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Abstract

Groups of neurons firing synchronously are hypothesized to underlie many cognitive functions such as attention,
associative learning, memory, and sensory selection. Recent theories suggest that transient periods of synchronization and
desynchronization provide a mechanism for dynamically integrating and forming coalitions of functionally related neural
areas, and that at these times conditions are optimal for information transfer. Oscillating neural populations display a great
amount of spectral complexity, with several rhythms temporally coexisting in different structures and interacting with each
other. This paper explores inter-band frequency modulation between neural oscillators using models of quadratic integrate-
and-fire neurons and Hodgkin-Huxley neurons. We vary the structural connectivity in a network of neural oscillators, assess
the spectral complexity, and correlate the inter-band frequency modulation. We contrast this correlation against measures
of metastable coalition entropy and synchrony. Our results show that oscillations in different neural populations modulate
each other so as to change frequency, and that the interaction of these fluctuating frequencies in the network as a whole is
able to drive different neural populations towards episodes of synchrony. Further to this, we locate an area in the
connectivity space in which the system directs itself in this way so as to explore a large repertoire of synchronous coalitions.
We suggest that such dynamics facilitate versatile exploration, integration, and communication between functionally
related neural areas, and thereby supports sophisticated cognitive processing in the brain.
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Introduction

There has been growing interest in brain dynamics and

oscillatory behaviour within neuroscience communities due to

the realization that different perceptual and behavioural states are

associated with different brain rhythms. The oscillatory activity of

large populations of neurons observed in the local field potential

(LFP) can be the result of complex dynamics at a number of scales:

from a role played in theta LFP by subthreshold membrane

potential oscillations of individual neurons [1], to population

entrainment by the rhythmic firing of pacemaker neurons [2,3], as

well as re-entrant architectures involving inhibitory interneurons

that result in LFP gamma oscillations [3]. As Buszaki and Draguhn

claim: ‘The synchronous activity of oscillating networks is now viewed as the

critical ‘‘middle ground’’ linking single-neuron activity to behaviour’ [4].

The various rhythms have diverse associations. Thalamocortical

networks display increased delta band (0.123.5 Hz) power during

deep sleep [5]. Theta (427.5 Hz) activity is increased during

memory encoding and retrieval [6]. Alpha band (8213 Hz)

changes are associated with attentional demands [7]. Beta

(14230 Hz) oscillations have been related to the sensorimotor

system [8]. Of all the frequency bands the role of gamma (30–

80 Hz) is thought to be most extensive and is hypothesized to

provide a mechanism that underlies many cognitive functions such

as: attention [9], associative learning [10], working memory [11],

the formation of episodic memory [12,3], visual perception [13],

and sensory selection [14].

The evidence suggests that basic modes of dynamical organi-

zation are reflected in brain rhythms [15]. In addition the

‘‘communication through coherence’’ hypothesis proposes that

such synchronization opens up communication channels between

distant neuronal groups[16], providing optimal conditions for

information transfer [17]. With these insights in mind it has also

been suggested that transient periods of synchronization and

desynchronization provide a mechanism for dynamically integrat-

ing and forming coalitions of functionally related neural areas

[18].

Such transient dynamics have been demonstrated in systems of

phase lagged, delayed and pulse coupled oscillators that have been

organized into a modular community structured small world

networks akin to those found in the brain [18,19]. These systems

exhibit interesting phenomena such as: metastability, chimera-like

states and coalition entropy. Metastability is quantified by the

variance of synchrony within an individual oscillator cluster over

time, averaged for all clusters in the system, and so characterizes

the tendency of a system to continuously migrate between a variety

of synchronous states. Fixing time and calculating the variance

across clusters gives an index of how chimera-like the system is,

indicating the level of spontaneous partitioning into synchronized

and desynchronized subsets. Coalition entropy measures the

variety of metastable states entered by a system of oscillators and

is calculated from the number of distinct states the system can

generate and the probability of each state occurring. As a
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collection these measures capture the ability and tendency of a

system to best explore the space of dynamic synchronous

coalitions. In the afore-mentioned work in which these transient

dynamics were demonstrated, a key area within the oscillator

network parameter space was identified where the combination of

these measures is optimal. An embodied neural oscillator system

tuned to such a sweet spot would facilitate versatile exploration,

integration and communication of functionally related areas

throughout the behavioural problem solving process.

It is increasingly common for simple oscillator models to be used

as abstractions of oscillating neural populations in brain modelling

[20]. Whilst there is a greater perceived affinity to neural systems

when moving from phase lagged, to delayed, to pulse coupled

oscillator system, our previous work experimentally demonstrated

that such oscillator models display close behavioural similarities to

networks of oscillating neural populations [21]. However, the

latter work illustrates how neural models display greater spectral

complexity during synchronization than more abstract oscillator

models, with several oscillatory frequencies coexisting within an

individual neural oscillator population. This work explored the

relationship between simple oscillator models and their neural

population cousins by emulating neurally the Kuramoto critical

coupling experiment [22] which showed an increase in synchrony

as connection strength is increased in a uniformly connected

network of simple oscillators. It was demonstrated that at the point

of maximum synchrony the neural systems not only displayed

several coexisting frequencies within an individual oscillator

population but that the system also showed deviations from a

measure of full synchrony likely caused by these additional

fluctuating influences.

The spectral complexity of neural systems has been observed in

vivo [23]. It has been hypothesized that slower oscillations provide

a framework for other faster oscillations to operate such that fast

oscillations communicate content while slow oscillations mediate

transient connectivity [3]. Very large networks are recruited

during slow oscillations whereas higher frequency oscillations are

confined to a small neuronal space [4]. Widespread slow

oscillations modulate faster local events. Some such interactions

have received much attention, for example the nesting of gamma

in theta during memory formation [24,25]. However, the

phenomenon as a whole is not well understood. Within the same

neuronal structure neighbouring frequency bands, which are

typically associated with different brain states, coexist but compete

with each other. However, several rhythms temporally coexist not

only in the same structure but also in different structures and

interact with each other [4]. How these different frequencies affect

each other across populations is an area demanding much

exploration and is the focus of this paper.

