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Abstract

Background: HIV-1 infects the host cell by interacting with the primary receptor CD4 and a coreceptor CCR5 or CXCR4.
Maraviroc, a CCR5 antagonist binds to CCR5 receptor. Thus, it is important to identify the coreceptor used by the HIV strains
dominating in the patient. In past, a number of experimental assays and in-silico techniques have been developed for
predicting the coreceptor tropism. The prediction accuracy of these methods is excellent when predicting CCR5(R5) tropic
sequences but is relatively poor for CXCR4(X4) tropic sequences. Therefore, any new method for accurate determination of
coreceptor usage would be of paramount importance to the successful management of HIV-infected individuals.

Results: The dataset used in this study comprised 1799 R5-tropic and 598 X4-tropic third variable (V3) sequences of HIV-1.
We compared the amino acid composition of both types of V3 sequences and observed that certain types of residues, e.g.,
Asparagine and Isoleucine, were preferred in R5-tropic sequences whereas residues like Lysine, Arginine, and Tryptophan
were preferred in X4-tropic sequences. Initially, Support Vector Machine-based models were developed using amino acid
composition, dipeptide composition, and split amino acid composition, which achieved accuracy up to 90%. We used BLAST
to discriminate R5- and X4-tropic sequences and correctly predicted 93.16% of R5- and 75.75% of X4-tropic sequences. In
order to improve the prediction accuracy, a Hybrid model was developed that achieved 91.66% sensitivity, 81.77%
specificity, 89.19% accuracy and 0.72 Matthews Correlation Coefficient. The performance of our models was also evaluated
on an independent dataset (256 R5- and 81 X4-tropic sequences) and achieved maximum accuracy of 84.87% with
Matthews Correlation Coefficient 0.63.

Conclusion: This study describes a highly efficient method for predicting HIV-1 coreceptor usage from V3 sequences. In
order to provide a service to the scientific community, a webserver HIVcoPred was developed (http://www.imtech.res.in/
raghava/hivcopred/) for predicting the coreceptor usage.
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Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus which

infects the human immune cells - mainly CD4+ Helper T

lymphocytes, monocytes, macrophages and dendritic cells. When

left untreated, the HIV infected subjects may eventually develop

Acquired Immunodeficiency Syndrome (AIDS). There are two

types of HIV strains, HIV-1 and HIV-2, the type-1 (Group M) is

responsible for the pandemic form and has been reported in every

country of the world, whereas HIV-2 is mainly restricted to West

Africa [1].

The infection of human cells by HIV is initiated by the

molecular interactions between the surface receptors of the host

and the pathogen. The core interactions are conserved for all the

HIV infections and mediated through the HIV surface protein

gp120 (glycoprotein 120). This glycoprotein interacts with the

CD4 receptor present on the surface of immune cells thereby

initiating the mechanistic pathway leading to the infection by

HIV. The interaction with CD4 receptor induces immediate

conformational changes in gp120 protein that leads to the

complete exposure of the third variable (V3) loop. The exposed

loop further interacts with either of the two coreceptors present on

human cells, i.e. CCR5 or CXCR4 [2,3]. This interaction is

required for the successful fusion of cell membrane of HIV

pathogen and host TH cells, which ultimately results in the

transmission of the viral genetic material into the host cells [4].

The coreceptor tropism is defined as the ability of a particular

HIV-1 virus to infect a target cell using a specific coreceptor. The

HIV-1 strains which use CCR5 as coreceptor are termed as R5-

tropic, whereas the strains that utilize CXCR4 as coreceptor are

called X4-tropic viruses. R5X4 or dual tropic strains constitute a

third major class as they can use either of these two coreceptors

[5]. The difference in the coreceptor usage points towards the

physiological differences in the pathogenicity, tissue tropism and

transmissibility of the virus in-vivo [6]. It has been reported that in

majority of the infected subjects, the HIV pathogen primarily used

the coreceptor CCR5 in order to initiate the infection pathway

[7,8]. During course of infection, the coreceptor usage preference
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of HIV changes from CCR5 to CXCR4 in approx. 50% of the

infected individuals. This switchover from R5- to X4-tropism was

found to be associated with the accelerated CD4+ T-cell decline

and the rapid progression to AIDS [9,10].

