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Abstract

Introduction: Human body acceleration is often used as an indicator of daily physical activity in epidemiological research.
Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes
increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing
acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical
movements and the implications for human daily physical activity assessment.

Methods: An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion
were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered
signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+]) were derived for each
experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then
compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22–65 yr), and wrist in 63
women (20–35 yr) in whom daily activity-related energy expenditure (PAEE) was available.

Results: In the robot experiment, HFEN+ had lowest error during (vertical plane) rotations at an oscillating frequency higher
than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics
HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46,
respectively). ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to
26% for a metric which did not attempt to remove the gravitational component (metric EN).

Conclusion: In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide
range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in daily human
physical activity.
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Introduction

The assessment of human daily physical activity in population

studies requires accurate, cheap, and feasible measurement

technology [1,2,3]. Accelerometers are increasingly being used

for physical activity assessment and most of the accelerometers

that have been used in population studies express their output in

proprietary units usually referred to as ‘‘counts’’ [4,5].

Accelerometer devices, based on acceleration sensors which

allow for raw data storage expressed in g-units or SI units at a

relatively high sampling frequency have been used in gait analysis

[6,7] and ambulant activity classification [8,9] for a number of

years. The output of raw accelerometers is not summarized by the
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monitor allowing for increased control over data processing by the

end-user in contrast to the traditional accelerometers. Technolog-

ical developments in recent years have made raw accelerometry

feasible for population research, allowing weeklong data collection.

A measured acceleration signal consists of a gravitational

component, a movement component, and noise [9]. During static

conditions or conditions of steady state non-rotational movement,

the gravitational component is visible as the offset of one or more

sensor axes and can then be used for detection of the sensor

orientation relative to the vertical plane [9]. The separation of the

gravitational component from the acceleration signal is compli-

cated by the fact that in the presence of rotational movements the

frequency domains of the movement-related component and the

gravitational component can overlap, thus making simple

frequency-based filtering inappropriate for perfect separation.

The first two studies that identified the challenge of separating

the components of acceleration lacked a comparison against a

reference method [10,11]. Studies by Bouten et al. and Bourke

et al. used a reference method, but were limited to laboratory

experiments that may not generalise to accelerometer data

collected under real life conditions [12,13]. None of the studies

as mentioned above systematically evaluated how metric accuracy

varies across magnitudes and frequencies of acceleration. Char-

acterisation of the latter may be important to gain insight into

metric performance under real-life conditions.

The use of gyroscopes in addition to acceleration sensors could

be regarded as the solution for separating the gravitational

component from the acceleration signal [14,15,16]. However,

these devices do not yet meet feasibility requirements for use in

large scale observational research. Raw accelerometry has been

applied in various epidemiological studies since it became

sufficiently feasible in the period 2008–2010. Most of these studies

are not published yet, but already amount to over ten thousand

participants. None of these datasets include gyroscopic data and

therefore require an accelerometer-specific solution.

The main objective of the present study was therefore to

evaluate the ability of different methods (metrics) of processing

acceleration signals to remove the gravitational component of

acceleration by comparison against a reference method under a

range of standardised kinematic conditions. A second objective

was to assess the shared variance between these metrics in human

physical activity data collected during daily life and the impact of

metric selection on the accuracy with which daily energy

expenditure can be estimated.

Methods

Ethics Statement
Ethical approvals were obtained from the Cambridgeshire

research ethics committee, Cambridge (UK) and from the

Regional Ethical Review Board in Umeå (Sweden).

Study Design
The main experiment in this study was done with a robot

and did not involve testing of human participants. Two

additional sets of experiments were performed, the first to test

the degree to which metrics convey similar information when

applied to wrist and hip signals, and the second to assess the

implication of such differences for estimation of daily physical

activity-related energy expenditure.

