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Abstract

The recent invasion of the red alga Heterosiphonia japonica in the western North Atlantic Ocean has provided a unique
opportunity to study invasion dynamics across a biogeographical barrier. Native to the western North Pacific Ocean, initial
collections in 2007 and 2009 restricted the western North Atlantic range of this invader to Rhode Island, USA. However,
through subtidal community surveys, we document the presence of Heterosiphonia in coastal waters from Maine to New
York, USA, a distance of more than 700 km. This geographical distribution spans a well-known biogeographical barrier at
Cape Cod, Massachusetts. Despite significant differences in subtidal community structure north and south of Cape Cod,
Heterosiphonia was found at all but two sites surveyed in both biogeographic provinces, suggesting that this invader is
capable of rapid expansion over broad geographic ranges. Across all sites surveyed, Heterosiphonia comprised 14% of the
subtidal benthic community. However, average abundances of nearly 80% were found at some locations. As a drifting
macrophyte, Heterosiphonia was found as intertidal wrack in abundances of up to 65% of the biomass washed up along
beaches surveyed. Our surveys suggest that the high abundance of Heterosiphonia has already led to marked changes in
subtidal community structure; we found significantly lower species richness in recipient communities with higher
Heterosiphona abundances. Based on temperature and salinity tolerances of the European populations, we believe
Heterosiphonia has the potential to invade and alter subtidal communities from Florida to Newfoundland in the western
North Atlantic.
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Introduction

Non-native species invasions have become a primary focus of

research on global change in the past decade [1,2]. The

importance of marine invasions is highlighted by the significant

economic and ecological impacts often associated with these

species following a successful invasion. While only a small fraction

of all introduced species can successfully thrive in a new habitat,

their impacts can be dramatic [3,4]. Economically, invasive

marine species have been responsible for the collapse of fisheries

and losses in aquaculture, tourism, and marine infrastructure [5].

Invaders may also have substantial ecological impacts by

modifying the habitat in which they invade, displacing native

species, and altering food webs and community structure [6].

Additionally, marine invasive species have been identified as

a major threat to biodiversity [1,5,7].

The invasive red seaweed Heterosiphonia japonica Yendo (hereafter

Heterosiphonia), recently discovered in the western North Atlantic

Ocean, poses a threat to native biodiversity and ecosystem

functioning. First reported in Rhode Island waters in 2007, this

species is morphologically and genetically identical to invasive

populations of Heterosiphonia in the eastern North Atlantic [8,9].

Heterosiphonia was first recorded in France in 1984 and has since

become widespread along European coastlines [10]. While the

exact vector of introduction to the western North Atlantic is

unknown, this species was likely introduced from Europe via

ballast water early in the new century [8].

In contrast to its European invaded range [10,11,12], Hetero-

siphonia is not particularly abundant in its native range in the

western North Pacific Ocean, comprising less than 1% of the

macroalgal biomass and only occurring sporadically throughout

the year [13,14]. In both its native and invaded ranges,

Heterosiphonia occupies shallow, subtidal habitats and is present

either on rocky substrata or epiphytic on other macroalgal species,

although it has also been found in sandy and soft sediment habitats

([11,13], C. Newton, pers. obs.).

Initial reports limited the western Atlantic distribution of this

species to Rhode Island [8]. However, reports from the invasion

of Heterosiphonia in Europe suggest that the species is capable of

rapid dispersal associated with broad thermal and salinity

tolerances and high fecundity due to vegetative propagation of

fragmented pseudolaterals [15,16]. This has led to a wide

geographic distribution in Europe, with reports of the invasive

alga from Norway to Italy [10]. Based on thermal tolerances

across its European range, Heterosiphonia has the potential to
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invade western Atlantic waters from Newfoundland through

Florida [16].

