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Abstract

Identification of optimal genetic manipulation strategies for redirecting substrate uptake towards a desired product is a
challenging task owing to the complexity of metabolic networks, esp. in terms of large number of routes leading to the
desired product. Algorithms that can exploit the whole range of optimal and suboptimal routes for product formation while
respecting the biological objective of the cell are therefore much needed. Towards addressing this need, we here introduce
the notion of structural flux, which is derived from the enumeration of all pathways in the metabolic network in question
and accounts for the contribution towards a given biological objective function. We show that the theoretically estimated
structural fluxes are good predictors of experimentally measured intra-cellular fluxes in two model organisms, namely,
Escherichia coli and Saccharomyces cerevisiae. For a small number of fluxes for which the predictions were poor, the
corresponding enzyme-coding transcripts were also found to be distinctly regulated, showing the ability of structural fluxes
in capturing the underlying regulatory principles. Exploiting the observed correspondence between in vivo fluxes and
structural fluxes, we propose an in silico metabolic engineering approach, iStruF, which enables the identification of gene
deletion strategies that couple the cellular biological objective with the product flux while considering optimal as well as
sub-optimal routes and their efficiency.
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Introduction

Microorganisms that produce a desirable product, either

naturally, or because they have been engineered through insertion

of heterologous pathways, often have low yields and productivities.

Only after the introduction of appropriate genetic modifications,

production strains may become available that can meet the

demands of economic production [1,2]. Availability of genome-

wide information on cellular metabolic networks has opened the

possibility of in silico analysis for identifying the required genetic

engineering strategies towards increased productivity, an approach

often termed ‘in silico metabolic engineering’. However, given the

complexity of metabolic networks in terms of their structure and

regulation, identification of optimal strategies for redirecting fluxes

towards desired products is a challenging task.

Several solutions to the in silico metabolic engineering problem

have been proposed in recent years. The OptKnock algorithm [3]

represents one of the first model-based frameworks for suggesting

gene knockouts leading to the overproduction of a desired

metabolite. By using an elegant bi-level optimization strategy,

OptKnock searches for an optimal set of gene (reaction) deletions

that maximize the flux towards a desired product (Design

Objective), while the internal flux distribution is still operated

such that the growth (or another linear Biological Objective) is

optimized, which in turn is simulated by using Flux Balance

Analysis (FBA). Algorithms such as OptGene [4] [5] further

expand this approach and allow for the use of relevant non-linear

design and/or biological objective functions, such as MoMA [6].

In essence, the basic idea behind these algorithms is to couple the

desired design objective function with the biological objective

function inherent to the system. Practical relevance of the

algorithms based on this idea is becoming apparent through

experimental verification of the predictions, including overpro-

duction of lycopene [7], vanillin [8], and sesquiterpene [9]).

One of the key requirements for successful metabolic engineer-

ing target identification is the ability to predict biologically

meaningful flux distributions following genetic perturbations such

as gene knockouts. In OptKnock/OptGene, this requirement is

explicit in terms of the biological objective function included in the

optimization problem. Current approaches typically assume that

microbes have evolved for achieving a flux distribution that leads

to maximum growth (or another flux-based objective). The

biological feasibility of a solution thus depends on the validity of

the assumption that the formulated objective function correctly

represents the system. Although the assumption of optimality for a

wild-type microorganism is justifiable, it may not be valid for

mutants [6,10]. Therefore, it is often observed that the engineered
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cells do not function according to the predicted optimal pathway.

In such cases, either an alternate optimal solution may be

biologically more meaningful than the predicted distribution, or

several of the available routes, including optimal & sub-optimal,

are simultaneously utilized in vivo. Additionally, the presence of

futile cycles can cause certain fluxes to have an infinite range of

variation [11], being hence difficult to estimate.

Linear programming based methods can be used to tackle some

of the above-mentioned limitations, for example, by using flux-

cone sampling methods [12] or by calculating the lower limit on

the design objective function [4] [13]. Another attractive approach

to this end is the use of pathway analysis methods, such as

elementary modes [14]. Pathway analysis has the advantage of

identifying all pathways inherent to a metabolic network and thus

determining alternate flux distributions with equivalent yields. The

availability of methods that tackle the in silico metabolic

engineering problem using pathway analysis is limited to few.