Robot Experiment
An industrial robot (TX90, Stäubli Tec-Systems GmbH,

Bayreuth, Germany; see Figure 1) was used to rotate accelerom-

eters (GENEA, Unilever Discover, Sharnbrook Bedfordshire, UK)

in the vertical plane following a general minimum-jerk oscillatory

motion (single plane). The motion was applied to establish a

standardized alternating contribution of gravity to the accelerom-

eter output. The robot consists of an articulated arm with six joints

from which the fifth joint counted from the base of the robot was

used in this study. The oscillating motion was continuous (non-

damping) around a single horizontal axis. The trajectory was

programmed using a 7th order polynomial function with

kinematic constraints (Supporting Information S1). A high

order function was needed to reduce the natural vibrations

transmitted between the robot and its own base [17,18]. An

example of the angular position over time for one experimental

condition is given in Figure 2.

The frequency of oscillation, the radius of rotational movement

(shortest distance to centre of rotation), and the angular range of

motion were systematically varied. The range of frequency

conditions was limited by the maximal amount of mass moment

of inertia and torques that could be absorbed by the robot and

supporting frame. For all frequencies ranging from 0.05 Hz to

1.2 Hz, eighteen tri-axial accelerometers were positioned along

the length of a 70 cm bar mounted to the flange of the robot at

10 cm from the centre of rotation. The application of eighteen

accelerometers in parallel allowed for assessment of the relation-

ship between metric output and the radius of movement. To

reduce mass moment of inertia at the higher frequencies of

oscillation (.1.1 Hz) a shorter bar (20 cm) was used, see Figure 1.

The shorter bar provided space for the attachment of only five

accelerometers. The torque can be further reduced by reducing

the range of angular rotation; some experimental conditions were

defined by this constraint. For reference purposes, all eighteen

accelerometers were also tested under static conditions (no robot

movement) at angles 0u and 22.5u. Each experimental condition

was done for three minutes. An overview of all experimental

conditions is shown in Table 1. For monitoring potential

vibrations, a source of experimental error, one additional

accelerometer was attached to the base of joint 5 for all

experimental conditions. The base of joint 5, i.e. the robotic with

its joint 1 up to joint 4, should in theory not move during these

experiments.

Human Experiments
In order to facilitate the interpretation of the robot experiment

in the context of human daily (free-living) physical activity, we

asked 47 men and 50 women (healthy, aged 22–65 yrs) to wear

accelerometers on their wrist and on their hip for seven days

during free-living as previously described [19]. We also re-

analysed wrist acceleration signals obtained during free-living

conditions from 65 healthy women (aged 20–35 yrs) as previously

described [19]. In this latter sample, physical activity-related

energy expenditure (PAEE) was assessed using the doubly labelled

water method in combination with resting energy expenditure

measured by indirect calorimetry [19]. For both human studies,

objectives and procedures were explained in detail to the

participants, after which they provided written and verbal

informed consent.

Accelerometer
The accelerometer comprised a tri-axial STMicroelectronics

accelerometer (LIS3LV02DL) with a dynamic range of 66 g

(1 g = 9.81 m?s22), as described elsewhere [20]. The acceleration

was sampled at 80 Hz and data were stored in g units for offline

analyses. In the robot experiment, the accelerometer was aligned

by two aluminium strips on each side of the bar (insert, Figure 1)
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Figure 1. Experimental setup. A bar (B) holds five accelerometers and rotates around robot joint (A).
doi:10.1371/journal.pone.0061691.g001

Figure 2. Robot joint angle and horizontal acceleration for condition: 1 Hz, amplitude 45u, radius = 0.5 m.
doi:10.1371/journal.pone.0061691.g002
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and covered by duck-tape on top, see Figure 1. The radius

length, i.e. the distance from the axis of rotation to the

accelerometer chip, was assessed by measurement tape to the

closest mm. The position of the accelerometer chip inside the

accelerometer packaging was obtained from the manufacturer. In

the human experiment, the accelerometers were attached to the

wrist with a nylon weave strap and to the hip with an elastic belt.

Participants were instructed to wear the accelerometer on the wrist

continuously for 24 hours per day throughout the whole

observation period and to remove the hip accelerometer during

sleeping hours. The manufacturer calibration of all acceleration

sensors was tested under static conditions (no movement, vector

magnitude = 1 g) and adjusted if necessary.