Much research has focused on measuring the effect when

different populations of neurons synchronize to the same

frequency [17,26,27], with further interest in correlations across

frequency bands, as for example assessed by the mean local time-

frequency energy correlation [28]. It has been shown that, within a

single neural population coexisting oscillatory frequencies in

different bands start, stop and restart. Further to this we show

that these frequencies fluctuate. The frequency of an oscillating

population does not remain at a constant but may speed up and

slow down over time. The aim of this work is to understand how

the fluctuation in the frequency of one neural populations’oscilla-

tion over time affects the other neural populations it is connected

to. The results in this paper demonstrate that the fluctuation in

frequency in one neural population modulates the fluctuation in

frequency in other neural populations, and that this influence

increases with greater structural connectivity between the popu-

lations. Due to the connective interdependency of each population

to the others in a network, the fluctuating oscillatory frequency of

each population modulates the other populations’ oscillatory

frequencies. It is shown that, this interaction of fluctuating

frequencies in the network as a whole is able to drive different

populations towards episodes of synchrony.

The approach taken in this paper is to build simulations of

interacting neural oscillator populations, to capture in detail the

intermittent fluctuating frequencies in each oscillator as fragments

of times series (time series strands), and to correlate these strands

against other such strands across bands and across neural

populations. We average this correlation measure for the network

as a whole in order to give a mean intermittent frequency correlation. This

is then contrasted against measures of synchrony and coalition

entropy in the network as a whole. By varying the amount of

structural connectivity between neural populations we show that

the interaction of fluctuating frequencies in different bands and

across neural populations directly relates to synchrony, and that

this correlation measure is inversely related to coalition entropy in

the network. Further to this, we identify an area in the connection

space at which the causal interaction of fluctuating frequencies

across neural populations and the coalition entropy of the system

are optimal. The latter entails that the fluctuating frequencies in

different populations are not only modulating each other so as to

drive each other towards episodes of inter-population synchrony,

but also that the variation in the make-up of these synchronous

coalitions over time is very high. We hypothesise that such

dynamics would form a good basis for contextual exploration, as

well as integration among, and communication between function-

ally related areas during cognitive processing.

The paper is organized as follows. First we describe the neural

models used in our experiments. After this we describe methods

for generating neural oscillator architectures using a genetic

algorithm. Following this, the method for extracting intermittent

frequency strands from each oscillator is detailed before explaining

how these are used to obtain a measure of mean intermittent

frequency correlation for the network. The measures for

synchrony and coalition entropy are then detailed. The experi-

ments and results follow this and we close with a brief discussion.

Methods

Neural models
Hodgkin [29] distinguishes between types of neuron responses.

The first type of neuron (Type I) always responds to small

depolarization by advancing the next spike. An example of such a

neuron is the integrate-and-fire model. The second type (Type II)

is exemplified by the Hodgkin-Huxley model in which there is a

negative region just after the refractory period, where a

depolarization delays the firing of the next spike because the

delayed rectifier potassium current is greater than the sodium

current, while an excitatory post-synaptic potential received at a

later time advances the firing. In this paper both Type I and Type

II models are assessed.

Quadratic integrate-and-fire neurons
The QIF model [30] displays Type I neuron dynamics [31].

The time evolution of the neuron membrane potential is given by:

dV

dt
~

1

t
V{Vrð Þ V{Vtð Þz I

C

where V is the membrane potential, with Vr and Vt being the

resting and threshold values respectively. C is the capacitance of
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the cell membrane. t is the membrane time constant such that

t = RC with R being the resistance. I represents a depolarizing

input current to the neuron.

An action potential occurs when V reaches a value Vpeak at which

point it is reset to value Vreset. The QIF model is equivalent to the

theta neuron model described by Ermentrout and Kopell [32] if

one sets the reset condition Vpeak = ‘ and Vreset = 2‘. Like Börgers

and Kopell [33] we use values Vr = Vreset = 0 and Vt = Vpeak = 1,

which reduces the above equation to:

dV

dt
~aV V{1ð Þz I

C

Here a~
1

t
and is set to the value 2 for all experiments carried

out in the paper. When working with the QIF model we assume a

membrane potential between Vr = 265 mV and Vt = 245 mV.

Hodgkin-Huxley neurons
The Hodgkin-Huxley [34] model is widely considered as the

benchmark standard for neural models. It is based upon

experiments on the giant axon of the squid. Hodgkin and Huxley

found three different types of ion current: sodium (Na+), potassium

(K+), and a leak current that consists mainly of chloride (Cl2) ions.

Different voltage-dependent ion channels control the flow of ions

through the cell membrane. From their experiments, Hodgkin and

Huxley formulated the following equation defining the time

evolution of the model:

C
dV

dt
~gK n4 V{EKð Þ{gNam3h V{ENað Þ{gL u{ELð Þ

dn

dt
~an Vð Þ 1{nð Þ{bn Vð Þn

dm

dt
~am Vð Þ 1{mð Þ{bm Vð Þm

dh

dt
~ah Vð Þ 1{hð Þ{bh Vð Þh

C is the capacitance and n, m and h describe the voltage

dependent opening and closing dynamics of the ion channels. The

maximum conductances of each channel are: gk = 120, gNa = 36

and gL = 0.3. The reversal potentials are set so that that Ek = 212,

ENa = 115 and EL = 10.6. The rate functions for each channel are:

an Vð Þ~ 0:1{0:01vð Þ
exp 1:0{0:1vð Þ{1:0

bn Vð Þ~0:125exp
{v

80:0

� �

am Vð Þ~ 2:5{0:1v

exp 2:5{0:1vð Þ{1:0

bm Vð Þ~4:0exp
{v

18:0

� �

ah Vð Þ~0:07exp
{v

20:0

� �

bh Vð Þ~ 1:0

exp 3:0{0:1vð Þz1:0

All work in this paper using the HH model adjusts the neuron

resting potential from 0 mV of the standard HH implementation

to the more accepted value of 65 mV [35].

Synaptic model
The synaptic model for simulations using the QIF model is a

current synapse that simply multiplies the incoming spike by a

synaptic weight:

Ij tð Þ~
X

i
wij

Xn

k
d t{dij{ti,k

� �

where Ij(t) is the input to neuron j and time t. wij is the synaptic

weight from neuron i to neuron j, and dij is the synaptic delay from

neuron i to neuron j. A list of the all n spikes produced from

neuron i during a simulation are denoted by their spike times ti,k,

where k = 1,2…..n. d is a delta function applied to t-dij-ti,k, such that

adjusting the current time t by the synaptic delay dij identifies the

spike production time at neuron i for which a spike is due to arrive

at neuron j at time t. If ti,k matches this spike time then the delta

function produces an output value 1.