Trinh and co-workers [15] proposed sequential deletion of

reactions to enforce a desired elementary mode, while Melzer

et al. [16] computed targets by correlating the desired flux with

the flux through the intracellular reactions of the elementary

modes matrix. Boghigian et al. [17] used a genetic algorithm to

find gene deletions under the assumption of minimization of Gibbs

energy of the macroscopic pathways. Hädicke and Klamt [18] and

Bohl et al. [19] proposed an interesting approach, termed

‘‘CASOP’’, to enhance productivity while producing biomass by

sequential deletion or over-expression of reactions. Additionally,

Hädicke and Klamt [20] proposed a gene deletion strategy based

on minimal cut sets to identify a minimal set of knockouts disabling

the operation of a specified set of target elementary modes, while

keeping a set of desired modes.

In this study, we aim at combining the advantages of both

objective function-centered and pathway enumeration-centered

approaches. To this end, we first address the question of biological

relevance of sub-optimal routes and flux distributions predicted by

computational methods. We introduce the notion of structural

fluxes, which account for a biological objective function and are

derived from the enumeration of all pathways in a given metabolic

network. Structural fluxes are inspired from the concept of control

effective flux (CEF) that uses efficiency and elementary modes to

understand changes in transcriptional regulation [21,22] and has

been modified to estimate flux changes [23] for growth on

different substrates.

We show that structural fluxes are good predictors of

experimentally measured fluxes in Escherichia coli and Saccharomyces

cerevisiae. Building upon the ability of structural fluxes to predict

genetically perturbed biological networks, we propose an in silico

metabolic engineering algorithm, iStruF, where the objective is to

identify deletion targets that increase the structural flux of a

desired product. iStruF leads to solutions that couple biological

objectives, such as growth, with product formation while

considering optimal as well as sub-optimal routes and their

efficiency. As a biotechnologically relevant case study, we present

the results of iStruF for improving production of ethanol and

succinate in baker’s yeast. Finally, we discuss the use of Generating

Vectors (GVs) [24] instead of elementary modes (EMs) for the

calculation of structural fluxes towards enabling the application of

iStruF to large-scale metabolic networks.

Methods

An overview of the proposed in silico metabolic engineering

procedure is given in Fig. 1. It involves computation of elementary

modes (for small-scale networks, yellow box) or GVs (for larger

models, red boxes in Fig. 1), and, for this last case, a methodology

to deal with reversible reactions, followed by the computation of

the structural fluxes. The metabolic engineering algorithm (orange

box) involves evaluation of different knockout mutants to find the

best one (the one that maximizes the structural flux of the desired

product).

Control Effective Fluxes
In the original formulation of CEF [21], the efficiency e of each

elementary mode i is defined as the ratio of the EM’s output e (the

cellular objective, in many cases growth m and/or ATP

production) to the investment required to establish the EM (the

sum of the absolute flux values in the EM) for a specific carbon

source:

Figure 1. Procedure for finding targets of reaction deletions
based on structural fluxes. The structural fluxes are computed from
elementary modes (EMs, yellow) or from generating vectors (GVs, red)
to facilitate larger-scale application. The yellow and red boxes are
performed once to compute a biologically relevant set of structural
fluxes for the wild-type (WT) network. The orange box presents the
iterative computation of the structural fluxes for mutants with one or
multiple reaction knockouts through re-computing the StruFs from the
mode efficiencies that do not contain the deleted reaction(s) using Eqs.
(3–5) without re-computing the EMs or GVs.
doi:10.1371/journal.pone.0061648.g001

Flux Predictions in Mutants
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The control effective flux of each reaction k is then obtained by

the weighted average of the product of mode-specific efficiencies

and reaction-specific fluxes over the sum of all mode efficiencies:

CEFk~
1
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where Y max
X=S denotes the maximum yield obtained for the specified

cellular objective (biomass (X) production and/or ATP generation

for cellular maintenance on substrate S). In order to find a measure

that can predict fluxes across mutants, we propose three

modifications to the definition of CEFs and thereby introduce

the concept of Structural Fluxes.