Metrics
For the robot analyses three metrics for the estimation of

acceleration related to movement were evaluated: (i) the Euclidean

norm (vector magnitude) of the three raw signals minus 1, referred

to as ENMO; (ii) the application of a high-pass frequency filter (4th

order Butterworth filter with v0 = 0.2 Hz) to each raw signal, after

which the Euclidean norm was taken from the three resulting

signals,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

2za2
2za3

2
p

, referred to as HFEN, and; (iii) metric

HFEN plus the Euclidean norm of the three low-pass filtered raw

signals (4th order Butterworth with v0 = 0.2 Hz) minus 1 g,

referred to as HFEN+.

The third metric has not been described previously. The

motivation for metric HFEN+ is as follows: In the absence of

rotational movement the Euclidian norm of the three low-pass

filtered raw signals (LFEN) is equal to 1 g. In the presence of

rotation, however, LFEN may be different to 1 g due to imperfect

separation; there we add this difference (positive or negative) to

HFEN. A low frequency component above 1 g may result from

low-frequency accelerations perpendicular to the direction of

rotation, e.g. the centripetal force when sitting on a swing. A low

frequency component below 1 g could indicate that part of the

gravitational component is still contained in the high-frequency

content, e.g. rotations in the vertical plane as a result of which

gravity is an alternating component in the signal. A further

elaboration on the motivation for metric HFEN+ can be found in

Supporting Information S1.

For some of the metrics described above the output could in

theory be negative. To gain insight into when this happens,

negative values were not corrected for the robot experiment.

However, for the accelerometer data collected in daily human

movement, negative metric output was rounded off to zero before

further analysis.

The filter cut-off frequency of 0.2 Hz for metrics HFEN and

HFEN+ was chosen on the presumption that most of daily

acceleration related to movement for most human body parts

occurs at frequencies higher than 0.2 Hz. n the robot

experiment, the exact absolute value of this filter cut-off

frequency (0.2 Hz) was considered of minor relevance as this

experiment intends to investigate frequency of rotation and

frequency of filtering on a relative scale. For the human part of

our study, both a cut-off frequency of 0.2 Hz and 0.5 Hz were

evaluated to assess the effect of threshold selection in relation to

human movement. Additionally, the human part of our study

was extended with the application of a band-pass frequency

filter version of HFEN (4th order Butterworth filter with

v0 = 0.2–15 Hz), referred to as BFEN, to assess the effect of

high-frequency noise removal.

Finally, the Euclidean norm of the three raw acceleration

signals (EN) without subtraction of gravity was added to the

evaluations in human data to assess the relevance of attempting

to remove the gravitational component from an applied

perspective.

To sum up, metrics evaluated in this investigation include

Euclidian Norm (EN), Euclidian Norm Minus One (ENMO),

Bandpass-Filtered followed by Euclidian Norm (BFEN), Highpass-

Filtered followed by Euclidian Norm (HFEN), and Highpass-

Filtered followed by Euclidian Norm Plus difference between 1 g

and low-pass-filtered component (HFEN+).

Analysis
Reference values for robot acceleration were calculated based

on forward kinematics of the robot arm using the radius length (r)

of each accelerometer relative to the axis of rotation and the robot

arm’s angle h, angular velocity _hh, and angular acceleration €hh over

time. Although the robot recorded the joint angle at 250 Hz, this

information was not used due to known issues of numerical noise

in the derivation of angular velocity and angular acceleration.

Instead, the angular velocity and angular acceleration were

derived analytically by taking the first and second derivative of

the input command equations describing the angular motion as

used for controlling the robot. Next, equation I was used to

calculate reference acceleration aref . Here, r:€hh represents the

tangential acceleration and r: _hh
2

represents the centripetal accel-

eration, which when taken together as the vector magnitude add

up to the overall acceleration of the accelerometer.

aref ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r:€hh
� �2

z r: _hh
2

� �2
r

ð1Þ

Table 1. Experimental conditions of the robot setup.