The HH model uses conductance synapses, and so uses reversal

potentials to further scale incoming spikes. The latter model is as

follows:

Ij tð Þ~
X

i
Rev{Vj

� �
wij

Xn

k
d t{dij{ti,k

� �

The additions to the previous synaptic model are, Rev which is

the reversal potential, and Vj, which is the voltage of the target

neuron. The reversal potentials for the model are set to the same

values in all experiments. For excitatory inputs the reversal

potential is set to 0 mV, and for inhibitory inputs the reversal

potential is 270 mV. Not using a synaptic reversal model for the

QIF model is equivalent to using a synaptic reversal model with

reversal potentials set to +‘mV for excitatory neurons and -‘mV

for inhibitory neurons.

Evolution of the architecture for neural oscillatory nodes
Groups of neurons firing together rhythmically can occur

because of intrinsic firing patterns of excitatory principal cells or

due to common input from a pacemaker, however, it is more

common both in the cortex and the hippocampus that rhythmic

firing happens as an emergent property of interactions between

excitatory principal cells and inhibitory interneurons. Variations of

this mechanism, known as pyramidal inter-neuronal gamma

(PING), can give rise to both faster gamma oscillations as well as

slower oscillations such as theta in the cortex and the hippocampus

[3].

Excitatory neurons drive the entire local network, including

inhibitory interneurons. The most strongly driven inhibitory
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neurons will fire first and provide inhibition to numerous other

inhibitory neurons. The inhibitory effect on all these neurons will

disappear at approximately the same time. Affected inhibitory

neurons will then fire roughly together, causing large numbers of

inhibitory neurons to be entrained to a rhythm within just a few

oscillatory cycles [36]. This rhythmically synchronized inhibition

also affects the network’s excitatory neurons with a fast and strong

synaptic input [37] thus leaving only a short window for the

excitatory neurons to fire after one period of inhibition wears off

and before the next one starts [38].

The oscillators used in this work conform to a PING

architecture. Whilst the general PING architecture is well

understood, the specific details required for both particular

oscillatory frequencies and neuron model vary and involve a large

space of parameter values within the general PING framework. In

order to provide a wide range of different intrinsic oscillatory

frequencies for the neural oscillator nodes used in the experiment,

it was decided to obtain these parameter values by use of a genetic

algorithm (described below). The genetic algorithm evolved,

within biologically plausible bounds, every oscillatory frequency

between 30 Hz and 50 Hz for both QIF and HH models. The

evolutionary mechanisms were constrained so that each neural

network was evolved in accordance with the general PING

architecture mentioned above. All neural populations for the

PING oscillators used an excitatory layer of 200 neurons and an

inhibitory layer of 50 neurons. The excitatory layer drives the

entire network and so is the only one to receive external input. The

input is generated from a Poisson process with parameter

l= 4.375. For QIF models the inputs were scaled by 8 and for

the HH models the inputs were scaled by 15 in order to provide

sufficient stimulus to induce firing. The networks were wired up

with connections between inhibitory neurons (II), from excitatory

to inhibitory neurons (EI) and from inhibitory to excitatory

neurons (IE). Excitatory to excitatory (EE) connections were

excluded in order to limit saturation effects (by which we mean all

neurons firing all of the time). Saturation effects tend to arise in the

later simulations in which many neural PING nodes were wired

together. The possibility of saturation was not otherwise catered

for in the evolutionary process due to the PING networks being

evolved in isolation. The PING architecture used is illustrated in

figure 1a. In addition to the synaptic weight, a scaling factor of 5

was used on all synaptic current in the oscillatory populations for

both QIF and HH models to simulate networks of a larger size

than we could feasibly simulate, given the number individuals in a

population and the number of generations in an evolutionary run,

as well as the large number of simulation runs using 10 neural

PING nodes in our final experiment.

A genetic algorithm is a blind search and optimisation

technique based upon the theory of natural selection [39].

Parameters are encoded in a pseudo genome, and are used to

instantiate an individual, in this case a neural network. A

population of individuals are tested and scored for their fitness

at performing the test. Based upon their fitness ranking pairs of

individuals are chosen to produce offspring for the next generation

via crossover of their genomes. Mutation is then applied to some

parameters in the new offspring genome. As this process continues

over generations individuals in the population become optimised

at performing the target task. The parameters that were evolved in

this work were the synaptic weights and delays. Both of these were

generated during genome expression of each individual in each

generation using an approximately normal distribution, with the

means and variances for the weights and the delays being the

parameters in the genome evolved. The distribution is approxi-

mately normal as the weights were bound to evolve values between

0 and 1 for excitatory connections and 0 and 21 for inhibitory

connections. Delays were similarly bound. Long delays are quite

unrealistic for a cluster of neurons in which all neurons are

anatomically close together. In the cortex synaptic latency ranges

from 0.2 ms to 6 ms [40]. In order to produce realistic results,

excitatory delays were bounded between 1 ms and 10 ms. The IE

and II delays were allowed to have a maximum value of 50 ms to

simulate the effect of slow inhibitory interneurons, the behaviour

of which was otherwise not modelled.

Individuals were tested for 5000 ms of simulated time in which

they received external input to the excitatory layer as described

above. The fitness function for the genetic algorithm consisted first

of taking the spike firing times of the excitatory population and

converting it to a continuous time-varying signal. This was

achieved by binning the spikes over time, and then passing a

Gaussian smoothing filter over the binned data. Next a Fourier

transform was performed on the mean centred signal to produce

the frequency spectrum of the signal. The main fitness term was

calculated by creating a scaled Gaussian centred around the

desired frequency f in the spectrum of the form:

clip~20G f ,
1

1000

� �

The frequency spectrum s was subtracted from this and

normalized:

fitness~
{abs clip{sð ÞP

clip

An extra penalty term was introduced to discourage frequencies

outside the desired range. This was achieved by multiplying the

frequency spectrum by 20.002 in the areas further away from the

desired frequency whilst ignoring the area at and immediately

around the desired frequency. The result was then normalized and

added to the main fitness term.