Structural Fluxes
Two flavors of structural flux definitions are introduced,

namely, SF and StruF. SF is introduced in the context of

application on a single given network, while StruF is introduced

for cases where comparison across different networks (e.g. wild-

type versus mutant) is required.

Structural fluxes and reaction reversibilities. In meta-

bolic systems, the cellular network of reactions, together with

constraints on the reversibility of enzymes, determine the space of

all possible steady-state phenotypes. In actuality, the cell does not

invoke the large majority of those in a given condition. For

example, for growth on a given substrate, several of the reversible

reactions across the network are usually constrained to either

backward or forward directions. We use this fact in order to derive

heuristics for restricting reaction directionalities. Such restrictions,

together with splitting of bi-directional reactions into two

unidirectional reactions allowed us to obtain a pointed cone and

thereby to avoid re-computation of GVs following each network

perturbation (gene deletions).

In the concept of structural fluxes, we first split up the fluxes of

reversible reactions into forward (f) and backward (b) directions as

a way to consider biologically relevant directionalities for growth

on a given substrate:

Figure 2. Metabolic map of wild-type S. cerevisiae. Central carbon metabolism (orange), amino acids metabolism (blue), and extracellular
metabolites (red). The graphs show the predicted reversibility scores using generating vectors for four out of 26 potentially reversible reactions for
growth on glucose, glycerol, and acetate. A reversibility score of 0 indicates that the reaction is irreversible and 1 that the reaction may be active in
both directions with equal flux on a particular substrate. The red line indicates the level of 0.5, below which all reaction directionalities are correctly
predicted. The green line indicates the threshold of 0.05, above which a reversible reaction is split up into a forward and backward reaction in the
approach based on generating vectors.
doi:10.1371/journal.pone.0061648.g002

Flux Predictions in Mutants
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Our hypothesis is that the greatest SF of a particular reaction

(either forward or backward) matches the directionality in vivo.

Hereto, we define the reversibility score rs of a reaction as the

smallest divided by the greatest SF:

rsk~
min SF

f
k ,SF b

k

max SF
f
k ,SF b

k

ð4Þ

A reversibility score of 0 indicates that the reaction is irreversible

and a score of 1 indicates that the reaction may be active in both

directions. We assume that the directionality of a particular

reaction may flip in mutants as compared with wild-type for a high

reversibility score; otherwise we assume the directionality to be

equal for mutant and wild-type (irreversible). Based on the

reversibility score (Eq. 4), we impose additional restrictions on

the reaction directionalities (on top of the directionalities reported

in the models): split up the reaction above a threshold of 0.05;

otherwise restrict the reaction to either forward or backward

direction.

Normalization for StruFs. Although elementary modes are

normalized to the substrate uptake rate, control effective fluxes are

not. SF and CEF values tend to be larger for smaller networks. If

the CEFs as such would be used to find deletion targets for the

production of a target metabolite, the algorithm would tend to

minimize network size, besides maximizing product formation. It

would thereby favor deletion of reactions that are present in many

elementary modes and lead to a biased set of deletion targets. We

show the importance of normalization in a case study on succinate

production using yeast in Table S3 of Supplement S4. Hence, the

absolute CEF values are not comparable across networks [22] and

an appropriate normalization is necessary. When benchmarked

against the flux dataset from Ishii et al. [25], the best normaliza-

tion to predict the fluxes in E. coli was found to be the maintenance

reaction (i.e. ATP requirement for maintenance). However, this

normalization is not suitable for the identification of metabolic

engineering targets, as the algorithm would tend to minimize the

use of the maintenance reaction in the mutant EMs when

maximizing the product formation. We chose the glucose

(substrate) uptake rate as the normalization factor for predicting

fluxes and in metabolic engineering applications:

StruFk~
SFk

SFGLCt

ð5Þ

Zhao and Kurata [26] also introduced a methodology that relies

on modifications of control effective fluxes, though the application

to multiple knockouts is not apparent, as these predicted fluxes

cannot be compared across networks without appropriate

normalization.

Datasets and Model Alignment
Metabolic networks of two different species are used in this

work, a model of E. coli central carbon metabolism (Supplement

S1) and another of S. cerevisiae central carbon and amino acids

metabolism [22].