Based on these predictions from the eastern Atlantic invasion

of Heterosiphonia, we sought to: (1) ascertain the present invaded

range and relative abundance of Heterosiphonia in western

Atlantic coastal waters; (2) determine the biological attributes

that are associated with recipient communities; (3) establish

whether more diverse communities have higher resistance to

Heterosiphonia invasion; and (4) assess the proportion of drift

Heterosiphonia in wrack mats washed ashore. We addressed these

goals by surveying shallow subtidal communities and adjacent

beaches along the northwestern Atlantic shoreline from New

York to Maine, USA.

Methods

We conducted subtidal community surveys at 19 sites between

Cape Elizabeth, Maine (43u379N, 70u129W) and Waterford,

Connecticut (41u179N, 72u099W), including Southold, New York

(41u189N, 71u559W), during the summer of 2012 (Fig. 1). This

geographic range covers over 700 km of coastline while spanning

a well-known biogeographic barrier in the western Atlantic Ocean;

Cape Cod, Massachusetts, separates the Acadian biogeographic

province from the more southerly Virginian province. These two

provinces are characterized by marked differences in water

temperature and community structure [17,18]. Cape Cod is

a well-known southern limit for many cold water marine species,

as the southward flowing Labrador Current brings down cooler

waters, before swinging east along the arm of Cape Cod, and

finally returning in a northeasterly direction. However, waters

south of Cape Cod are more influenced by the warmer Gulf

Stream, particularly during the summer months [17].

Surveys were conducted in both biogeographic provinces

between 0 and 6.25 m depth using SCUBA, as Heterosiphonia is

most commonly found within this depth range. Sites were chosen

to include a variable range of exposure, from locations exposed to

ocean swells to protected bays.

We also conducted weekly surveys of intertidal wrack mats at

five sites in the northern range of our surveys from 28 June

2012 through 02 August 2012 (Table 1). These sites were

chosen to encompass a variety of exposures and local

topographies. Surveys were conducted at low tide each week.

Similar to our subtidal surveys, a 20 m transect was laid parallel

to the mean-low water line at each site and a 0.0625 m2

quadrat was used to sample every 2 m along the transect. The

contents of each quadrat were collected into individual bags and

immediately returned to the laboratory where any Heterosiphonia

present in the quadrat was sorted out. The wet weight of all

Heterosiphonia and other remaining macrophytes present was

recorded after being spun in a salad spinner 15X to remove

excess moisture [6].

Statistical Analyses
Multivariate data were analyzed using Primer v. 6.0 (Primer-E

Ltd., Plymouth, UK) to compare differences in subtidal commu-

nity structure. Bray-Curtis similarity matrices were constructed on

square-root transformed percent-cover data. We then ran

a PERMANOVA (Permutational Multivariate Analysis of Vari-

ance; [19]) to determine if community compositions differed north

and south of Cape Cod, Massachusetts. Univariate data were

analyzed using JMP v. 9.0 (SAS Institute, Inc., Cary, North

Carolina, USA). Regression was used to determine the relationship

between species richness and abundance of Heterosiphonia. We

conducted analyses of variance (ANOVAs) to assess spatial and

Figure 1. Presence of Heterosiphonia japonica in the Western Atlantic Ocean. Numbers correspond to locations listed in Table 1 where
Heterosiphonia was found in SCUBA, shallow subtidal, and intertidal surveys. Circles indicate locations of in situ SCUBA surveys, with filled circles
corresponding to locations where Heterosiphonia was found and open circles indicating locations where Heterosiphonia was absent. Squares
correspond to locations where Heterosiphoina was found drifting in the shallow subtidal or as intertidal wrack.
doi:10.1371/journal.pone.0062261.g001

Heterosiphonia in the Western North Atlantic Ocean
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temporal differences for intertidal drift surveys of Heterosiphonia. To

assess temporal variability in our subtidal surveys we were only

able to repeat subtidal surveys at four locations, two north (sites 14

& 15, Table 1) and two south (sites 21 & 22, Table 1). We were

unable to satisfy the homogeneity of variances assumption for

analyses of variances via transformation for these data [20].

Therefore, we used a generalized linear model (proc GENMOD in

SAS v. 9.2, SAS Institute, Inc., Cary, North Carolina, USA) with

a Poisson distribution and log link to assess temporal differences of

Heterosiphonia abundance between early summer and late summer.