The evolutionary population consisted of 20 individual

genomes. For each generation, each individual was tested for

5000 ms of simulated time. After this each individual was rated for

fitness and probabilistically selected for the next generations’

parents based upon their fitness ranking. Crossover was performed

on parent genomes after which mutation was applied to the

offspring with a probability of 0.1.

All evolved weights for QIF solutions had very high means and

small variances, whereas the HH solution showed greater variation

in the weight means across evolved solutions for different

frequencies, indicating greater sensitivity in the model and solution

in that they require a very specific balance of the parameters for

each particular solution. The means for the delays evolved for both

QIF and HH solutions had a similar form, from which can be

concluded that the EI mean delay+IE mean delay<1000/2f.

Figure 1b shows a raster plot of an evolved PING oscillator with

regular bursts of firing in the excitatory layer at 30 Hz.

Extraction of intermittent frequency strands
The work presented in this paper aims at assessing the

correlation between the fluctuating frequencies in different neural

oscillators that are connected together in a network. In order to

achieve this we first need to extract the instantaneous frequency

responses for each neural oscillator at each moment in time during

a simulation. The standard techniques for doing this are to either

Metastability and Inter-Band Frequency Modulation
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use a short-time Fourier transform or a wavelet transform. To

perform either first requires converting the firings of an oscillatory

neural population into a continuous time signal upon which one of

these transforms can be performed. We only use the excitatory

layer in a neural oscillator when producing this signal. The signal

is obtained by first binning the number of spikes at each moment

in time for the excitatory layer, and then passing a Gaussian

smoothing filter over the data. Finally the signal is centred around

its mean to obtain the continuous time signal upon which we can

perform the transform.

Figure 1. PING oscillatory architecture and behaviour. (A) The pyramidal inter-neuronal gamma (PING) architecture used for the neural
oscillator nodes in the simulation experiments. To generate oscillator nodes of different frequencies for different neural models this base architecture
was used with a genetic algorithm evolving the weights and delays for the synaptic connections. (B) Example of the firing behaviour of an evolved
QIF PING node oscillating at 30 Hz.
doi:10.1371/journal.pone.0062234.g001
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Both Fourier and wavelet based approaches for extracting the

time-frequency information from a signal suffer from shortcomings

due to the time-frequency uncertainty principle. A Gabor wavelet

transform has been chosen for use in this work, because the

responses of Gabor wavelets have optimal properties with respect

to the time-frequency uncertainty principle [41]. The Gabor

wavelet used had a centre frequency of 0.6 Hz and was applied

with a continuous wavelet transform using scales from 1 to 100 in

increments of 0.1, and a delta of 0.001. Figure 2a shows the

scalogram of a wavelet transform taken from the excitatory layer

of a neural oscillator in one of the experiments. In this experiment,

as in all others, the oscillator was placed in a network with 9 other

oscillators, each oscillating at a different intrinsic frequency. There

is a given probability of connecting each oscillator to another in

the network, and a given synaptic connection weight for the

connections formed between oscillators. Both connection proba-

bility and synaptic weight are unique to each experimental run.

Figure 2b shows a raster plot of the firing behaviour of the same

excitatory layer between time points 1000 ms and 1500 ms in the

simulation. It can be seen that the spacing of the bursts of firing

between 1050 ms and 1150 ms is wider and thus at a different

slower frequency to the spacing of the bursts of firing between

1200 ms and 1275 ms. The wavelet response to the slow and then

faster bursting can be seen as a difference from low to high

frequency on the scalogram in the same temporal area and around

the frequency range from 30 Hz–50 Hz. These responses are

deviations from the regular 33 Hz bursting that the PING

oscillator was evolved to fire at and are due to the interaction

with the other oscillator nodes.

The Gabor wavelet produces a blurred impulse response

around given frequency responses at each point in time. The

blurring from a Gabor wavelet is in the form of a Gaussian [41], as

illustrated by a time slice at time point 1460 ms shown in figure 2c

taken from the scalogram in figure 2a. Further techniques have to

be applied to the transformed data in order to extract the

instantaneous frequency information. Standard ridge and skeleton

methods do not perform well when there are many components,

some of which remain very close for a while and separate again, or

when they can die out, or when new ones can appear from

nowhere [42]. As can be seen by the scalogram in figure 2a the

data in the work presented here is of this type. Drawing upon the

Gaussian nature of the impulse response from the Gabor wavelet,

we apply a technique of fitting a sum-of-Gaussians model to the

transformed data at each point in time [41]. Figure 2c shows such

a fitting. Identifying the means and magnitudes of the means of the

fitted Gaussians gives the instantaneous frequencies and their

amplitudes respectively.

The next stage in preprocessing the data requires forming a

time series of the instantaneous frequencies as they fluctuate over

time, what we call a strand. These fluctuating frequency responses

may also be intermittent due to the frequency response dropping

out and starting again. Zero values are substituted into the time

series strands during the drop out moments to identify the fact that

there is no frequency response at those times. There may be many

coexisting frequencies for each neural oscillator at each time point

in a simulation, and therefore many coexisting strands. To obtain

these strands, after the instantaneous frequencies at each point in

time for an oscillator are calculated, the movement of each

frequency is tracked over time so as to link them together into a

single time series fragment.

The algorithm for forming the frequency time series strands has

three parts. The first part is simply to sequence the nearest

frequencies in time into a strand as follows:

T = start_time.

while T is not equal to end_time.

For each unassigned instantaneous frequency at time point T

create a new strand containing that frequency.

T = T+1.

while there are strands and frequencies within the distance

limit L.

Find the strand at time point T-1 with the closest frequency to

one of the instantaneous frequencies at time point T.

If the frequency is within limit L add the frequency to the strand

and remove the strand from further consideration until the next

iteration.

end
end

Further to this, we need to cope with bifurcations in the

oscillator behaviour when an oscillator in a particular state A1,

flips to another state B1, and then flips again to a state A2 such

that states A1 and A2 have the same number of coexisting

frequencies and these frequencies have approximately the same

values. Hence the system is returning to its original state (A1) after

the middle state B1. In each state there may be several coexistent

frequency strands. We wish the strands in the original state A1 and

its return state A2 after the middle state, to be stitched together so

as to maximize the strand length and as a result the correlation.