Frequencies Angle range*
Number of accelerometers (range in position relative to axis of
rotation)

0 Hz 0u and 22.5u 18 (0.13–0.78 m)

0.05 to 0.55 Hz (steps of 0.05) 0–90u 18 (0.13–0.78 m)

0.60, 0.70, and 0.80 Hz 0–45u 18 (0.13–0.78 m)

0.90, 1.00, and 1.10 Hz 0–20u 18 (0.13–0.78 m)

1.20 and 1.30 Hz 0–45u 5 (0.13–0.29 m)

1.4 to 2.6 (steps of 0.1), 2.8, 3.0, 3.2, 3.6 and 4 Hz 0–20u 5 (0.13–0.29 m)

[*for 0u the bar is in horizontal position and for 90u the bar is pointing upwards relative to the axis of rotation].
doi:10.1371/journal.pone.0061691.t001
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The average metric output and reference values were calculated

over an integer number of oscillating periods in the middle two

minutes of each experimental condition (3 minutes), after which

absolute and relative measurement errors were expressed. Relative

errors were calculated as (Estimated – Reference)/Reference.

For reference purposes, all analyses were repeated based on

simulated acceleration signals using the equations as in equation II

and equation III. Here, a1 refers to the acceleration signal

perpendicular to the length of the bar which captures the

tangential acceleration combined with the effect of the gravita-

tional component and a2 refers to the acceleration signal in

parallel to the length of the bar which captures the centripetal

acceleration combined with the gravitational component. The

centre of rotation is assumed to not change position.

a1~r€hh{g sin (h) ð2Þ

a2~r _hh
2
{g cos (h) ð3Þ

Metrics ENMO, HFEN, HFEN+, BFEN and EN were applied

to the raw data collected on the wrist and hip (7 days) after which

metric output was averaged over consecutive non-overlapping 1

minute time windows. Further, metrics ENMO, HFEN, HFEN+,

BFEN and EN were applied to the raw data collected in the

human participants where PAEE reference data was available.

Here, metric output was averaged per person. A detailed

description of the detection of monitor non-wear periods and

signal clipping are provided in Supporting Information S1.

Fifteen minute blocks that were classified as non-wear or clipping

were replaced by the average of blocks at the same time periods of

the day (from the other days in each individual record). If no data

was collected for a certain part of the day then it was imputed by

1 g for metric EN and by 0 g for all other metrics. All signal

processing and statistics were performed in R (http://cran.r-

project.org).

Statistics
Means and (relative) differences were computed for the data

resulting from the robot experiment. In order to evaluate whether

differences between metrics resulted in different measures of free-

living human movement, repeated measures ANOVA was used to

assess the within- and between-individual explained variance

between metrics, stratified by wrist and hip placement. Analyses

were performed for all data points excluding non-wear time

segments and repeated including imputed data for non-wear time

segments. The most important difference is that this would either

include or exclude hip accelerometer values for sleeping hours.

Results were very similar, and we only report results excluding

non-wear time for these analyses. Average and standard deviation

of metric output are reported based on imputed data to facilitate

the comparison between this study population with future study

populations.

For the PAEE analyses, participant inclusion criteria were

identical to our previous work [19]: more than 50% detected

monitor wear time and at least one day of valid data. Linear

regression analysis was used to assess how much of the variation in

daily PAEE, expressed in MJ/day, can be explained by each

metric in combination with body weight. Additionally, we tested

the additive value of metrics by adding combinations of metrics to

the regression model.

Results

Robot conditions and corresponding reference acceleration are

presented in Figure 3. The accelerometer attached to the base of

joint 5, which in theory should not move, recorded a magnitude of

acceleration (vibration) beyond the sensor’s noise level (SD:

2.6 mg = 0.0026 g) for most experimental conditions. On average

the acceleration of the robot joint was 4% to 5% of the average

acceleration of the accelerometers on the bar attached to the

flange, see Table 2. The highest value of 76% for ENMO was the

result of computed acceleration being close to zero (25.13 mg).

The metric output for each accelerometer attached to the bar

was compared against the reference acceleration. Metric HFEN+
was more accurate compared to metric HFEN with an average

difference in absolute measurement error of respectively, 90 mg

and 109 mg. Measurement error was lowest for metric HFEN+ in

all but one experimental conditions based on oscillation frequen-

cies higher than 0.2 Hz. On the contrary, metric ENMO

outperformed the other metrics for frequencies of oscillation

below 0.2 Hz, see Table 3. For all metrics, except ENMO,

relative and absolute measurement error was lower for higher

radius settings, see Table 3.

