/journal.pone.0062266.g003

Figure 4. Genome-wide recombination rates at 10 kb resolution. Inferred recombination rates shown at 10.0 kb resolution across the
genome from individuals generated through the two-way (panel a, red), four-way (panel b, blue) and s-way (panel c, black) crosses. The histograms
show a broad distribution of recombination rates for each cross. The four-way cross had a substantially higher mean rate of recombination than the
two-way cross, the s-way cross having a higher mean rate than the four-way cross (ratio of means r4w=r2w~1:86 and rsw=r4w~1:39).
doi:10.1371/journal.pone.0062266.g004

Figure 5. Decay of recombination rates near hotspots. Dots
show the mean recombination rate for a 0.5 kb region at given distance
from a region of high recombination rate in the 2-way (blue), four-way
(red) and s-way (black) crosses. Statistics are calculated for genomic
regions close to the 100 0.5 kb regions of highest inferred recombi-
nation rate. Dotted lines show the mean genome-wide recombination
rate in each case (for congruence of hotspots see Figure S4 in Text S1).
doi:10.1371/journal.pone.0062266.g005
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(std 1.0), j4w~3:2 kb (std 0.9) and jsw~2:2 kb (std 0.5), indicating

rapid changes in recombination rate between nearby sites in the

genome.

Comparing the landscapes at different scales. Inferred

recombination rates showed a relatively high level of congruence

between crosses. Figure 6 depicts landscapes for the crosses across

chromosome 3 at 1.0 kb resolution: the picture is similar for other

chromosomes, with recombination across each chromosome

varying strongly. The observed similarity between landscapes is

consistent with reports of conservation of hotspots between

divergent species of yeast [26]. However, considered in their

entirety, the results inferred for the two- and four-way crosses were

not fully consistent with their sharing a single underlying

recombination landscape. Ten two-way crossing experiments were

simulated, in which each population recombined according to the

recombination landscape inferred for the two-way cross. Corre-

lations between recombination landscapes inferred from each of

these simulations were calculated, giving a measure of the

expected congruence of landscapes inferred from a single

underlying recombination profile. Although with increasing

observation scale, Dres, an increasingly strong correlation was

seen between the real two- and four-way landscapes, the

differences between them were greater than would be expected

to arise from statistical noise alone (Table 1). Deviation between

the landscapes was largest at the lowest scales Dresv10 kb, with

the 10 kb value almost overlapping with our expectation from

simulations.

Congruence between the recombination landscapes of the two-

and s-way crosses was also lower than the expectation. Here, the

design of the s-way cross, of a single round of crossing with non-

random mating, was mimicked by simulating a two-generation

random cross. Similar to the comparison between two- and four-

way crosses, a small but visible deviation from the expected range

was observed. Differences in recombination landscapes have

previously been observed in crosses between different strains

within a single species [16]. Our results suggest the presence of real

differences between the two-way and the other crosses in the

underlying, rather than simply the inferred, recombination

landscapes.

Comparison of the results from the four-way and s-way cross

gave correlations that were consistent with a shared underlying

recombination landscape. This result does not imply that the

underlying landscapes are identical, merely that any differences,

should they exist, are not large enough to be detected under this

genome-wide analysis. All three landscapes are shown in circos

format [27] in Figures S6, S7, S8, S9 in Text S1. The relatively

low level of correlation at 0.5 kb resolution between biological

(and simulated) experiments highlights the level of statistical

challenge in estimating recombination rates at high genomic

resolution.

Figure 6. Recombination landscapes of chromosome 3 at 1 kb resolution. Recombination rates within chromosomes are highly variable. a)
red: two-way b) blue: four-way cross, and c) black: s-way cross (90% confidence interval obtained by bootstrapping). We note the variable range of
the vertical axis for each case. Red squares denote the centromere and black circles the first and last segregating sites for each cross; we cannot
measure recombination between the chromosome ends and these sites.
doi:10.1371/journal.pone.0062266.g006
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Study design and the veracity of inferred recombination
rates

Our ability to infer recombination rates was dependent upon

the number of generations in the cross, the number of individuals

sequenced, the resolution at which an inference was performed,

and upon the underlying recombination rate in a given part of the

genome. The inferred two-way cross recombination landscape was

used as input for simulated crossing experiments encompassing

twelve generations; we applied our inference method to see if we

could infer it back. Trying to reproduce the histogram of Figure 4

was instructive and clearly showed that at resolutions Dresv10 kb

there is a systematic bias towards the lowest recombination rates

(Figure 7a); for such resolutions the inference is underpowered.