The distance between the frequencies in the strands in the state A1

and state A2 may be near enough within a limit L to make a direct

match as in the previous algorithm, due to the fact that there is a

close continuation between the two. However, there are situations

in which the values of the frequencies in A2 are not near enough

for direct matching, but instead have values similar to how state

A1 would have been at that time if the bifurcations had not

occurred and state A1 had instead continued developing. That is

to say, whilst being the same state as A1, state A2 is in a later stage

of development. In such a situation we use regression to project

where the frequencies of strands in the original state A1 would

have progressed to, and match these projections to the frequencies

of the strands in A2. We apply a maximum frequency distance

limit L as before on this projected matching.

In order to stitch states in this way, we first group all strands

together which share the same start time so as to identify them as

being in the same state. The state matching algorithm then

preferentially matches states nearest to each other whose strands

have the closest frequencies or projected frequencies. There is a

maximum time limit between states for which we allow such

stitching to occur. In order to get the best matching between states,

we first perform the algorithm with the constraint that stitched

states must contain the same number of strands, and then perform

the algorithm again without this constraint.

After the state stitching has been carried out we extract the

individual strands that are contained within the states, as we only

consider pairs of individual strands during correlation. The strands

are time series of fluctuating frequencies sequenced by closeness.

Each strand will have a start and end and may contain zero values

in its time series where the frequency dropped out due to a

bifurcation.

Mean Intermittent frequency correlation
For each pair of oscillators, m and n, there is a collection of

fluctuating frequency strands scattered over the frequency domain

and stretching over time. We correlate each strand in oscillator m

with each strand in oscillator n, for all oscillator combinations in

the network. We do this by passing a 100 millisecond window over

time in incremental steps of 1 millisecond. In each of these
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windows we take the time series data in that window for all pairs of

strands i and j, where i and j are from different oscillators m and n

respectively. For each pair of windowed strands we then remove

time points from each strand where both strands do not have a

response at that time point in the window, or when both the

frequencies in the strands at one time point are the same as at the

previous time point. This results in two time series strands for the

window at time t, wm,i(t) and wn,j (t). Both are the same length and

are potentially shorter than the window size. Each time series

contains only data where both original strands have a frequency

response and they are both fluctuating. We then correlate these

two series. We select only correlations where the coefficient is

greater than or equal to 0.5 or the coefficient of the anti-

correlation is less than or equal to 20.5, and the p-value for either

is less than 0.05. By randomizing the order of one of the series and

performing the same correlation and selection process we obtain a

phantom correlation. We use phantom correlations to evaluate the

importance of the measure of real correlation found. For both

types of correlation we calculate the mean intermittent frequency

correlation as follow:

MIFC~
1

tmax{100

Xtmax{100

t

X
n

X
m=n

XI(t)

i

XJ(t)

j

W (t)

100
coef � wm,i(t),wn,j(t)

� ��� ��

Where n and m are oscillators, I(t) and J(t) are the total number

of strands in the window at time t for each oscillator respectively,

and i and j are particular strands within each oscillator. coef*

defines the value of a significant correlation coefficient as

previously described. W(t) is the length of the two series wm,i(t)

and wn,j (t), that only contain time points that have a fluctuating

frequency response in both original windowed strands. 100 is the

length of the window. Thus the significant correlation coefficient is

normalized according to the length of the two series in that

window. t is the time of the particular window and tmax is the length

of the simulation time. The metric calculates all pairwise

significant frequency correlations between all oscillators, normal-

izes them by their length, and averages them over time.

Synchronisation metric
All the simulations in this work consisted of 10 neural oscillators

connected together. Each neural oscillator consisted of an

excitatory layer and an inhibitory layer. We only calculated

synchrony for the excitatory neuron layers in the oscillators. The

spikes of each neuron in each excitatory layer were binned over

time, and then a Gaussian smoothing filter was passed over the

binned data to produce a continuous time varying signal.

Following this, we performed a Hilbert transform on the mean-

centred filtered signal in order to identify its phase. No band-pass

filtering was performed during this process. The synchrony at time

t was then calculated as follows:

Q(t)~
1

N

XN

j

ehj tð Þi

�����
�����

Q~
1

tMax

X
t

Q(t)

where hj(t) is the phase at time t of oscillatory population j. i is the

square root of -1. N is the number of oscillators, and tmax is the

length of time of the simulation.

Coalition entropy
Coalition entropy measures the variety of metastable states

entered by a system of oscillators. We only calculated coalition

entropy for the excitatory neuron layers in the oscillators. As with

the synchrony metric, we calculated the phase of each oscillator at

each time point t using a Hilbert transform. We then performed

clustering at each time point by picking the two most synchronous

oscillators/coalitions using the first equation defined for the

synchrony metric. Once a pair was identified they were joined to

form a new coalition and the new coalitions mean complex

exponential phase was calculated for use in the future most

synchronous pair selection process. A threshold of 0.05 from full

synchrony was used to limit the cluster merging. The process was

repeated until no oscillators/coalitions fell within the threshold to

allow merging into a new coalition.

Having identified the synchronous coalitions at each point in

time we calculated the probability p(s) of each coalition occurring

from the number of times it appeared throughout the simulation.

The coalition entropy Hc was then calculated as follows:

Hc~�
1

log2 jSj
X
s[S

p sð Þlog2 p sð Þð Þ

where |S| is the number of possible coalitions given the number of

oscillators in the system.

Hardware acceleration
Each of our simulations required 10 neural PING nodes each of

250 neurons, resulting in 2500 neurons and <880,000 synapses,

and entailing an immense computational burden across the entire

parameter space sweep in our experiments. To cope with this, we

used the NeMo neural network simulator, which processes

neurons concurrently on general purpose graphics processing

units (GPUs) [43]. The NeMo software permits the addition of

user plugins for neural models, which allowed us to implement

both QIF and HH models for the NeMo simulator facilitating the

work presented here.

Results

We performed a series of experimental simulations in each of

which 10 neural PING oscillators were chosen from the set we had

evolved with intrinsic frequencies ranging from 30 Hz to 50 Hz.