Replication of the analyses with simulated acceleration signals

confirmed the empirical findings as described above. A detailed

overview of the results based on simulated acceleration signals are

included in Supporting Information S1. Data and R-scripts

related to the robot experiments are available on our website:

http://www.mrc-epid.cam.ac.uk/research/resources.

When metrics were applied to human wrist and hip acceleration

signals collected during free-living conditions, repeated measures

Table 2. Average (mg) and relative (%) acceleration of the
base of joint 5 (should ideally be zero) by experimental
condition and metric.

Metrics

Frequency (Hz) Angle (6) ENMO HFEN HFEN+

0.05–0.2 0–90 23.9 13.4 9.4

76.0% 7.1% 6.3%

0.25–0.55 0–90 24.9 14.2 9.2

212.3% 2.2% 2.4%

0.6–0.8 0–45 22.9 18.9 15.7

28.1% 3.7% 3.7%

0.9–1.1 0–20 0.9 21.5 22.0

6.7% 5.8% 6.4%

1.2–1.3 0–45 1.5 9.3 10.8

2.0% 1.4% 1.9%

1.4–2.0 0–20 0.1 35.9 35.2

0.4% 7.8% 7.9%

2.1–3.0 0–20 1.4 17.1 18.3

0.7% 1.9% 2.1%

3.2–4.0 0–20 2.3 74.8 73.5

0.2% 4.3% 4.3%

Average 0.7 25.6 24.3

8.2% 4.3% 4.4%

Relative values are expressed as percentage of average metric output for all
accelerometers attached to the bar as fixed to the flange.
doi:10.1371/journal.pone.0061691.t002
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ANOVA showed that the shared within- and between-individual

variances (r-squared) varied between metric pairs and body

locations, see Table 4 and Table 5. Lowest shared variance

was found for metric-pairs involving metric EN; for example, this

metric shared 54 and 11% of the within- and between–individual

variance, respectively, with metric BFEN for hip acceleration, see

Table 5. Highest shared variances were observed between the

filter-based metrics. For example, metrics HFEN and BFEN as

well as versions of HFEN with different cut-off frequencies were all

highly correlated both within and between individuals and for

both hip and wrist data (r-square values .0.96), see Table 4 and
5. A difference between wrist and hip worth noting was the shared

variance between ENMO and the filter-based metrics HFEN,

BFEN and HFEN+. Here, the shared variance within individuals

was highest for the hip (0.92 vs. 0.87 on average), while the shared

variance between individuals was highest for the wrist (0.87 vs.

0.62 on average), see Table 4 and Table 5.

For the modelling of PAEE, HFEN+ outperformed metrics

ENMO, HFEN, BFEN and EN, explaining 36% of the

variance in daily PAEE, see Table 6. When pairs of metrics

were added to the regression model, no significant additive

value was found (p.0.05 corresponding with increases in model

r2 of less than 0.01).

Discussion

The present study demonstrates that the choice of signal

processing technique for summarising accelerometer data can

Figure 3. Robot conditions and corresponding reference acceleration (mg), where A = amplitude of angle.
doi:10.1371/journal.pone.0061691.g003
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have a substantial impact on the accuracy with which acceleration

related to movement is measured. Subsequently, the choice of

signal processing technique impacts on the summary measures of

human acceleration data and criterion-related validity for

estimating daily PAEE. In the past, physical activity researchers

did not have the opportunity to select a metric; the metric decision

was made by the manufacturer of the accelerometer

[21,22,23,24,25].

The first and main part of this paper evaluated metrics under a

range of standardised kinematic conditions in order to gain insight

into how the accuracy of metric output relates to the kinematics of

movement. No single metric outperformed all other metrics for all

experimental conditions. Metric HFEN+ resulted in less measure-

ment error compared to metric HFEN. This result may indicate

that HFEN+ manages to retrieve some of the non-gravitational

acceleration in the lower frequency range and/or remove

gravitational acceleration from the frequency range above the

filter threshold in contrast to metric HFEN. Metric HFEN+
outperformed metrics ENMO and HFEN for the experimental

conditions based on oscillating frequencies higher than the cut-off

frequency as used by its frequency filter (0.2 Hz), while the ENMO

metric outperformed metrics HFEN and HFEN+ for experimental

conditions based on oscillating frequencies below this cut-off

frequency. This difference between HFEN, HFEN+ and ENMO

may partly be explained by the fact that metrics HFEN and

HFEN+ aim to remove the gravitational component by making

assumptions on its representation in the frequency content of an

acceleration signal, while ENMO aims to remove the gravitational

component based on assumptions with regard to its magnitude.