Maraviroc (Selzentry/Celsentri) is a FDA approved drug that

targets the CCR5 coreceptor. Binding of the drug to CCR5 leads

to the conformational changes in the extracellular loops of CCR5,

making them inaccessible to the V3 loop of gp120 protein [11,12].

Since there may be a heterogeneous population of HIV-1 in an

infected person, it is essential to determine whether the subject is

exclusively harbouring R5-tropic strains before the use of CCR5

antagonist e.g. Maraviroc [13]. Primarily, there are two types of

methods to determine the HIV-1 tropism – (1) Recombinant

Phenotypic Assays (RPA) e.g. Monogram Trofile Tropism Assay (2)

Genotypic methods (in-silico approaches). In the RPA method,

pseudo viruses or infectious recombinant viruses generated from

the patient’s plasma, having either full or partial-length viral

envelope regions and tested on the indicator cell lines [14]. These

cell lines express CD4 and either CCR5 or CXCR4 on their cell

surfaces. Based upon the coreceptor used by virus to infect cell

lines, the coreceptor tropism is determined [15]. Although the

recombinant phenotypic assays are able to distinguish between

pure R5, R5X4 and pure X4 populations, these are expensive,

laborious, time consuming as well as dependent on the sample

availability [16,17].

On the other hand, in-silico based genotypic methods require the

HIV protein sequences (mainly the V3 loop of the gp120 protein)

to predict the coreceptor tropism. A number of studies have

reported that coreceptor usage is largely determined by the

sequence of V3 loop [18,19,20]. It is highly specific as it has been

shown that even a single amino acid substitution in the V3 loop

may alter the coreceptor usage by HIV-1 [21]. The 11/25 charge

rule was the first genotypic method which predicted the CXCR4

coreceptor usage based on the presence of basic (positively

charged) amino acids, e.g. Lysine or Arginine, at 11th or 25th

position of the V3 loop [22,23,24]. Successive studies based on the

machine learning approaches used various methods such as

Neural Networks [25,26], Support Vector Machine (SVM) [27],

Position Specific Scoring Matrix [28,29], Random Forest [30],

Structural Descriptors [31], distant kernel segments [32], Logistic

regression [33] and Decision rule based studies [34]. Clinical

datasets have been used with sequence information for developing

better SVM models [35]. Most of these studies are exclusively

based on the V3 region of gp120 protein but the regions other

than V3 are also shown to be important in the prediction of

coreceptor usage [36,37,38]. Among the other regions, V1, V2,

C4 regions of gp120 and gp41 protein are known to play an

important role in the determination of the coreceptor usage

[39,40]. It has been reported that the switch to CXCR4-

phenotype was associated with an increase in the net positive

charge in the V1/V2 stem [41]. The loss of N-glycosylation sites

has been associated with the X4 tropism [41] [42]. It has been

found that, in addition to the V3 loop, the amino acid variation at

residue 440 in the C4 region of gp120 protein is clearly linked with

the usage of CXCR4 as coreceptor [43]. Though important in the

coreceptor tropism, the lack of sufficient data from these regions

(e.g. V1, V2) has been the main hindrance for model development

and prediction of the coreceptor usage [38]. Recently, it has been

reported that genotypic prediction of coreceptor usage was

improved with the incorporation of V2 loop sequences’ informa-

tion along with V3 sequences [21].

Although the earlier methods could predict the CCR5 usage

with high accuracy (, 95%), the accuracy for CXCR4 usage

prediction was relatively poor. It is still a challenge to develop a

prediction method with high accuracy for CXCR4 usage. In order

to predict the coreceptor usage with high accuracy, we analyzed

1799 R5-tropic and 598 X4-tropic V3 sequences (R5X4 included)

and consequently, developed various SVM models. We used a

number of input features for various model developments and

finally developed a Hybrid model consisting of SAAC and BLAST

approaches, which predicted the CCR5 and CXCR4 coreceptor

usage with high accuracy (approx. 89.19%).

Results

It is a challenge to discriminate between the V3 sequences from

R5- and X4-tropic viruses. We need to represent the V3 sequences

by vectors having numerical values in order to discriminate

between the two types of V3 sequences. These vectors, represent-

ing the distinct features of the V3 sequences, are used to develop

the SVM models. In order to develop the best model for

discriminating the R5- and X4-tropic sequences, we optimized

the SVM parameters. Following is a brief description of the

features used for developing the prediction models.