Ethics Statement
No specific permits were required for the field surveys, as they

were conducted from public access points or Northeastern

University property (Marine Science Center, Nahant, Massachu-

setts, USA). The study did not involve any endangered or

protected species or any protected locations.

Table 1. Locations of Heterosiphonia japonica surveys.

Location Site Number Latitude oN Longitude oW
% cover of Heterosiphonia
(mean 6 S.E.)

Maine

Fort Williams State Park, Cape Elizabeth 1 43u37931.150 70u12946.730 0.2860.28

Two Lights State Park, Cape Elizabeth 2 43u33954.010 70u11954.260 1.3360.63

Kettle Cove, Cape Elizabeth 3 43u33940.670 70u13904.990 5.3961.91

Nubble Light, York 4 43u09956.780 70u35929.700 0

New Hampshire

Rye Beach, Rye 5 42u57924.510 70u46940.230 P

Massachusetts

Back Beach, Rockport* 6 42u39940.540 70u37923.980 P

Good Harbor Beach, Gloucester* 7 42u37911.310 70u37940.560 P

Magnolia Beach, Gloucester* 8 42u34928.950 70u42933.340 P

Singing Beach, Manchester* 9 42u34906.370 70u45939.850 P

Stinky Beach, Manchester* 10 42u33954.110 70u47911.180 P

West Beach, Beverly 11 42u33941.560 70u48915.800 36.74614.28

Castle Rock, Marblehead 12 42u29958.670 70u50902.630 18.8062.56

Kings Beach, Swampscott 13 42u27958.220 70u55915.640 P

Canoe Beach, Nahant 14 42u25910.090 70u54925.300 28.4166.11

Pumphouse Beach, Nahant 15 42u25901.130 70u54925.270 17.7465.04

Pea Island, Nahant 16 42u24954.330 70u54931.270 79.363.81

Dorothy Cove, Nahant 17 42u25914.310 70u54956.570 P

Bay Shore Drive, Plymouth 18 41u56959.020 70u35924.660 P

Town Neck Beach, Sandwich 19 41u46922.190 70u29930.420 0

South Beach, Edgartown 20 41u21905.980 70u29956.350 P

Rhode Island

Kings Beach, Newport 21 41u27915.650 71u20935.700 2.3461.11

Fort Adams, Newport 22 41u28936.600 71u20928.510 13.5064.13

Fort Wetherill, Jamestown 23 41u28945.770 71u21940.690 18.64610.83

State Pier #5, Narragansett 24 41u25920.170 71u27919.330 0.6560.65

Camp Cronin State Park, Narragansett 25 41u21942.700 71u29918.990 P

Southern Light, Block Island 26 40u09904.730 71u33919.590 P

Quonochontaug Pond, Charlestown 27 41u20925.320 71u43912.040 P

New York

Latimer Reef, Southold 28 41u18914.170 71u55942.780 9.1262.02

Connecticut

Avery Point, Groton 29 41u18954.150 72u03949.890 0.3660.36

Dock Road State Boat Ramp, Waterford 30 41u18930.390 72u08954.590 4.0962.90

Two Tree Island, Waterford 31 41u17938.500 72u09907.980 23.1064.88

Notes: Site numbers correspond to labels in Figure 1. P indicates locations where Heterosiphonia was observed drifting in the shallow subtidal but quantitative surveys
were not conducted, and * indicates locations of weekly intertidal surveys.
doi:10.1371/journal.pone.0062261.t001

Heterosiphonia in the Western North Atlantic Ocean
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Results

Subtidal community composition differed significantly between

the Acadian province and the Virginian province (p,0.001;

Fig. 2). Northern subtidal communities were primarily composed

of Chondrus crispus, Heterosiphonia japonica, crustose coralline algal

species, and Corallina officinalis, which collectively comprised over

60% of the sessile species cover (means of 20%, 17%, 12% and

11%, respectively). While Chondrus and Heterosiphonia remained the

most abundant species in southern subtidal communities (13% and

7% of the cover, respectively), Phyllophora pseudoceranoides also made

up a substantial portion of the subtidal community (9%). There

was also a greater diversity in community structure at southern

sites, with 22 different species comprising 90% of the community.