Metric HFEN+ could be seen as a hybrid version of the two

approaches as it relies on both an assumption about the

representation of gravity in the frequency domain and an

assumption about the magnitude of gravity. The mutual assump-

tion by metrics ENMO and HFEN+ that gravity is measured as

1 g would not hold true if acceleration sensors are not accurately

calibrated and would therefore result in biased metric output.

Further, metric ENMO has one additional limitation: For a signal

with an offset of 1 g (e.g. containing the gravitational component)

and an amplitude of less than 1, taking the square will increase the

amplitude. On the contrary, if the square is taken from a signal

with no offset (e.g. no gravity) and the amplitude is less than one,

Table 3. Evaluation of metrics using empirically recorded
acceleration signals.

Freq.
(Hz)

Angle

(6)
Radius
(m)

Acc.
(mg) ENMO HFEN HFEN+

0* 0 0.1–0.3 0 29 4 25

0* 0 0.3–0.6 0 0 6 6

0* 0 0.6–0.8 0 23 9 6

0* 22.5 0.1–0.3 0 24 3 0

0* 22.5 0.3–0.6 0 211 5 24

0* 22.5 0.6–0.8 0 211 7 24

0.05–0.2 0–90 0.1–0.3 14 216
(2173)

167 (1427) 132 (1184)

0.05–0.2 0–90 0.3–0.6 31 238 (2162) 155 (619) 112 (447)

0.05–0.2 0–90 0.6–0.8 48 255 (2144) 152 (442) 107 (343)

0.25–0.55 0–90 0.1–0.3 129 2122 (298) 435 (498) 212 (272)

0.25–0.55 0–90 0.3–0.6 281 2251 (293) 364 (194) 89 (76)

0.25–0.55 0–90 0.6–0.8 434 2354 (286) 308 (108) 23 (24)

0.6–0.8 0–45 0.1–0.3 161 2153 (297) 206 (149) 141 (102)

0.6–0.8 0–45 0.3–0.6 351 2328 (295) 152 (49) 57 (21)

0.6–0.8 0–45 0.6–0.8 541 2465 (287) 118 (24) 9 (3)

0.9–1.1 0–20 0.1–0.3 134 2128 (299) 93 (78) 83 (67)

0.9–1.1 0–20 0.3–0.6 293 2292
(2100)

73 (27) 44 (17)

0.9–1.1 0–20 0.6–0.8 451 2419 (293) 68 (16) 35 (8)

1.2–1.3 0–45 0.1–0.3 508 2432 (287) 160 (35) 63 (14)

1.4–2.0 0–20 0.1–0.3 390 2364 (295) 72 (22) 54 (16)

2.1–3.0 0–20 0.1–0.3 832 2618 (279) 47 (7) 22 (3)

3.2–4.0 0–20 0.1–0.3 1700 2779 (250) 45 (3) 14 (1)

Values are average absolute differences in mg (average relative error % in
brackets 1) between each metric output and the actual acceleration related to
movement for various sections of the experiment.
[Acc, average reference acceleration; *zero movement condition; 1 Relative
measurement error was calculated per experimental condition and then
averaged across each section of the experiment].
doi:10.1371/journal.pone.0061691.t003

Table 4. Explained variance (r2) within (above diagonal) and between (below diagonal) individual wrist accelerometer data for all
combinations of data processing metrics.