This systematic bias is almost fully removed at Dres~10 kb

(Figure 7b); this was the rationale for using this scale in Figure 4.

One remedy for getting accurate measurements at high resolution

for the lower tail of the genome-wide recombination distribution

would be to sequence *10 times more isolates. If we take the

mean of the inferred recombination landscapes from the ten

replicate crossing simulations, (given the large size of the

underlying population more individuals could equivalently be

sampled from a single experiment) we recover the correct

distribution accurately for Dres~0:5 kb (Figure 7c).

By contrast, from crossing simulations that encompassed only

one or two generations, we were not able to consistently reproduce

the genome-wide recombination rate histogram, even at scale

Dres~10 kb (Figure 7d–f). Using the two generation cross as a

proxy for the s-way crossing design we conclude that the apparent

bi-modality of the histogram inferred from the s-way cross (see

Figure S5 in Text S1) most likely reflects a bias caused by lack of

statistical power rather than any true biological signal. We note

that these comparisons, at the level of histograms, are probing

systematic inference errors over the whole range of recombination

rates; consistency between the input vs. inferred distributions does

not change the fact that error bars for any one interval are

substantial, especially for the low recombination rates investigated

at high genomic resolutions.

Comparison with a high-resolution Double Strand Break
point map

Trying to understand recombination is not only limited to

observing recombination outcome. Meiotic recombination begins

with the formation of double-stranded breakpoints (DSBs), which

are resolved into recombination events. DSBs are themselves non-

randomly distributed across the genome [28,29]. Recent work has

mapped their distribution across a yeast genome [30], allowing for

comparison between sites of DSB occurrence and the subsets of

those subsequently undergoing crossover or non-crossover events

[31].

We took a DSB map [30], converted it to our scales Dres, and

compared it to our other landscapes. Conversion tracts in

recombination events in yeast are frequently more than 1 kb in

length [32], with crossovers possible at either end, such that

comparison of landscapes at resolutions of 2 kb or less may not

produce meaningful results. However, correlations at the 5 kb and

10 kb resolutions were fractionally lower than those identified

between the inferred recombination landscapes. Against the 2-

way, 4-way, and s-way crosses, the correlations were 0.57, 0.62,

and 0.49 respectively at 5 kb resolution, and 0.61, 0.65, and 0.51

respectively at 10 kb resolution.

The DSB map is extremely reproducible and thus has little

statistical noise associated with it [30], suggesting a genome-wide

difference between the DSB map and recombination landscapes.

However, the biological meaning of this is not clear. One caveat in

comparing DSB locations and our landscapes lies in the potential

difference between crosses of outbred strains and events that occur

within the same strain. Any results from comparison of the two

should be interpreted with the necessary caution. Further, while

the three studied crosses have an impressive number of genetic

markers, this resolution is still at least two orders of magnitude

lower than the single nucleotide resolution of the DSB study [30].

Discovering the hottest and coldest regions of
recombination

Application of our inference method to the two advanced

intercross datasets allowed us to investigate both the coldest and

hottest regions of recombination with satisfactory true positive

rates. Inferred landscapes from sets of ten simulated replicate

experiments were used to measure the accuracy with which the

hottest and coldest regions of recombination could be annotated.

For each simulation, the two-way cross landscape was used as an

input. Relative to a single generation cross, the advanced

intercross design performed substantially better in identifying both

the hottest and coldest regions (see Figure 8). From these results,

Table 1. Inferred landscapes are fairly congruent.