Amino Acid Composition (AAC) Based SVM Model
Previously, it has been shown that even a single amino acid

mutation in the V3 sequence can alter the coreceptor tropism [21].

Taking this into consideration, the frequency of each of the 20

amino acids was calculated for each R5- and X4-tropic sequences.

It was found that certain types of residues are preferred in each

tropic class, e.g. Lys and Arg are present at higher frequencies in

the X4-tropic while the frequency of occurrence of Asn was

relatively higher in the R5-tropic sequences. The overall

composition of amino acids L (0.82%), M (0.70%), T (10.27%),

V (2.41%), W (0.20%) and Y (4.30%) was higher in the X4-tropic

whereas A (7.14%), D (3.49%), E (1.10%), F (2.67%), G (11.98%),

H (3.43%), I (13.03%), N (8.62%), P (5.94%), Q (3.72%) and S

(3.17%) were at higher proportion in the R5-tropic sequences

(Figure 1). From the amino acid composition (physico-chemical

properties), it is evident that the X4 sequences are primarily

dominated by positively charged, large amino acids whereas the

R5 sequences show the preference of overall more charged

residues (mostly negatively charged) along with small and neutral

amino acids (Figure 2). The AAC feature has been previously used

to classify different categories of proteins and to develop prediction

models [44,45]. As significant differences in the AAC of R5- and

X4-tropic V3 sequences were observed; this deemed possible to

use AAC for discriminating the two types of sequences. The SVM-

based classifier has been developed using AAC of V3 sequences

and achieved 85.82% accuracy with sensitivity of 88.77% and

specificity of 76.92% (Table 1, Table S1). Dipeptide composition

(DPC) based methods have been shown to be more successful than

AAC based methods for the classification of proteins [46]. It is due

to the fact that DPC incorporates AAC as well as the local order of

amino acids. Thus, a SVM-based classifier was developed using

DPC which achieved maximum accuracy of 90.24% with 93.50%

sensitivity and 80.43% specificity (Table 1, Table S2). Split Amino

Acid Composition (SAAC) has been used successfully in the past to

differentiate the proteins that have a signal peptide at the N- or C-

terminal [47]. We systematically analyzed the residues at the N-

and C-terminal of the R5- and X4-tropic V3 sequences and found

significant differences in the AAC of these residues (Figure S1, S2).

In order to utilize the compositional difference in the termini of

R5- and X4-tropic sequences, we developed SVM modules using

SAAC. In case of SAAC, we divided the V3 sequences into two

nearly equal parts and calculated the AAC of each part separately.

Finally, the input vectors of 40 dimensions have been used to build

Hybrid Approach for HIV-1 Coreceptor Prediction
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the SVM models. This approach achieved 88.94% sensitivity,

81.44% specificity, 87.07% accuracy and 0.67 Matthews Corre-

lation Coefficient (MCC) (Table 1, Table S3).

Basic Local Alignment Search Tool (BLAST)
BLAST software is routinely used for predicting the function of

a protein based on the sequences’ similarity search [48]. In this

study, BLAST has been used to discriminate between the R5- and

the X4-tropic sequences at E-values ranging from 1021 to 10217.

As shown in the Table 2, maximum accuracy of 93.16% for R5-

tropic and 75.75% for X4-tropic sequences at E-value cut-off 1023

was achieved (Table 2, Table S4, S5).

Hybrid Approach using BLAST and SVM Model
We developed a Hybrid approach by combining SAAC based

SVM model and the similarity based BLAST search. Using

Hybrid approach, 91.66% sensitivity, 81.77% specificity, and

89.19% accuracy with MCC value of 0.72 was achieved (see Table

S6). The Receiver Operating Curve (ROC) curves were plotted

using the ROCR package [49]. The performance of the various

models is shown in Figure 3.