To compare the measured and predicted reaction directional-

ities, we selected a dataset that represents growth on different

substrates as the sole carbon sources for S. cerevisiae [27], since

directionalities of some reactions flip depending on the used

substrate, e.g. from glycolysis to gluconeogenesis.

With respect to the flux data for gene deletion mutants, Blank

et al. [28] represents the largest such dataset for yeast, covering 36

single gene deletions plus the reference strain, grown on glucose in

batch fermentations. In case of E. coli, we use the data from Ishii

et al. [25] that reports flux measurements for 24 single gene

deletions and the wild-type during growth on glucose in

continuous cultures at a dilution rate of 0.2 h21. For both datasets,

we only considered data for a subset of gene knockout mutants,

only corresponding to genes for which no isozymes exist. This

filtering is necessary as the individual contributions by each of the

isozymes are not distinguishable from the experimental data, as

well as in the current computational models.

The models used by Blank et al. [28] and Ishii et al. [25] for

in vivo flux estimations are much smaller and simplified versions of

the ones that we used for StruF calculations. Differences are due to

compartments, isozymes and lumped reactions. Details on the

procedure used for the alignment of reactions between the dataset

models and StruF models are given in Tables S1 and S2 in

Supplement S2. Overall, it was possible to align 32 reactions in the

Figure 3. Biological objectives. Average Pearson correlation
coefficient of the predicted structural fluxes versus measured 13C fluxes
for different degrees of importance of biomass and ATP in the
objective. A. for E. coli mutants B. for S. cerevisiae mutants.
doi:10.1371/journal.pone.0061648.g003

Flux Predictions in Mutants
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E. coli model and 29 in the S. cerevisiae model. Alignment of the

gene-reaction relations is also given in Supplement S2.

Implementation
All calculations were performed using Matlab 7.1 (Mathworks

Inc.). GVs were computed using METATOOL [29] and the EMs

using efmtool [30]. The ROBPCA function from the Matlab

toolbox LIBRA [31] was used to classify outliers in gene

expression pattern. Matlab implementation of iStruF and struc-

tural flux calculation is available upon request.

Results

Structural Fluxes
In this section, we compare the calculated structural fluxes with

the experimental data from in vivo 13C labeling experiments for S.

cerevisiae and E. coli: both with respect to reversibility of reactions

for growth on different substrates, and with respect to the

measured fluxes across different mutants.

SFs and reaction reversibilities. We evaluate reaction

directions in the central carbon metabolism of S. cerevisiae under

three different conditions: growth on glucose, glycerol, or acetate

as the sole carbon sources. Under these conditions, the net

directionality of some of the fluxes varies. For instance, growth on

glucose involves a net flux through the glycolysis from DHAP to

PEP, whereas growth on acetate involves the reverse (net flux

through the gluconeogenesis). As the same enzymes are used in all

cases, the favored flux directions estimated based on the structural

flux reversibility scores should also change.

We observed that the direction given by the greatest structural

flux when the reversibility score is smaller than 0.5 matches well

with the measured reaction directionality for growth on glucose

(100% match), glycerol (90% match), and acetate (100% match) as

sole carbon sources. SF thus correctly captures the experimental

observations on the reaction directionalities. Figure 2 shows the

reversibility scores for reactions in the yeast model that display

large changes in the score across different conditions. The net flux

for most reactions, as predicted by their structural flux values, were

in accordance with the measured data of Zhang et al. [27]. With

respect to growth on glucose, only eight reactions, out of 26

potentially reversible reactions, can carry a net flux in both

directions; moreover, for four reactions a very small flux can exist.

Figure 4. Structural fluxes based on elementary modes. A.–B. StruFs compared with FBA for the E. coli and S. cerevisiae mutants, respectively.
The asterix * indicates a significant correlation between predictions and measurements. C.–D. StruFs across mutants. Right axis (+): Average number
of measured flux changes across all mutants greater than cut-off (green); Left axis (o): Average true match rate TMG (Eq. 6). The predictions that are
significant compared with random are indicated with open symbols (o), the non significant predictions with closed symbols (N).
doi:10.1371/journal.pone.0061648.g004

Flux Predictions in Mutants
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Thus, most of the potentially reversible reactions can be

considered irreversible for growth on a particular substrate.