Figure 2. Extraction of frequencies from population firings (A) Scalogram of the excitatory layer of a neural PING node that has
been connected to 9 other nodes each oscillating at a different frequency. (B) Firing behaviour of the same excitatory layer between
1000 ms to 1500 ms in the simulation. Note how the spacing in between the burst of firing is reflected as different frequencies in the scalogram in
panel A. (C) Time slice of the scalogram in panel A taken at 1460 ms. The red line shows the time slice and the green lines show different Gaussians,
the sum of which fits the red line.
doi:10.1371/journal.pone.0062234.g002
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The probability of one oscillator providing neural input to another

was determined with a given probability P. The probability P was

the same for all oscillator to oscillator connections in the same

experimental simulation. Given that a connection was established

from oscillator n to oscillator m the excitatory neurons in oscillator

n would form synaptic connections to the excitatory neurons in

oscillator m. The number of synaptic connections formed was 20

percent of the 40000 possible synaptic connections from the 200

excitatory neurons in oscillator n to the 200 excitatory neurons in

oscillator m. For all synaptic connections formed the weight of the

synapse was set to W. The value for W and P were randomly

chosen at the beginning of each experimental simulation from a

uniform distribution between 0 and 1. 250 simulations were

performed for the QIF neural model and 250 simulations for the

HH neural model. As the weight and connection probability for

each simulation were chosen at random these data points are

scattered throughout the space, the 250 simulations thus constitute

a scattered sweep of weight and the inter-oscillator network

connection sparsity. Figures 3, 4, 5 and 6 show various measures

taken from these 250 simulations of QIF and HH neuron models.

These are analysed and discussed in detail below. In each of these

figures a surface has been fitted to the underlying trend of the 250

data point for each measure depicted. The original scatter plots for

the 250 data points of each measure are included in the supporting

information (figures S1, S2, S4, S4 respectively).

Throughout each simulation external stimulus input was

provided to each neural oscillator from a Poisson process with

parameter l= 4.375. For QIF models the inputs were scaled by 8

and for the HH models the inputs were scaled by 15 in order to

provide sufficient stimulus to induce firing. Each experiment was

run for 2000 ms of simulated time. After each experiment, the

firing activity of the excitatory layers in each oscillator was used to

calculate synchrony, coalition entropy and the mean intermittent

frequency correlation as described in the Methods section. The

first 500 ms of each simulation were discarded in the calculation of

these metrics to eliminate initial transients.

Figures 3a and 3b show the synchrony through the sweep for

QIF and HH models respectively. Unsurprisingly, and in accord

with previous findings [21], synchrony increases as connectivity

increases. The neural systems never reach full synchrony as at

their maximum value these systems exhibit deviations from full

synchrony. The value of 0.25 synchrony in the area of low weight

and low connection probability represents no synchrony at all

except coincidental alignments in phase. The HH model shows a

dip in synchrony around the area of maximum weight and

maximum connection probability. This is due to ‘‘saturation’’, by

which we mean all the neurons in the oscillators in the network

often fired continuously rather that oscillating. This phenomenon

appears as an artefact in the same weight and connection

probability area for all measures presented for the HH model.

Figures 3c and 3d show the coalition entropy through the sweep

for QIF and HH models respectively. The trend for coalition

entropy takes the reverse form to synchrony, decreasing as

synchrony increases, and the oscillators become more aligned in

phase for more of the time. The measure of coalition entropy used

cannot distinguish coincidentally synchronous coalitions from

those that are genuinely coupled. However, when we contrast with

the graphs of synchrony we can get an idea of what is happening.

Regions of the parameter space with low weight and low

connection probability exhibit high coalition entropy, but the

same regions present low values for synchrony. This suggests that

the many coalitions that appear are constituted by very short

coincidental alignments in phase that are not capable of significant

information transfer [17]. The mid parameter space area shows

fairly high values for synchrony, indicating the capacity for

substantial information transfer, as well as high coalition entropy

indicating transfer between many different groups at different

times. The region of the parameter space in which the weight and

connection ratio are high facilitates more information transfer but

less variation in coalitions.

Figures 3e and 3f show the average number of coexisting

frequencies in a single oscillator at any one time in each simulation

for QIF and HH models. Interestingly for the QIF model, as the

causal influences increase through stronger weights and greater

connectivity, the number of coexisting frequencies rises. This

indicates that stronger causal interactions between neural popu-

lations, that otherwise oscillate at a single intrinsic frequency, are a

source of increased spectral complexity. The HH model shows a

dip in the mid area of the parameter space, after which the

number of coexisting frequencies rises. Whilst this latter area also

demonstrates that causal interactions increase spectral complexity

in areas where there are stronger inter-oscillator influences, it is

interesting to note that in the area of weaker influences this model

also generates a large number of coexisting frequencies. This latter

phenomenon will be elucidated later.

Taking a look at the number of significant correlations found

through the sweep, figures 4a and 4b show that both QIF and HH

models display an increased number of correlations as the synaptic

weight and connectivity increases, although the HH model has a

less pronounced incline. The increase has a similar trend to that of

synchrony. The data indicate that correlated fluctuations in

frequency imply more episodes of synchrony, suggesting that the

fluctuating influences between oscillators are moving each other

towards synchronous behaviour. As the number of significant

correlations is so high, we can conclude that this influence works

across frequency bands. To control for coincidental (‘‘phantom’’)

correlations, we contrast the number of significant correlations

found to the number found when reversing one of the time series

before correlating (figures 4c and 4d). We see that for the QIF

model, although many significant phantom correlations are found

and they follow the same trend, the number found is an order of

magnitude less than the number of real correlations. The HH

model displays a similar ratio between real and phantom

correlations. However, the region of low weight and connection

probability shows large numbers of correlations in line with the

greater number of coexisting frequencies found in that area in

figure 3f.