Correlation

Resolution (kb)

0.5 1.0 2.0 5.0 10.0

2-way cross vs. 4-way cross 0.55 0.61 0.68 0.77 0.81

Expected range (12-gen vs. 12-gen cross) [0.72, 0.78] [0.74, 0.8] [0.78, 0.84] [0.82, 0.88] [0.81, 0.9]

2-way cross vs. s-way cross 0.39 0.44 0.51 0.58 0.63

4-way cross vs. s-way cross 0.48 0.52 0.59 0.65 0.69

Expected range (12-gen vs. 2-gen cross) [0.46, 0.53] [0.51, 0.58] [0.57, 0.64] [0.64, 0.72] [0.67, 0.78]

The two-way landscape shows some deviation from the others.
Simulations were used to calculate the expected variability between landscapes inferred from replicates of a single crossing experiment. The inferred landscape for the
two-way cross was used as an input recombination profile. The expected correlation range between landscapes for the 2-way and 4-way crosses was inferred from 10
simulation experiments, each with 12 generations of crossing. The range between minimum and maximum correlations is shown. Correlations between the inferred
landscapes are high, but systematically smaller than the range from simulations. The expected correlation range between landscapes for the 2/4-way and s-way crosses
was inferred as above from 10 simulation experiments, comparing a two-generation cross (mimicking the s-way design) with a 12-generation cross. Correlation values
between the two and s-way crosses fall below this range, though correlations between the four and s-way crosses are consistent with the expectation.
doi:10.1371/journal.pone.0062266.t001
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we expected the protocol of the two and four-way yeast crosses to

enable us to identify the coldest regions of the yeast genome with a

decent statistical power. To test this, we took the coldest inferred

300 kb (at 1.0 kb resolution) from both of these crosses. These

regions overlap by fraction 0.3 (i.e. 90 kb), moderately better than

would be expected from our simulations.

Discussion

Here we have described a bespoke method for recombination

rate estimation in advanced intercross lines. Whereas a coalescent-

based calculation for the haplotype likelihoods arises naturally in

the context of wild populations with unknown histories, our

‘‘forward-in-time’’ analysis is intuitive for a crossing experiment

with known initial population. Comparing our approach to that

applied by Mancera et al. [14], we identify different advantages in

each. Use of an advanced intercross design gives a more accurate

picture of the fine structure of the recombination landscape,

observation of a larger number of events translating into smaller

error bars in the inferences. However, the Mancera et al. design

has the substantial additional benefit of allowing the assignment of

recombination events to non-crossover and crossover categories;

something which cannot be achieved using our approach.

Previously, in crossing experiments, custom-made tools have been

developed to assign, at genome scale, every allele to a founder

strain [15,33] but to our knowledge these analyses have not so far

focused on fine-scale recombination inference.

Considerations for study designs
When studying recombination rates in the setting of a genetic

cross, there are several experimental parameters and tradeoffs to

consider. Key among these are the number of isolates (with

associated cost in sequencing and isolate generation), the number

of crossing rounds, typical inter-marker distances, the number of

parental lines, and the population size. In order for the inference

method to be able to faithfully capture the statistics of the whole

range of recombination rates over the genome at the level of the

histograms shown in Figure 4 we had to observe the rates at a scale

of Dres~10 kb for the two-way (for the four-way cross with higher

overall recombination rate we have better resolution). Estimates

for each segment of the genome have uncertainties attached to

them, which can be large for cold regions, but at this level we did

not see a substantial systematic bias due to lack of statistical power.

Based on simulations, having ten times more isolates would allow

us to drop this scale to Dres~0:5{1:0 kb. Were the sequencing of

thousands of isolates at reasonable cost to become a possibility,

increasing the number of isolates would be a straightforward way

to obtain more faithful inferences at higher resolutions. The best

achievable resolution is ultimately limited by the distances between

markers in the cross under study.