v0 (Hz) EN ENMO BFEN HFEN HFEN HFEN+ HFEN+

v0 (Hz) 2 2 0.2–15 0.2 0.5 0.2 0.5

EN 2 2 0.91 0.61 0.62 0.71 0.75 0.80

ENMO 2 0.92 2 0.80 0.81 0.89 0.91 0.95

BFEN 0.2–15 0.58 0.80 2 0.99 0.96 0.96 0.93

HFEN 0.2 0.60 0.82 1.00 2 0.98 0.97 0.94

HFEN 0.5 0.64 0.88 0.98 0.99 2 0.98 0.98

HFEN+ 0.2 0.74 0.91 0.97 0.97 0.98 2 0.99

HFEN+ 0.5 0.77 0.95 0.94 0.95 0.98 0.99 2

Mean (sd) acceleration [mg] 1016
(9)

32
(10)

114
(25)

118
(26)

93
(22)

110
(25)

94
(23)

[v0: cut-off for frequency filter].
doi:10.1371/journal.pone.0061691.t004
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then taking the square will decrease the amplitude. Therefore,

taking the square of three orthogonal signals like in metric ENMO

will result in a stronger contribution of vertical accelerations that

alternate around 1 g to the resulting summary measure compared

with horizontal accelerations that alternated around 0 g.

The reference acceleration as used for the evaluation of the

metrics may not have been exactly equal to the true acceleration

that the accelerometers were exposed to; imprecision in acceler-

ometer positioning and system vibrations are possible sources of

error. In theory, the acceleration of a rotating and non-translating

object is proportional to the distance from its centre of rotation,

the radius length. A discrepancy of 5 mm (plausible) in the

assessment of accelerometer position would represent 0.6% for the

accelerometer farthest away and 3.7% for the accelerometer

closest to the axis of rotation. This would translate into a similar

degree of error in the calculated reference acceleration (0.6–3.7%).

Secondly, vibrations of the whole robot during operation may

have resulted in the true acceleration exposure being higher than

what we calculated it to be. The accelerometer attached to the

base of joint 5 did record acceleration beyond the sensor’s noise

level likely resulting from the movement of the robot system itself.

We believe that robot movement was caused by the supporting

frame that vibrated towards the extreme experimental conditions;

the robot itself has a high stiffness. The accelerometers attached to

the bar mounted on the flange have been exposed to these

vibrations as well as those intended by the experimental design.

The replication of the robot analyses with simulated acceleration

signals confirmed the empirical findings, indicating that environ-

mental vibrations had no significant impact.

As for the analyses conducted on data collected during human

daily life, the shared within-individual variances were all above

80% between metrics which make some attempt at removing the

gravitational component, indicating the pattern within an

individual is picked up quite similarly between those metrics.

The between-individual shared variances, which is a measure of

the metrics’ ability to rank individuals similarly, showed some

differences between hip and wrist positions, most notably lower

similarity between ENMO and frequency-filtered metrics for hip

than wrist. Whether this reflects differences in monitoring

protocols (24-hr vs. non-sleep time), differences in signal to error

ratio and/or differences in frequency characteristics of the

gravitational component as measured by triaxial accelerometry

at these two positions is difficult to conclude from our data.

However, it should be noted that shared variances only indicate to

what extent metrics are similar in describing variance on a relative

level but not what the shared variance represents; it will also

include any correlated measurement error and should therefore be

interpreted with caution.

Physical activity-related energy expenditure and body acceler-

ation are only distally related to each other. As a consequence,

differences in explained variance in daily PAEE does not serve as

direct evidence for a metric’s ability to remove the gravitational

component.

HFEN+ outperformed HFEN when using daily PAEE as a

reference, which confirms the findings from the higher frequency

conditions in the robot experiment. Further, ENMO turned out to

be a good alternative for HFEN+. The correspondence between

the strong performance of ENMO in explaining variance in PAEE

in the current analysis with the strong performance of ENMO in

the lower frequency range of the robot experiment might indicate

that wrist acceleration in daily life is dominated by translational

accelerations and/or accelerations resulting from low frequency

rotations. A second explanation for the strong performance of

metric ENMO may be its higher sensitivity to vertical accelera-

tions (vertical acceleration is amplified) as explained above. The

latter would indicate that vertical wrist accelerations are the

Table 5. Explained variance (r2) within (above diagonal) and between (below diagonal) individual hip accelerometer data for all
combinations of data processing metrics.