The mean intermittent frequency correlations are shown in

figures 5a and 5b for QIF and HH models respectively. As causal

influence between oscillators increases in the network this

correlation measure increases, meaning that correlation directly

reflects causation in this case. Data not presented show that when

separating these data into positive correlations and anti-correla-

tions both follow the same trend (this data separation is included in

figure S5 in the supporting information). The metric not only

identifies the significant correlations but also normalizes each of

these correlations by the length of the intermittent fluctuating

frequency time series. The resulting values are therefore always

much less than the number of correlations. The mean intermittent

frequency correlation shown for phantom correlations in figures 5c

and 5d is very low, peaking at around 7 compared to real

correlations, which peak at around 140. The ratio is double that

found for the simple ‘‘number of significant correlations found’’ of

figure 4 and so is even stronger justification that the correlations

found are significant. For the HH model, the area of low weight

and connection probability shows small mean intermittent

frequency correlation values, in contrast with the corresponding

‘number of correlations found’ shown in figure 4b due to greater
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number of coexisting frequencies seen in figure 3f. This is because,

although significant correlations are found, they are being

normalized to a lesser value by length, meaning that these are

very short time series. This is further reason for discarding high

coalition entropy values in this area, on the grounds that they are

not due to any consequential interactions but are merely

coincidental. The performance of HH networks around this low

parameter region is therefore very erratic compared to the

behaviour in the mid and high connectivity regions which exhibits

stable and modulatory influences.

In figures 6a and 6b, the number of correlations found has been

normalized by the number of coexisting frequency time series in all

oscillators on each run. These figures show, on average, how many

frequencies in other oscillators each individual frequency is

interacting with at each time point. The mid area of figures 3e

and 3f show <3 coexisting time series per oscillator at each time

point. The mid and high parameter region in figures 6a and 6b

show many more than the 9 interactions we would expect if each

frequency was only interacting with frequencies in other oscillators

that are in the same frequency band. We can safely conclude from

this that frequencies in different neural populations communicate

across bands. This type of complexity is not manifest in simple

oscillator models, a shortcoming that is most evident at high levels

of synchrony when simple oscillator models, unlike systems of

neurons, display only a single shared frequency.

Figures 6c and 6d show, from two angles, a combination of QIF

mean intermittent frequency correlation in figure 5a with the QIF

coalition entropy in figure 3d. To obtain this combination we

normalized the mean intermittent frequency correlation between 0

and 1, and the coalition entropy between 21 and 1, and

multiplied the results together. The coalition entropy was

normalized between 21 and 1 to emphasize the dominant trend

in the graphs which lies in the upper half. There is a vector from

weight value 0.35 and connection probability 1 to weight value 1

and connection probability 0.35 at which the amount of

correlation between fluctuating frequencies across oscillators

Figure 3. Synchrony, coalition entropy, and the number of coexisting frequencies. Each simulation uses 10 neural PING oscillator nodes
with the connection probability and weight being the same between all nodes on a single simulation run. Each separate simulation uses a different
connection probability and weight drawn from a uniform distribution between 0 and 1. (A) The overall synchrony in the networks using the QIF
neuron model, (B) same as panel A for the HH neuron model. (C) The coalition entropy in the networks using the QIF neuron model, (D) same as
panel C for the HH neuron model. (E) The average number of coexisting frequencies per oscillator at each time point in the networks using the QIF
neuron model, (F) the same as panel E for the HH neuron model.
doi:10.1371/journal.pone.0062234.g003
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coincides with a measure of coalition entropy such that they are at

a combined peak. This area, in which the two metrics are

balanced, facilitates metastable dynamics in which there is a

richness of influence and interaction between different oscillators

and across frequency bands modulating each other’s behaviour,

enabling the exploration of a large repertoire of different

coalitions. It is noteworthy that there is a linear relationship

between weight and connection probability at which this is best

facilitated. The medium-to-high level of synchrony in this area

further suggests that the conditions for information transfer

between populations are fulfilled [17]. These traits are desirable

in order to facilitate a system versatile at exploration, integration

and communication of functionally related areas during cognitive

processing [44,45,46].

Discussion

A general rule of thumb for oscillator systems is that greater

connectivity produces more synchrony. Unlike simple oscillator

models, systems of spiking neurons display greater spectral

complexity with many coexisting frequencies existing in a single

oscillator at one time. The work presented here demonstrates that

this complexity increases with connectivity, not only in the number

of coexisting frequencies but also in the amount of interaction

across frequency bands. As causal interactions increase, so does

correlation between these fluctuating frequencies, as well as the

tendency towards more and longer episodes of synchrony and

information transfer, which implies that they are modulating each

other towards communication.

Our particular interest lies in theories of metastability in which

neural behaviour produces episodes of synchronization and

desynchronization between oscillating populations, for which the

combined effect amongst a collection of oscillators is to explore

many different coalitions over time. The results presented in this

paper identify an area in the weight and connectivity space at

which spiking neuron models are at a balance in which coalition

entropy is exhibited due to the influential modulation between

populations through their oscillatory behaviour. In this area of

balance the neural systems influence each other across frequency

bands in a way that promotes exploration of, and communication

between, coalitions. This is because the fluctuating oscillatory

frequencies in each neural population modulate each other so as to

Figure 4. The number of correlations found. The setup is the same as for figure 3. (A) The average number of mean intermittent frequency
correlations found for networks using the QIF neuron model, (B) same as panel A for the HH neuron model. (C) The average number of phantom
mean intermittent frequency correlations found for networks using the QIF neuron model, (D) the same as panel C for the HH neuron model.
doi:10.1371/journal.pone.0062234.g004
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drive the system towards episodes of synchrony between different

neural populations, enabling communication between them.

Whilst doing this, the variation in synchronous coalitions of

neural populations over time is kept very high, and hence this area

of the connectivity space may be described as encouraging

exploration. We suggest that a dynamical system whose compo-

nent parts interact so as to direct the system through varieties of

coalitions would form a good basis for contextual exploration as

well as integration among, and communication between function-

ally related areas during cognitive processing. Further to this,

maintaining large repertoire of synchronous coalitions promotes

versatile exploration of novel functional combinations, a desirable

trait when problem solving.

Athough the present work is intended primarily as a computa-

tional and theoretical study, preliminary empirical work has

provided evidence for comparable metastable dynamics in the

resting state human brain [47]. The present work is a step towards

better understanding of how the combined activity of individual

spiking neurons gives rise to the of formation of coherent oscillating

assemblies, and how the dynamics between these assemblies evolve

over time. Our longer term aim is to work towards elucidating such

phenomena both in the brains of living organisms and in the

architecture of computational models, phenomena that permit the

exploration, integration and communication of functionally related

neural areas during cognitive processing.