Figure 7. Assessing the robustness of inferred recombination characteristics. Red histograms show input data (two-way cross) and green
inferred values from simulated crossing experiments using the two-way recombination landscape as input. The overlap between distributions is
yellow-brown. a) At high resolution Dres~0:5 kb the inference is underpowered to call the low values leading to a systematic bias for these cold
regions. b) Using 10 kb resolution removes this bias almost completely. c) The inference would also work for 0.5 kb resolution for the whole range of
recombination rates if we would get ten times more samples. d–f) Analogous figures for a simulated two generation cross show that the bias is much
larger and would persist even with ten times more data available.
doi:10.1371/journal.pone.0062266.g007
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Utility of fine-scale measurements of cross-specific
recombination profiles

These two advanced intercrosses form part of a yeast resource to

systematically study complex traits. We hope that the cross specific

recombination landscapes that we inferred here will help future

studies utilising this resource. For example, any quantitative trait

loci (QTL) mapping study (for a review see [34]) will greatly

benefit from a quantitative understanding of local recombination

(and hence the linkage structure) of the specific cross. We have

previously analysed such QTL selection data using a model where

beneficial ‘‘driver’’ alleles for the selection condition were linked to

neutral ‘‘passenger’’ alleles [22]. In that study, the movement of

passenger alleles was dependent on the local linkage structure,

which was modelled via a set of locally uniform recombination

rates, learnt independently for different sections of the genome.

Given the potential for recombination landscapes to be extremely

rugged, incorporating fine resolution recombination rate maps will

be critical to improve such inferences of QTLs. Finally, these

landscapes allow for various data mining opportunities which have

the potential to increase our biological understanding of the

process of recombination.

Possible reasons for the observed differences in
recombination activities between the yeast crosses

Arguably the most striking difference between the inferred

recombination profiles is the large difference in the overall rates:

r2wvr4wvrsw. Given that the s-way design is very different to

the advanced intercrosses we are perhaps less surprised that the

overall s-way activity differs from the other two. For example,

analyses of limited genotype data from chr 13 of the two-way cross

collected after one, six and twelve rounds of crossing suggested

that recombination may slow down as the cross progresses [30].

Our inference method does not consider the role of selection

during the cross; if increased recombination led, in general, to

individuals of lower fitness, then over repeated generations of

crossing, a lower effective recombination rate would be observed.

Further reasons may lie behind the difference between the two and

four-way crosses, such as the different genetic distances between

strains. In single-generation crosses involving these strains,

differences between the numbers of recombination events were

observed, the WA strain recombining less than the other strains

[35]. Pinning down the effect of this upon the two crosses is

difficult without also having measurements of the intra-strain rates.

However, as a lower fraction of mating events in the four-way

cross involve the WA strain (7/16 compared to 3/4), this would

suggest an overall higher rate of recombination in the four-way

cross.

Figure 8. Power to discover recombination hot and cold regions under different crossing designs. Red (blue) curves show the ability to
correctly recover the hottest (coldest) recombining x kb at resolution Dres and number of crossing rounds Nc . a, b) Results for an advanced intercross
design, comprising 12 generations of crossing. Curves are calculated by comparing the locations of the hottest and coldest regions from the
landscapes inferred for each of the ten simulated crossing experiments to the corresponding locations in the true input landscape (that inferred for
the two-way cross), taking the mean value of the size of the overlap. c, d) Results for a single generation cross. The advanced intercross design has a
clear advantage over single generation experiment.
doi:10.1371/journal.pone.0062266.g008
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Future applications and extensions of the inference
method

The inference framework we describe can be extended to more

complex experimental procedures or populations (see e.g. [36]).

While, for example, the protocol described in Figure 1 has an

arbitrary number of parental strains, our calculations are

straightforward to extend to protocols going beyond this, such as

a funnel design [37] (See Text S1 for details). Our method would

also be extendable to the estimation of recombination rates

between different crossing rounds if isolate data were available for

these intermediate states, allowing for the measurement of how the

number of crossing generations affects recombination activity.

Conclusions
We here developed a new approach for estimating fine-scale

recombination rates from genome sequences of individuals

sampled from genetic crosses. The method recovered accurately

the correct profiles when applied to simulated crosses. Our

application of the method to three specific yeast systems revealed

interesting cross specific differences between the overall recombi-

nation activities. Our method is applicable to crossing scenarios

other than those used for the studied yeast crosses. Finally, as the

two and four-way crosses are an integral part of a genetic resource

to study complex traits and genotype to phenotype maps in yeast,

we hope that the fine-scale estimation of the recombination

properties of these crosses will help to improve future studies using

the resource.