Figure 1. Amino acid composition comparisons of two types of V3 sequence. The Blue bar representing R5-tropic and red bar representing
X4-tropic V3 sequences.
doi:10.1371/journal.pone.0061437.g001

Figure 2. The composition of physico-chemical properties of R5- and X4-tropic V3 sequences. The blue bar representing R5-tropic and
red bar representing X4-tropic V3 sequences.
doi:10.1371/journal.pone.0061437.g002

Hybrid Approach for HIV-1 Coreceptor Prediction
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Sequence Analysis by WebLogo and Two Sample Logo
(TSL)

Sequence logo represents the relative amino acid frequencies at

each position in a set of peptides/proteins of fixed length; it is

primarily used to identify the highly conserved positions [50]. The

R5- and X4-tropic sequence logos showed the similarities (e.g.

Cysteine residue at terminal positions) and the differences (e.g.

amino acid relative frequencies at positions 11/25) between the

two types of sequences, which is clearly visible in the sequence

logos (Figure 4).

Two sample logos represent the relative frequencies of amino

acids at a position in the two datasets (R5-tropic as the positive

sample and X4-tropic as the negative sample) [51]. In two-sample

logo, the sites with no residues are those having equal frequencies

of amino acids, thereby resulting in the relative frequency of ‘Zero’

e.g. Cysteine at position 1 and 35 in both the datasets. As stated by

11/25 rule, the relative frequency of the positively charged amino

acids (e.g. Arginine and Lysine) were found to be highest at 11th

and 25th positions in the X4-tropic sequences, evident from TSL

(Figure 5).

Two Sample Logo based SVM Model
TSL also provides output format as TXT (raw values), which

have frequency of residues where significant differences exist

between the positive and the negative samples (Table S26). Using

these values, the residue frequencies in CCR5 and CXCR4

datasets were calculated by perl script. A SVM model was

developed using residue frequencies at each position of the V3

sequences and achieved maximum accuracy of 88.20% (Table 3,

Table S7).

Binary Patterns Based SVM Model
We generated binary patterns for V3 sequences where each

position of the V3 sequence was represented by a binary vector of

dimension 20 [52]. Thus, the V3 sequence containing 35 amino

acids is represented by a binary pattern of dimension 700 (35 6
20). The binary based SVM model has achieved maximum

accuracy of 89.86% with 92.98% sensitivity, 78.19% specificity

and MCC 0.70 (Table 3, Table S8).

Two Sample Logo and Binary Based SVM Model
It has been shown in the past that combination of features may

achieve better accuracy [47]. Thus, we developed a SVM based

model using Binary and TSL features and achieved 94.36%

sensitivity, 75.00% specificity, 90.27% accuracy and 0.70 MCC

(Table 3, Table S9). In order to assess the overall performance of

SVM based models developed using Binary, TSL and Binar-

Table 1. The performance of various SVM models developed
by using Amino Acid, Dipeptide and Split Amino Acid
Composition based input vectors.

Method Threshold Sensitivity Specificity Accuracy MCC

AAC 0.4 88.77 76.92 85.82 0.64

DPC 0.2 93.50 80.43 90.24 0.74

SAAC 0.4 88.94 81.44 87.07 0.67

doi:10.1371/journal.pone.0061437.t001

Table 2. The performance of BLAST (blast-2.2.18) on CCR5 and CXCR4 dataset at different E-value cut-offs.

Type E-value Total Sequences Total Hits No Hits Correct Hits Percent coverage
Percent of correct
prediction

CCR5 1021 1799 1798 1 1676 93.16 93.21

1023 1799 1798 1 1676 93.16 93.21

1028 1799 1796 2 1675 93.11 93.26

10212 1799 1776 23 1659 92.22 93.41

10216 1799 269 1530 245 13.62 91.01

CXCR4 1021 598 598 0 453 75.75 75.75

1023 598 598 0 453 75.75 75.75

1028 598 591 7 447 74.75 75.63

10212 598 534 64 418 69.90 78.28

10216 598 50 548 41 6.86 82.00

doi:10.1371/journal.pone.0061437.t002

Figure 3. The ROC plots of four SVM models. Performance of four
SVM modules (AAC, DPC, SAAC, Hybrid) by the receiver operating
characteristic (ROC) plot. In the graph, ‘A’ signifies the ‘AUC’ value of the
respective model.
doi:10.1371/journal.pone.0061437.g003
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y+TSL as features sets, we computed the performance of the

models in term of Area Under Curve (AUC) using ROCR

package. The performance of each SVM based model is shown by

ROC curves (Figure 6).