An alternative way to constrain reaction reversibility and the

number of feasible elementary modes can be obtained by assigning

reaction directionalities on thermodynamic grounds. To compare

reversibility scores to thermodynamics-based analysis, we used a

network thermodynamics approach [32] [33] to restrict the

reaction reversibilities and subsequently remove infeasible path-

ways. Supplement S7 presents the methods and discusses the

results. Depending on the available metabolite measurements and

their uncertainties in the different datasets, the directionalities of

particular reactions are restricted and a reduction of up to 57% in

the number of computed pathways was obtained for an E. coli

model (Fig. S5 and table S7 in Supplement S7).

Assignment of reaction directionalities based on reversibility

scores, on the other hand, puts constraints on all but four highly

reversible reactions in E. coli, thus allowing for a much smaller set

of relevant pathways. In addition, thermodynamics analysis

provides constraints on reaction reversibilities in particular

conditions, whereas the extrapolation of these restrictions to

mutant strains is still an open question. Reversibility scores, on the

other hand, give a measure for potential variability of the fluxes in

the opposite direction. Furthermore, reversibility score calculations

do not require measurements of intracellular metabolite concen-

trations, which are often lacking or incomplete in many practical

cases.

Biological objectives. Metabolic networks in living cells can

function according to various different biological objectives

depending on the organism in question and its genetic and

environmental context. Although so far, biological objectives have

been elucidated only for a few organisms, in the perspective of

microbial metabolic engineering, it is desirable to couple

Table 1. True match rate of the predicted flux changes (Eq. 6) and of the constant fluxes (Eq. 7) using a cut-off of 15% (and 40% in
parenthesis) based on experimental data for E. coli using EMs, where 100% represents the glucose flux.

Reaction True match rate TMG [%]
Number of flux changes
greater than cut-off True match rate TMS [%]

Number of flux changes
smaller than cut-off

GLCt 2* 0 (0) 100 (100) 66 (66)

PGI 64 (2*) 14 (0) 59 (67) 41 (55)

PFK-FBP 100 (100) 11 (11) 60 (67) 55 (55)

FBA 82 (82) 11 (11) 33 (67) 55 (55)

TPI 82 (82) 11 (11) 33 (67) 55 (55)

GAPDH 100 (100) 11 (11) 56 (67) 55 (55)

PGM 100 (100) 11 (11) 56 (67) 55 (55)

PYK-PPS 59 (67) 37 (9) 48 (96) 29 (57)

G6PDH 95 (100) 19 (10) 47 (80) 36 (45)

PGDH 63 (56) 19 (9) 47 (63) 36 (46)

RPE 58 (2) 12 (0) 47 (100) 43 (55)

RPI 71 (2) 7 (0) 90 (97) 100 (66)

TK1 71 (2) 7 (0) 90 (100) 59 (66)

TA 71 (2) 7 (0) 90 (100) 59 (66)

TK2 71 (2) 7 (0) 93 (100) 59 (66)

PDH 63 (0) 35 (1) 87 (100) 31 (65)

CS 67 (86) 36 (7) 57 (100) 30 (59)

ACONT 72 (86) 36 (7) 63 (100) 30 (59)

ICDHy 57 (88) 42 (16) 75 (100) 24 (50)

AKGD 57 (82) 42 (17) 75 (100) 24 (49)

SUCD1i-FRD 84 (100) 37 (7) 93 (100) 29 (59)

FUM 76 (100) 37 (7) 66 (100) 29 (59)

MDH 57 (100) 37 (4) 66 (100) 29 (62)

PPC-PPCK 20 (2) 10 (0) 63 (94) 56 (66)

ME1 2 (2) 0 (0) 59 (100) 66 (66)

ICL 32 (2) 22 (0) 89 (100) 44 (66)

MALS 32 (2) 22 (0) 89 (100) 44 (66)

PTAr-ACS 2 (2) 0 (0) 100 (100) 66 (66)

EDA 25 (2) 4 (0) 50 (6) 60 (10)

LDH 2 (2) 0 (0) 100 (66) 100 (66)

ADHE 2 (2) 0 (0) 100 (66) 100 (66)