Supporting Information

Figure S1 Synchrony, coalition entropy, and the num-
ber of coexisting frequencies scatter plot. This plot is of the

original 250 data points from which the surface plot of figure 3 was

created. The setup is the same as for figure 3 and subsequent

figures. Each simulation uses 10 neural PING oscillator nodes with

the connection probability and weight being the same between all

nodes on a single simulation run. Each separate simulation uses a

different connection probability and weight drawn from a uniform

distribution between 0 and 1. (A) The overall synchrony in the

networks using the QIF neuron model, (B) same as panel A for the

HH neuron model. (C) The coalition entropy in the networks

using the QIF neuron model, (D) same as panel C for the HH

Figure 5. Mean intermittent frequency correlation. The setup is the same as for figure 3 and subsequent figures. (A) The mean intermittent
frequency correlation for networks using the QIF neuron model, (B) the same as panel A for the HH neuron model. (C) The phantom mean
intermittent frequency correlation for networks using the QIF neuron model, (D) the same as panel C for the HH neuron model. The mean
intermittent frequency metric selects correlations where the coefficient . = 0.5 and p , = 0.05, and all correlations are normalised by the length of
the time series strands.
doi:10.1371/journal.pone.0062234.g005
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neuron model. (E) The average number of coexisting frequencies

per oscillator at each time point in the networks using the QIF

neuron model, (F) the same as panel E for the HH neuron model.

(TIF)

Figure S2 The number of correlations found scatter
plot. This plot is of the original 250 data points from which the

surface plot of figure 4 was created. The setup is the same as for

figure 3 and subsequent figures. (A) The average number of mean

intermittent frequency correlations found for networks using the

QIF neuron model, (B) same as panel A for the HH neuron model.

(C) The average number of phantom mean intermittent frequency

correlations found for networks using the QIF neuron model, (D)

the same as panel C for the HH neuron model.

(TIF)

Figure S3 Mean intermittent frequency correlation
scatter plot. This plot is of the original 250 data points from

which the surface plot of figure 5 was created. The setup is the

same as for figure 3 and subsequent figures. (A) The mean

intermittent frequency correlation for networks using the QIF

neuron model, (B) the same as panel A for the HH neuron model.

(C) The phantom mean intermittent frequency correlation for

networks using the QIF neuron model, (D) the same as panel C for

the HH neuron model. The mean intermittent frequency metric

selects correlations where the coefficient . = 0.5 and p , = 0.05,

and all correlations are normalised by the length of the time series

strands.

(TIF)

Figure S4 Average number of correlations, and the peak
of modulated exploration scatter plot. This plot is of the

original 250 data points from which the surface plot of figure 6 was

created. The setup is the same as for figure 3 and subsequent

figures. (A) The average number of mean intermittent frequency

Figure 6. Average number of correlations, and the peak of modulated exploration. The setup is the same as for figure 3 and subsequent
figures. (A) The average number of mean intermittent frequency correlations found for networks using the QIF neuron model, (B) the same as panel A
for the HH neuron model. The number of correlations found has been normalized by the number of coexisting frequency time series in all oscillators
on each simulation run. The figure shows, on average, how many frequencies in other oscillators each individual frequency is interacting with at each
time point. (C) and (D) show from two different angles a combination of mean intermittent frequency correlation and coalition entropy for the QIF
neuron model. The values of both metrics have been normalised before multiplying them together. The graphs emphasise a peak area, and in this
area there is also a linear relationship between weight and connection probability. This peak area facilitates modulated exploration of a large
repertoire of different coalitions.
doi:10.1371/journal.pone.0062234.g006
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correlations found normalised by the number of coexisting strands

for networks using the QIF neuron model, (B) the same as panel A

for the HH neuron model. The number of correlations found has

been normalised by the number of coexisting frequency time series

in all oscillators on each simulation run. The figure shows, on

average, how many frequencies in other oscillators each individual

frequency is interacting with at each time point. (C) and (D) show

from two different angles a combination of mean intermittent

frequency correlation and coalition entropy for the QIF neuron

model. The values of both metrics have been normalised before

multiplying them together. The graphs emphasise a peak area, and

in this area there is also a linear relationship between weight and

connection probability. This peak area facilitates modulated

exploration of a large repertoire of different coalitions.

(TIF)

Figure S5 Separation of positive and anti mean inter-
mittent frequency correlation. (A) The positive mean

intermittent frequency correlation for the QIF neuron model. (B)

The same as panel A for the HH neuron model. (C) The anti

mean intermittent frequency correlation for the QIF neuron

model. (B) The same as panel C for the HH neuron model.

(TIF)

File S1. Supporting Figure Descriptions.
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40. Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and

anatomy of synaptic connections between thick tufted pyramidal neurones in the

developing rat neocortex. The Journal of physiology 1997;500 (Pt 2): 409–40.

41. Yu W, Sommer G, Daniilidis K, Duncan JS (2005) Using skew Gabor filter in

source signal separation and local spectral orientation analysis. Image and Vision

Computing 23: 377–392.

42. Daubechies I, Maes S (1996) A nonlinear squeezing of the continuous wavelet

transform based on auditory nerve models. Wavelets in Medicine and Biology:

527–544, CRC Press.

43. Fidjeland AK, Shanahan M (2010) Accelerated Simulation of Spiking Neural

Networks Using GPUs. Proceedings IJCNN 2010: 1–8.

44. Chialvo DR (2010) Emergent complex neural dynamics. Nature Physics 6(10):

744–750.

45. Kelso J (2012) Multistability and metastability: understanding dynamic

coordination in the brain. Philosophical transactions of the Royal Society of

London. Series B, Biological sciences, 367(1591): 906–18.

46. Shanahan M (2012) The brain’s connective core and its role in animal cognition.

Philosophical transactions of the Royal Society of London. Series B, Biological

sciences, 367(1603): 2704–14.

47. Cabral J, Hugues E, Sporns O, Deco G (2011) Role of local network oscillations

in resting-state functional connectivity. NeuroImage 57: 130–139.

Metastability and Inter-Band Frequency Modulation

PLOS ONE | www.plosone.org 14 April 2013 | Volume 8 | Issue 4 | e62234