Performance on Independent Dataset
We have evaluated the performance of our SAAC and Hybrid

models on an independent dataset. It was observed that both these

models performed reasonably well on the independent dataset.

Figure 4. Sequence logos of R5-tropic (N = 1525) and X4-tropic (N = 408) V3 sequences. The overall height of the stack indicates the
sequences conservation at the specific site, while the height of the symbols within the stack indicates the relative frequency of each amino acid at the
specific site. ’N’ denotes the number of sequences used in the sequence logos.
doi:10.1371/journal.pone.0061437.g004

Figure 5. The two sample logo of R5- (N = 1525) and X4-tropic (N = 408) V3 sequences. The residues with significant difference in the
frequency in two datasets are prominent at the specific sites. The positions with no residues are those where the frequency of an amino acid was
approximately equal in two datasets.
doi:10.1371/journal.pone.0061437.g005

Hybrid Approach for HIV-1 Coreceptor Prediction
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SAAC as well as Hybrid approach based SVM models achieved

accuracy 84.87% with 0.63 MCC (Table 4, Table S10, S11).

Comparison with Existing Methods
We evaluated the performance of our approaches (SAAC and

Hybrid models) on datasets used in the previous studies

[27,29,30,32,36]. The performance of our models have been

compared to the performance of five methods on their datasets,

WetCat [27], CPSSM [29], dskernel [32], Dybowski’s method

[36], Xu’s method [30] (Table 5). As shown in Table 5, our

models have better accuracy and specificity than WetCat. In case

of CPSSM, our models showed comparable performance where

sensitivity was lower but specificity was higher. We have compared

our approach with three models of dskernel method. In case of

CCR5, the training and testing were carried out on the same

dataset as used by the authors. Our models showed better

specificity than dskernel-R5 while the accuracy and the sensitivity

remained comparable. In comparison to dskernel-X4 and

dskernel-R5X4, our models have slightly better performance than

these two models. When compared the performance with

Dybowski’s method, it was found that our models had nearly

same specificity (R5 prediction) but achieved significantly higher

sensitivity. In case of Xu’s method, our approaches have achieved

similar or better sensitivity (98.76% and 99.17%); the specificity

was higher in case of Hybrid approach. It is clear from the above

analysis that SAAC as well as Hybrid approaches are capable of

predicting CCR5 as well as CXCR4 usage with high accuracy,

when compared with the earlier methods on their original

datasets. It is important to mention that we considered the best

possible E-value in hybrid approach while comparing with other

methods (Table 5, Table S12, S13, S14, S15, S16, S17, S18, S19,

S20, S21, S22, S23, S24, S25).

Prediction of X4 Usage by R5X4-tropic Sequences
It has been previously reported that the bioinformatics

programs underestimated the frequency of CXCR4 usage by

R5X4-tropic HIV-1 in brain and other tissues. To know the

coreceptor usage of 30 R5X4-tropic sequences, we used the same

set of sequences as used by Mefford et al. [53]. Before the

coreceptor usage analysis, the V3 sequences were generated as full-

length by replacing gaps (2) with the consensus residue. It is

important to mention that the accuracy achieved by ‘HIVcoPred’

method is equal to that of SVMgeno2pheno, i.e. 90% (27/30),

which is the highest among the seven methods tested in that study.

Coreceptor Usage Prediction of HIV-1 Subtype A/D
Sequences

We have tested the performance of HIVcoPred on 61 unique

sequences of subtype D, originally used by Huang et al. [54]. First,

the given V3 sequences were regenerated by replacing the dots (.)

with consensus residues, keeping the mutated residues intact in the

sequences. The gaps were also removed before the final prediction

of the coreceptor usage. It was found that HIVcoPred achieved the

highest ‘overall concordance’ of 65.57% in comparison to the two

approaches used by Huang et al., i.e. 11/25 rule and PSSM

(Table 6).

We also compared the performance of HIVcoPred method with

the ‘geno2pheno’ and ‘subtype B combined rule’ on 26 subtype D

sequences [55]. It was found that like these two approaches, our

approach also predicted with 100% accuracy for the subtype D

CXCR4 usage. The Hybrid approach has achieved 86.36%

specificity whereas the specificity achieved by ‘geno2pheno10’ and

‘combined 11/25 and net charge rule’ were 54% and 68%,

respectively (Table 7).