v0 (Hz) EN ENMO BFEN HFEN HFEN HFEN+ HFEN+

v0 (Hz) 2 2 0.2–15 0.2 0.5 0.2 0.5

EN 2 2 0.77 0.54 0.55 0.58 0.61 0.63

ENMO 2 0.75 2 0.89 0.90 0.92 0.94 0.95

BFEN 0.2–15 0.11 0.46 2 1.00 0.99 0.99 0.98

HFEN 0.2 0.10 0.46 1.00 2 0.99 0.99 0.98

HFEN 0.5 0.11 0.48 0.98 0.98 2 0.97 0.99

HFEN+ 0.2 0.52 0.85 0.78 0.78 0.75 2 0.99

HFEN+ 0.5 0.54 0.89 0.76 0.75 0.76 0.99 2

Mean (sd) acceleration [mg] 1007
(15)

18
(16)

46
(15)

48
(15)

42
(14)

50
(21)

45
(20)

[v0: cut-off for frequency filter].
doi:10.1371/journal.pone.0061691.t005

Table 6. Overview of regression models for predicting PAEE
(MJ day21) based on N = 63 women.

Model input v0 (Hz) SE R2 Equation

EN 2 0.99 0.26* 256.146 + BW 60.023 + EN 657.093

ENMO 2 0.94 0.34** 20.172 + BW 6 0.025 + ENMO 6
0.057

BFEN 0.2–15 0.97 0.30** 20.913 + BW 60.021 + BFEN 60.023

HFEN 0.2 0.97 0.30** 20.905 + BW 60.021 + HFEN 60.023

HFEN 0.5 0.95 0.32** 20.769 + BW 60.022 + HFEN 60.027

HFEN+ 0.2 0.93 0.36** 21.114 + BW 6 0.023 + HFEN+ 6
0.025

HFEN+ 0.5 0.93 0.36** 20.805 +BW60.023 + HFEN+60.026

[SE: Residual standard error;
**: p,.001;
*: p,.01; v0: cut-off for frequency filter; BW = body weight (kg)].
doi:10.1371/journal.pone.0061691.t006
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stronger determinant of daily PAEE compared with accelerations

in the horizontal plane. A third and final explanation could be that

ENMO is more accurate at measuring translational acceleration

compared with some of the other metrics, as the signal is never

deformed by frequency filtering in ENMO.

The subtraction of one in ENMO has a constant effect on all the

metric output and would in theory be perfectly correlated with

EN, which should therefore correlate the same with PAEE.

However, there is one additional difference between the two

metrics, namely the replacement of negative values by zero in

ENMO, which explains why metric ENMO outperforms metric

EN for the prediction of PAEE. The truncation of negative values

to zero could be hypothesized to be an effective correction

mechanism for errors in the subtraction of the gravitational

component.

Filter settings for HFEN and HFEN+ were briefly evaluated

indicating that a 0.5 Hz filter cut-off frequency may perform

slightly better than a 0.2 Hz filter cut-off frequency for predicting

PAEE. A more thorough optimization of filter settings could lead

to further improvement but also introduces the risk of over-fitting

filter configurations to one study population, which may not

generalise to others.

One previous study investigated the need for removing the

gravitational component using metabolic energy expenditure as

reference method and concluded that attempting to remove the

gravitational component is not worth the effort [13]. In that

particular study, body segment position and orientation over time

were derived from a 2D optical system and used to simulate

acceleration sensor output [13]. The validity of these simulations

was only assessed for the lower back position and not for the five

other simulated sensor positions, complicating the interpretation of

study results. Our own results indicate that attempting to remove

the gravitational component is worth the effort for estimating daily

PAEE in humans based on wrist accelerometry as ENMO, HFEN

and HFEN+ clearly outperformed metric EN.

Additional research is needed to explore the potential of

combining metrics in a fashion that the best metric is chosen

depending on the kinematic conditions. It should be noted that all

PAEE-related results apply to the wrist placement and cannot be

generalized to other body locations. Future research is therefore

also needed to explore the importance of metric selection for other

body locations, in particular commonly used positions at the lower

back and the hip.

Conclusions
In conclusion, none of the metrics as evaluated systematically

outperformed all other metrics across a wide range of standardised

kinematic conditions. However, choice of metric explains different

degrees of variance in daily physical activity.
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