Average 67 (83) 18 (5) 71 (91) 44 (57)

*The hyphen ‘‘2’’ indicates that no measurements were available.
doi:10.1371/journal.pone.0061648.t001
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formation of the desired product to growth (i.e. biomass

formation). Hence, the biological objective used for structural

fluxes calculation must at least contain growth. In the current

study, we use growth as the objective for S. cerevisiae [34] and

growth and ATP generation for E. coli [10]. For E. coli, we

weighted ATP 20 times more than biomass, since ATP production

was found to explain intra-cellular fluxes in several E. coli mutants

[10]. The presented results are robust regarding the precise choice

of this weighting. We independently confirmed the goodness of the

choice of these objectives by assigning different degrees of

importance to biomass and ATP in the cellular objective and

comparing the predictions with measured 13C fluxes (Fig. 3 and

Supplement S3). We found that the Pearson correlation coeffi-

cients between the predicted and measured fluxes were almost

optimal for the proposed objectives.

StruFs and generating vectors. A limitation of the use of

the CEF and StruF definitions based on EMs is current

computational intractability of EMs for large-scale metabolic

networks [35]. This problem can be tackled to some extent by

sampling the elementary modes ([19,36,37]. In this work, we

propose the use of the minimal generating set (Generating Vectors,

GVs), which are a subset of EMs and allow enumeration in

polynomial time [24]. Details on the use of GVs to compute

structural fluxes for metabolic engineering purposes, along with an

empirical validation that structural fluxes based on generating

vectors are good predictors of intracellular fluxes in mutants, can

be found in Supplement S5. The solutions were also compared

with and found superior to FBA in terms of higher correlation with

experimental data (Figs. 4AB, Tables S4–S5, and Figs. S1A and

S1B in Supplement S5). In addition, phenotypic phase plane

analysis showed that the yields of generating vectors have similar

distribution as those of elementary modes (Figs. S2–S3 in

Figure 5. Principal component analysis on the E. coli mRNA dataset [25]. Score outlier map for one principal component (explaining 94% of
the data). The observations are colored according to their true match rate TMG (Eq. 7) at a cut-off of 15%. Outliers in the transcripts and bad StruF
predictions are labeled.
doi:10.1371/journal.pone.0061648.g005

Table 2. Predicted ethanol production for single reaction
deletions in S. cerevisiae using OptGene in column two (Patil
et al., 2005) and using iStruF in columns three and four.

Reaction Knockout BO*DO StruFETOHt Growth (%)

O2_UP 1.3 1.50 35

ALD4 0 0.56 100

GDH13 0 0.53 79

GDH2 0 0.48 86

KGD, LSC 0 0.47 97

IDH 0 0.42 99

ZWF1, SOL, GND 0 0.42 90

SDH 0 0.41 87

TKL2 0 0.41 88

RPE 0 0.41 89

MLS1 0 0.41 98

CIT13 0 0.40 96

PDA 0 0.39 96

PCK1, GCV1 0 0.38 99

GAD1, UGA1, UGA2 0 0.38 100

FBP1 0 0.37 99

ASP3 0 0.36 99

SHM12, wild-type 0 0.36 100

The biological objective (BO) is growth, the design objective (DO) ethanol
production. Glucose uptake is 1. Growth is relative to the wild-type growth rate.
doi:10.1371/journal.pone.0061648.t002

Flux Predictions in Mutants
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Supplement S5). We also verified that reaction participation in the

modes is highly correlated for generating vectors and elementary

modes (Fig. S4 in Supplement S5). These results strongly suggest

that generating vectors are representative of the full set of EMs for

the use in the optimization of metabolic networks.