By contrast, only 13 species comprised 90% of the shallow subtidal

community in the north (Fig. 2). Results were similar when

Heterosiphonia was removed from the analysis (p,0.001).

Despite these differences in community compositions, Hetero-

siphonia was present at all but two of the subtidal sites surveyed (it

was absent at Nubble Light, York, Maine and Town Neck Beach,

Sandwich, Massachusetts) in both the Acadian province and the

Virginian province. Relative abundances of Heterosiphonia ranged

from 0.0 to 100 percent coverage to the north of Cape Cod

(mean=17.3462.86%), while relative abundances were slightly

lower south of Cape Cod (0.0% to 52.63%, mean= 7.4161.19%;

one-way ANOVA, F1,183 = 11.35, p,0.001). The average abun-

dance of Heterosiphonia was lower in subtidal communities where

species richness was higher (R2 = 0.30, p = 0.02; Fig. 3). During

our surveys of intertidal wrack mats, Heterosiphonia comprised an

Figure 2. Relative abundances of sessile species (seaweeds and sessile invertebrates) in subtidal communities. North and south refer
to the biogeographical barrier at Cape Cod, Massachusetts. Species listed comprised 80% of the overall community, and data are means 61 At each
site, a 20 m transect was haphazardly placed in the subtidal zone, at approximately the mid point of the species’ typical depth range (mean
depth= 2.060.11 m). We placed a 0.0625 m2 quadrat every 2 m along the transect. Within each quadrat, the percent cover of each macroalgal and
sessile invertebrate species was recorded. When present, a subsample of Heterosiphonia individuals was collected from each site. Upon collection,
specimens were returned to the laboratory, where field identifications were confirmed under a compound microscope (100X) using characteristics
from Schneider [8]. All individuals collected were either vegetative or tetrasporic. No fertile gametophytes were found during our sampling. At an
additional 12 sites within our subtidal survey range, we examined the intertidal and/or shallow subtidal zone for evidence of drifting Heterosiphonia
individuals. At each of these sites, individuals were collected and identified under a field microscope (40X) or laboratory microscope (100X). Due to
logistical constraints, we clustered all crustose coralline algal species together, as in situ identifications to the species level proved impossible for this
group. When possible, a subsample of Heterosiphonia individuals from most locations was pressed and deposited in the University of Rhode Island
(KIRI) or Northeastern University (HNUB) herbarium collections.
doi:10.1371/journal.pone.0062261.g002

Heterosiphonia in the Western North Atlantic Ocean
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average of 20% of biomass; however, abundances of up to 65%

were seen on multiple occasions.

Heterosiphonia abundances also exhibited temporal and spatial

variability, both subtidally and in intertidal wrack mats. Subtidal

Heterosiphonia abundances were two orders of magnitude higher at

sites surveyed during the early summer (May/June) than at the

end of the summer (X2 = 1676.52, p,0.001; Table 2). While

intertidal wrack mat surveys were not conducted during the month

of May, the abundance of Heterosiphonia was 40% higher during

June than any of the other months surveyed (F2,370 = 9.34,

p,0.001; Table 2). As expected, we found differences among

sites surveyed (F4,370 = 15.95, p,0.001). There was also a signifi-

cant site*week interaction for our intertidal drift surveys

(p,0.001).

Discussion

While initial reports restricted the distribution of Heterosiphonia to

Rhode Island [8,9], this invader now occurs across a much larger

biogeographic range. From this study alone, we have determined

Heterosiphonia has become established in subtidal communities

along .700 km of the western Atlantic coastline from Cape

Elizabeth, Maine through Waterford, Connecticut. Furthermore,

recent reports have documented the presence of Heterosiphonia in

Atlantic Canada [9], and Heterosiphonia has been reported as far

west as the mouth of the Connecticut River (J. Foertch, pers.

comm.). This extensive range, with a continuous distribution

spanning at least 700 km, became evident within only five years of

the initial report of Heterosiphonia in Rhode Island in 2007 [9].