Methods

Inference method
Given sequences of individuals resulting from a crossing

experiment, the recombination rate between any two loci can be

inferred via a simple likelihood calculation. We begin by assuming

a two-allele-per-locus model; this assumption generally holds due

to the low per-locus mutation rates in biological systems (in

practise, loci with more than two alleles can be omitted without

losing any substantial amount of data).

Considering loci i and j, each with two alleles (a,b[f0,1g), in a

population of infinite size, the haplotype frequencies, qab
ij , after Nc

generations of random mating, can be expressed analytically as

qab
ij (rij)~qa

i (t0)qb
j (t0)z({1)azbDij(rij), ð1Þ

where, for example, qa
i (t0) is the initial frequency of allele a at

locus i, and Dij(rij), the linkage disequilibrium between alleles at

loci i and j after the cross, is given by [8]:

Dij(rij)~Dinit
ij (1{Dijrij)

Nc : ð2Þ

Here Dinit
ij , the initial linkage disequilibrium between i and j,

depends on the initial haplotype frequencies qab
ij (t0), Dij is the

distance between the loci i and j (in units of kb), and rij measures

recombination between the loci in units of (kb|generation){1.

We use rtot
ij :rijDij to represent the total rate of breaking of

linkage between i and j; separation of rates of crossover and non-

crossover events is not considered in this paper.

We note that, in the above equations, all except two of the

parameters are known from the locus positions and the structure of

the cross, the exceptions being the recombination rate, rij , and the

set of final haplotype frequencies, qab
ij (rij) (knowledge of one these

specifies a value for the other). Sequencing Ns isolates from the

offspring population gives the observed pair-wise haplotype counts

nij~fn11
ij ,n10

ij ,n01
ij ,n00

ij g. From these, an expression can be written

for the likelihood of a given set of underlying values of qab
ij (rij), and

hence for the likelihood of a given recombination rate between i

and j.

L(qab
ij (rtot

ij )Dnij)~
Ns!

P
a,b[f0,1g

nab
ij !

P
a,b[f0,1g

(qab
ij (rtot

ij ))
nab

ij : ð3Þ

In this manner, we can derive a maximum likelihood estimate of

the recombination rate between i and j. We note that, in the case

of a finite population, Eqs. 1 and 2 are no longer exact,

representing instead the expected outcome of recombination. In

the finite population size case, the likelihood of Eq. 3 can be

estimated by means of direct forward simulations. Recombination

rates are estimated by our code in units of kb{1generation{1, but

are reported above in units of cM/kb.

Estimation of recombination rates across regions spanning

multiple loci was conducted using a composite likelihood

approach. For multi-locus systems, deriving analytical probability

functions equivalent to Eq. 3 remains an outstanding challenge for

population genetic theory, while numerical approaches for

sampling the appropriate full likelihood surfaces are currently

impracticable for genome scale analyses. For these reasons, the full

likelihood function is often evaluated in an approximate way using

the composite likelihood approach (that is, calculating the product

of all pairwise probabilities. Often only a limited number of

consecutive sites (e.g. 50 in LDhat) are used in the computation to

improve the speed of calculation) [18,19]. Results obtained from

composite likelihood methods are often good, though the

approximate nature of the probability complicates, for example,

the estimation of confidence intervals for the inferred model

parameters [1,38]. Following this method, we combined our

likelihood calculation with an optimisation routine from the

existing recombination rate estimation software LDhat [9].

Data sets
Details on isolation and sequencing of individual segregants and

variant calling can be found in Text S1.

Data access
The inference program, haplotype data, and inferred yeast

landscape are available from ftp://ftp.sanger.ac.uk/pub/teams/

153/AIL-yeast/. Sequence data is available from European

Nucleotide Archive (ENA) under access number ERP000780.

Supporting Information

Text S1 Details of isolation and sequencing of individ-
ual segregants, calling of segregating sites, and geno-
typing from sequencing data. Discussion of the potential to

incorporate other breeding designs to the inference method.

Details of crossing simulations, including results from use of the

infinite population size approximation with small populations.

Details of the recovery of known associations with recombination

rate. Decay or recombination rate close to hotspots, and

congruence between the crosses. Genome-wide reproductions of

landscapes inferred for each of the crosses. Figures S1 to S9 are

contained within Text S1.

(PDF)
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