StruFs reflect in vivo flux measurements across

mutants. Many knockouts in the datasets obtained from

literature represent reactions catalyzed by isozymes or that carry

a small flux in the wild type (less than 10% of the glucose uptake

rate). Consequently, for the purpose of comparing fluxes of

particular reactions across different mutants, variability in the data

is a limiting factor. With respect to our main objective of

identifying metabolic intervention strategies, however, it is more

important to determine whether a given flux will be increased or

decreased in comparison with the wild type or with another

mutant, as opposed to flux magnitude comparisons within the

same mutant. We therefore evaluate the performance of the

predictions of the structural fluxes in comparison with the
13C-based in vivo flux measurements in the following manner: for

every pair of strains, all experimentally measured flux changes

greater than a cut-off value C (NDwC ) were selected, where the flux

values are normalized by the glucose uptake rate. For these

selected fluxes, we checked if the measured changes match the up-

or down-regulation as predicted by the structural fluxes (Nmatch
G )

and thereby computed the true match rate as:

TMG~
Nmatch

G

NDwC

:100% ð6Þ

Since for metabolic engineering purposes it is also of importance

to determine whether a given flux remains constant in comparison

with the wild type (or with another mutant) we define a similar

measure for the unchanged fluxes:

TMS~
Nmatch

S

NDvC

:100% ð7Þ

As expected, the numbers of flux changes greater than the cut-

off value decreased with increasing cut-off (Figs. 4CD). Interest-

ingly, the true match rate TMG improved with increasing

magnitude of flux change, demonstrating that structural fluxes

successfully capture large flux changes in the network. Further-

more, the overall prediction of up or down regulation of fluxes

across mutants was also found to be good (Table 1 and Table S6 in

Supplement S6). Table 1 also shows that the average true match

rate for the unchanged fluxes with a TMS cut-off of 15% is 71%

and with a cut-off of 40% is 91% in E. coli. Higher true match rates

were obtained in yeast: 85% for a cut-off of 15% and 95% for a

cut-off of 40%. We expect that further elevated true match rates

may be obtained for datasets with more flux variability.

As a performance indicator, we tested the true match rates

(TMG) from StruFs against random predictions in a binomial test

with the expected true match rate for the random model being

50%. Concerning E. coli, Fig. 4C shows that the predictions from

StruFs are all significant (p-value ,0.05) with an average p-value

of 4.4E210. In particular, the predictions for high flux changes

are more significant. Concerning S. cerevisiae, Fig. 4D shows that

the predictions from StruFs are significant for flux changes greater

than 2% with an average p-value of 1.9E22.

Few particular fluxes were found to consistently show a poor

true match rate, such as the glyoxylate shunt (reactions ICL and

MALS). We hypothesized that these fluxes are likely to be

regulated by other means than those taken into account by the

structural properties of the network. For example, the transcrip-

tional regulation for these fluxes may display a different pattern

than for the other fluxes. To test this hypothesis, we employ

statistical analysis to detect enzyme-coding transcripts that are

differently regulated by using mRNA measurements from the E.

coli dataset [25]. In particular, robust principal component analysis

[31] was used to classify the genes with expression patterns

different than average.

Outliers of the principal component analysis are marked in

Fig. 5, as well as the outliers with the low true match rate from

StruF analysis. Most of the regular data points (i.e. with small score

distance and orthogonal distance) were predicted well by structural

fluxes (yellow-red observations/Table 1). We performed a

Wilcoxon rank sum test to test whether the outliers (defined from

the principal component analysis) come from a distribution with

equal means compared to the non-outliers. The test showed that

the mean values are significantly different considering six outliers

(ICL, MALS, PTAr, ICDHy CS, and PPC): p = 1.0E22. The

poorly predicted glyoxylate shunt from StruFs corresponds well

with the outliers ICL and MALS. PTAr-ACKr is an outlier in

transcription profiles, but neither acetate production nor con-

sumption was measured for any of the knockouts under the

experimental conditions of low dilution rate and hence does not

appear in the figure. The structural flux through the Entner-

Dourodoff pathway was also poorly predicted; however, it was not

found to be an outlier in the transcript measurements. We here

note that only few flux measurements were available for EDD.

Adding a priori information on regulation, e.g. the absence of

fermentation reactions at low specific growth rates, would improve

the predictions, because the structural fluxes represent a ‘‘capac-

ity’’ for each flux, whereas the measurements reflect a particular

situation.

In silico Metabolic Engineering
The objective of the metabolic engineering algorithm iStruF is

to identify deletion targets that increase the structural flux of the

desired product. For the metabolic networks under study, it was

feasible to perform an exhaustive search and compute all potential

reaction deletions up to the combinations of three reaction

deletions. For each gene deletion mutant, the structural fluxes of

each reaction (Eqs. 3, 5) were recomputed by excluding the modes

that contain the deleted reaction(s). For large-scale networks or

higher number of gene deletions, search algorithms like controlled

random search [38] or genetic algorithms [39] would be needed in

order to find the target deletions.