While we can not confirm how long Heterosiphonia may have been

present (but unnoticed) in New England, if Heterosiphonia was

indeed initially limited to sites in Rhode Island, as suggested by

Schneider [8], then this incredibly rapid rate of expansion is

comparable to the expansion throughout its invaded range along

European coastlines; within 5 years of initial reports, the invader

had spread .830 km along the Norwegian coast [10,11].

Although the possibility of multiple introductions via shipping

vectors throughout its western Atlantic range exists, it is also

possible that Heterosiphonia successfully expanded its invaded range

through rapid growth and nutrient uptake rates, high reproductive

potential due to fragmentation, and release from natural herbivory

(A. Drouin & N. Low, pers. comm.).

Based on the wide range of temperature and salinity tolerances

of the European populations of Heterosiphonia, we believe this

invader will continue to rapidly expand its geographic range along

the western Atlantic coast, ultimately achieving a temperate to

subtropical distribution and potentially invading locations from

Florida to Newfoundland [16]. We are currently working to

determine the lethal temperature and salinity ranges for the

Figure 3. Relationship between sessile species richness and Heterosiphonia japonica abundance. Data presented are per plot, across all
sites (regression; R2 = 0.30, p = 0.02).
doi:10.1371/journal.pone.0062261.g003

Table 2. Seasonality of Heterosiphonia japonica abundances.

Subtidal
(Percent Cover)

Intertidal
Wrack
(g/m2)

North South

Early 43.8067.38 7.6562.35 17.4769.33

Mid – – 8.0163.13

Late 0.2460.15 0.0960.07 5.3163.16

Notes: Within subtidal communities, Heterosiphonia abundance was at least two
orders of magnitude higher in early summer (May/June) than during late
summer (August; X2 = 1676.52, p,0.001). At least twice as much Heterosiphonia
biomass was found in intertidal wrack mats during June than in other months
(F6,45 = 12.66, p,0.001).
doi:10.1371/journal.pone.0062261.t002

Heterosiphonia in the Western North Atlantic Ocean
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western Atlantic Ocean populations of Heterosiphonia. However,

these populations are an exact genetic match to European

populations [8], for which the thermal and salinity tolerances

are known (0uC to 30uC, 10 to .30 psu; [16]). Thus, whereas this

invader’s eventual range will likely be impacted by changes in

temperature and salinity associated with climate change, a more

pressing current concern is the likelihood that it will continue to

expand its range rapidly, both northward and southward, to fill its

thermal niche (i.e., its temperature and salinity tolerances allow it

to grow well beyond its current geographic range).

Heterosiphonia was able to invade subtidal communities both

north and south of Cape Cod, Massachusetts, a well-known

biogeographical barrier. Despite the historical differences in both

abiotic conditions and biological community structure between the

two biogeographic provinces [17,18], Heterosiphonia has become

one of the most abundant macrophytes, on average, in these

communities. However, the abundance of Heterosiphonia also

appears to be spatially variable, with Heterosiphonia comprising up

to 79% of total macrophyte cover at some locations, whereas in

other communities where Heterosiphonia is present, it occupies,1%

of the shallow subtidal community (Table 1). These data may be

the result of our survey design, which was intended to rapidly

assess the invader’s geographic range by maximizing the number

of sites visited over the course of four months. As a result, we were

not able to visit all sites on a regular basis.

However, we were able to capture some of the temporal

variability in Heterosiphonia abundances in subtidal communities.

During this study, four sites (two north and two south of Cape

Cod, Massachusetts) were surveyed both at the beginning of the

summer (May/June) and at the end of the summer (August).

Heterosiphonia abundances were two orders of magnitude higher

during May/June than during the end of the summer (Table 2).

However, populations of Heterosiphonia appeared to be recovering

following the end of this survey (September and October).

Additionally, large populations of Heterosiphonia were present

during the previous fall of 2011. Therefore, despite this decrease

in abundance towards late summer, we postulate that Heterosiphonia

populations may be experiencing a seasonal growth cycle, with

extremely high abundances during the late spring (Table 2) and

fall (late September – October). However, towards the middle of

August, the abundance of Heterosiphonia was significantly reduced,

even becoming undetectable in some locations where it was

formerly abundant (Table 2). The seasonal pattern observed

during 2012 is consistent with reproductive observations from

European populations, where necrosis in cells of Heterosiphonia

pseudolaterals was most prominently observed in late summer and

fall [15], suggesting individuals were shedding small fragments. As

fragmented pseudolaterals can function as vegetative propagules

[15], the abscission of these structures during the late summer may

lead to a secondary peak in the abundance of Heterosiphonia upon

settlement and regrowth.

The temporal patterns observed in subtidal Heterosiphonia

abundance paralleled patterns seen in intertidal wrack mats. Peak

abundances of attached, subtidal Heterosiphonia were seen during

May and began to decline in June (Table 2). In contrast,

maximum intertidal wrack abundances did not begin to decline

until July. This suggests that Heterosiphonia individuals became

detached from the substratum during the late spring and early

summer, existing primarily as drifting individuals. Indeed, many

drifting specimens were observed during early summer months at

various sites during our SCUBA surveys. The loss of these

individuals from subtidal populations could further explain the

decline in Heterosiphonia abundances seen during our surveys in late

summer and provide further support for the likely importance of

excised pseudolaterals as a means of reproduction for this invasive

macrophyte, particularly in contributing to a second peak in

abundance during early fall. However, it is currently unknown

whether Heterosiphonia populations will maintain their high

abundances through winter conditions (e.g. lower temperature,

higher storm frequency and intensity).

Our surveys suggest that Heterosiphonia may have already altered

subtidal community structure in areas it has invaded, as we

observed lower seaweed species richness in communities charac-

terized by greater Heterosiphonia abundance. These patterns are

consistent with local extinction of native macroalgae due to

competition with Heterosiphonia. It is also possible that communities

with greater native macrophyte diversity are more resistant to

invasion by Heterosiphonia [21], and we are currently conducting

experiments to evaluate these possibilities.

Very little is currently known about the impacts of invasive

seaweed species; ecological impacts have only been studied for

,6% of the 277 known invasive seaweed species. Of these, only 6

studies have examined ecological impacts in situ [22,23]. Collec-

tively, our observations highlight community characteristics and

population fluctuations across the current known range of a newly-

discovered invasive macrophyte. The invasion and expansion of

Heterosiphonia across multiple biogeographic provinces in the

western North Atlantic Ocean provides an opportunity to

understand the spread, impacts, and mechanisms associated with

a marine invasion, providing critical information for management

and amelioration of the impacts of this species and other marine

invaders.

Acknowledgments

The authors would like to thank V. Perini, I. Rosenthal, and N. Low for

their diving assistance and A. Saco for help with beach wrack surveys. We

thank the diving safety officers and their respective universities for diving

reciprocity: T. Lyman (Northeastern University), A. Watson (University of

Rhode Island), and J. Godfrey (University of Connecticut). This is

contribution number 297 from the Marine Science Center of Northeastern

University.

Author Contributions

Conceived and designed the experiments: CN MESB CST. Performed the

experiments: CN MM KR. Analyzed the data: CN MESB MM KR CST.

Contributed reagents/materials/analysis tools: CN MESB CST. Wrote the

paper: CN MESB CST.

References

1. Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate

change and biological invasions: ocean warming facilitates nonindigenous

species invasions. Proceedings of the National Academy of Science USA 99:

15497–15500.

2. Rahel FJ, Olden J (2008) Assessing the effect of climate change on aquatic

invasive species. Conservation Biology 22: 521–533.