As case studies for the in silico metabolic engineering strategies,

we selected i) production of ethanol through single reaction

deletions and ii) production of succinate through triple deletions in

baker’s yeast. Both compounds are interesting bio-based alterna-

tives for replacing products that are currently manufactured from

fossil fuels.

Ethanol production in yeast. While considering the bio-

mass producing modes, we note that the maximum theoretical

structural flux towards ethanol is 1.68 mole ethanol/mole glucose.

Whereas, the structural flux for the wild-type is 0.36, thus setting a

theoretical limit of 4.5 fold improvement in production (at the

expense of a halved growth). We present the results of an

exhaustive search for single reaction deletions using iStruF and

contrast it with the results from OptGene (with biomass

production as biological objective function) (Table 2). Using

OptGene, only one single reaction deletion resulted in ethanol

production: oxygen uptake rate (O2_UP). iStruF results showed
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several other potential reaction knock-out strategies besides

anaerobic fermentation, including removing alternative fermenta-

tion routes towards lactate and acetate. Most iStruF results on

single gene deletions are obvious and thereby demonstrate the

feasibility of the method in this stage. Interestingly, the prediction

for the wild-type phenotype seems more realistic when using

iStruF, as it produces ethanol, whereas the wild-type using FBA

does not.

It is relevant to couple product formation to growth for a viable

mutant. Depending on the mode of fermentation, a mutant may

be chosen that exhibits fast or slow growth. If one aims to produce

a compound in two-stage fermentation with a growth and a

production phase, one may opt for a reversible knockout with low

growth, because a high growth rate reduces the achievable product

yield. If on the other hand, one aims to produce a compound while

growing, a mutant with a high growth rate may be the better

choice to obtain higher productivity. Amongst the viable mutants

with enhanced ethanol production, growth was predicted to be

between 79% and 100% of the wild-type rate. Deletion of one of

the top ranked candidate reaction, GDH1, has been shown to

experimentally contribute to a higher ethanol yield with good

growth [40].

Succinate production in yeast. The maximum theoretical

structural flux towards succinate is 0.74 mole succinate/mole

glucose while considering the biomass producing modes, whereas

the structural flux for the wild-type is 0.093. Thus, theoretically,

eight fold improvement in production (Fig. 6A) can be achieved at

the expense of an 18% decrease in growth. In Fig. 6 and

Supplement S4, we show the results for triple knockouts using

structural fluxes compared with control effective fluxes. Amongst

the top-ranked solutions predicted by structural fluxes, we found

many solutions that enhance a flux through the glyxolate shunt

(and reduce the flux through the TCA cycle) and solutions that

reduce the formation of by-products like acetate. One of these

knockouts has been validated in vivo as part of a deletion strategy to

improve succinate production [41], others have been discussed as

promising targets [4]. In particular, knockout of the reactions

ALD6, SER, and SDH may be promising as it allows for a

predicted increase in succinate production (three fold compared

with wild-type) and a high growth (88% of wild-type growth). In

fact, deletion of SER and SDH has already been verified in Otero

[42].

Conclusions

Systematic consideration of the contribution of each pathway

towards the cellular biological objective leads to the concept of

structural fluxes. We have shown here that these structural fluxes

reflect in vivo flux measurements and predict preferred reaction

directionalities on a given substrate. In future, we expect that

structural fluxes can be further verified as more experimental flux

measurements become available, spanning multiple gene knockout

mutants, larger networks, and with higher accuracy. In addition,

structural fluxes can be used for understanding the type of

regulation occurring in a given reaction.

Building on the predictive power of structural fluxes, we present

a formulation of a novel in silico metabolic engineering algorithm,

iStruF, which is able to find solutions for metabolic engineering

targets that couple growth with product formation while consid-

ering optimal as well as sub-optimal routes and their efficiency.

These solutions were found to include targets that have been

partially validated in vivo. Together, structural fluxes and iStruF

constitute a novel and promising toolset for metabolic engineering.
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