3. Mack RN, Simberloff D, Lonsdale WM, Evans H, Colout M, et al. (2000) Biotic

invasions: causes, epidemiology, global consequence and control. Ecological

Applications 10: 689–710.

4. Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global

threat of invasive species to marine biodiversity. Frontiers of Ecology and the

Environment 6: 485–492.

5. Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive

alien species: a threat to global biodiversity. Marine Policy 27: 313–323.

6. Jones E, Thornber CS (2010) Effects of habitat-modifying invasive macroalgae

on epiphytic algal communities. Marine Ecology Progress Series 400: 87–100.

7. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, et al. (1999)

Impact: toward a framework for understanding the ecological effects of invaders.

Biological Invasions 1: 3–19.

Heterosiphonia in the Western North Atlantic Ocean

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e62261



8. Schneider CW (2010) Report of a new invasive alga in the Atlantic United

States: ‘‘Heterosiphonia’’ japonica in Rhode Island. Journal of Phycology 46: 653–
657.

9. Savoie AM, Saunders GW (2013) First record of the invasive red alga

Heterosiphonia japonica (Ceramiales, Rhodophyta) in Canada. BioInvasions
Records 2: 27–32.

10. Sjøtun K, Husa V, Pena V (2008) Present distribution and possible vectors of
introductions of the alga Heterosiphonia japonica (Ceramiales, Rhodophyta) in

Europe. Aquatic Invasions 3: 377–394.

11. Husa V, Sjøtun K, Lein TE (2004) The newly introduced species Heterosiphonia
japonica Yendo (Dasyaceae, Rhodophyta): geographical distribution and

abundance at the Norwegian southwest coast. Sarsia 89: 211–217.
12. Husa V, Sjøtun K, Brattenborg N, Lein TE (2008) Changes of macroalgal

biodiversity in sublittoral sites in southwest Norway: impact of an introduced
species or higher temperature? Marine Biology Research 4: 414–428.

13. Choi CG, Oh SJ, Kang IJ (2009) Subtidal marine algal community of Jisepo in

Geoge, Korea. Journal of the Faculty of Agriculture, Kyushu University 55: 39–
45.

14. Kang C-K, Choy EJ, Son Y, Lee J-Y, Kim JK, et al. (2008) Food web structure
of a restored macroalgal bed in the eastern Korean peninsula determined by C

and N stable isotope analyses. Marine Biology 153: 1181–1198.

15. Husa V, Sjøtun K (2006) Vegetative reproduction in ‘‘Heterosiphonia japonica’’

(Dasyaceae, Ceramiales, Rhodophyta), an introduced red alga on European

coasts. Botanica Marina 49: 191–199.

16. Bjaerke MR, Rueness J (2004) Effects of temperature and salinity on growth,

reproduction and survival in the introduced red alga Heterosiphonia japonica

(Ceramiales, Rhodophyta). Botanica Marina 47: 373–380.

17. Humm HJ (1969) Distribution of marine algae along the Atlantic coast of North

America. Phycologia 7: 43–53.

18. Wethey DS (2002) Biogeography, competition, and microclimate: the barnacle

Chthamalus fragilis in New England. Integrative and Comparative Biology 42:

872–880.

19. Anderson MJ (2001) A new method for non-parametric multivariate analysis of

variance. Austral Ecology 26: 32–46.

20. Underwood AJ (1997) Experiments in Ecology. New York: Cambridge

University Press. 504 p.

21. Stachowicz JJ, Fried H, Osman RW, Whitlatch RB (2002) Biodiversity, invasion

resistance, and marine ecosystem function: reconciling pattern and process.

Ecology 83: 2575–2590.

22. Thomsen MS, Wernberg T, Tuya F, Silliman BR (2009) Evidence for impacts of

nonindigenous macroalgae: a meta-analysis of experimental field studies. Journal

of Phycology 45: 812–918.

23. Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and

impacts of introduced seaweeds. Annual Review of Ecology, Evolution, and

Systematics 38: 327–359.

Heterosiphonia in the Western North Atlantic Ocean

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e62261