Discussion

For any anti-HIV drug targeting CCR5 receptor, it is

mandatory to know the exact type of coreceptor used by the

infecting virus. Consequently, for the drug Maraviroc, which acts

as a CCR5 antagonist, knowledge of the coreceptor used by HIV

strains is a prerequisite [11,12]. In the past, various genotypic as

well as phenotypic methods have been developed to elucidate the

coreceptor used by HIV-1 [25–36]. The prediction accuracy of the

genotypic methods is high for R5-usage but relatively poor for the

X4-usage prediction. The performance of the previously devel-

Table 3. The performance of various SVM models developed
by using Binary, TSL and the combination of Binary and TSL
based input vectors.

Method Threshold Sensitivity Specificity Accuracy MCC

TSL 0.4 92.07 73.77 88.20 0.65

Binary 0.3 92.98 78.19 89.86 0.70

Binary+TSL 0.4 94.36 75.00 90.27 0.70

doi:10.1371/journal.pone.0061437.t003

Figure 6. The ROC plot of Binary, TSL and Binary+TSL based
SVM models. Performance of discrimination between the R5- and X4-
tropic sequences by three SVM modules in the ROC plot. In the graph,
‘A’ signifies the ‘AUC’ value of the respective models.
doi:10.1371/journal.pone.0061437.g006

Table 4. The performance of SAAC and Hybrid approach on
the independent dataset.

Method Threshold Sensitivity Specificity Accuracy MCC

SAAC 0.3 85.55 82.72 84.87 0.63

Hybrid 0.3 85.55 82.72 84.87 0.63

doi:10.1371/journal.pone.0061437.t004

Hybrid Approach for HIV-1 Coreceptor Prediction
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oped prediction methods ranged from sensitivity (X4) of 0.69 to

0.80, specificity (R5) of 0.93 to 0.98 and accuracy of 0.90 to 0.92

[27,31,33,34,35]. The possible reasons for the poor prediction of

X4-tropism could be – (1) The unavailability of a large number of

X4-tropic sequences required during the training of the models

and/or (2) The high level of variation (mutations) in the X4-tropic

sequences, leading to the poor training of the models. Conse-

quently, there is a pressing need for new methods, which can

predict the coreceptor usage with high accuracy.

In the present study, a method has been developed using various

features, e.g. AAC, DPC, SAAC, etc., which predicts CCR5 and

CXCR4 coreceptor usage with high accuracy. For the develop-

ment of this method, a well-accepted machine learning technique

‘SVM’ has been employed. SVM has been previously used in the

development of various methods pertaining to the coreceptor

usage prediction [27,31,32,35]. It has been observed that the

composition differences exist between the two types of V3

sequences, e.g. more Asparagine in R5-tropic and Lysine, Arginine

and Tryptophan in X4-tropic sequences (Figure 1). We analysed

the physico-chemical properties of the amino acid residues, and it

was noticed that the X4-tropic sequences have more charged

residues (mostly positively charged and large amino acids) in

comparison to the R5-tropic sequences which have primarily

negatively charged and small amino acid residues (Figure 2). This

difference is important as the overall (net) charge changes from

negative towards positive in R5- to X4-tropic sequences,

corroborating the fact that the amino acids’ change affects the

coreceptor tropism [56]. It is well known that the V3 sequences

generally have ‘Cysteine’ at both the terminals and the crown

motif (e.g. GPGR) in the centre of the sequence. We analysed the

N- and C-terminal residues of the R5- and X4-tropic sequences. It

was revealed that at N-terminal (17 residues) Asparagine, Proline,

Serine were more abundant in R5-tropic whereas Lysine,

Arginine, Tyrosine were abundant in X4-tropic sequences. At

the C-terminal (18 residues), amino acids Alanine, Aspartic acid,

Phenylalanine, Isoleucine and Glutamine were more abundant in

R5-tropic whereas Lysine, Arginine and Valine were more

abundant in X4-tropic V3 sequences (Figure S1, S2).

The sequence logos clearly showed similarity between R5- and

X4-tropic sequences, e.g. presence of ‘Cysteine’ at terminus and

central motif ‘GPGR’. The differences in residue frequency at the

11th and the 25th position are evidently visualized by the sequence

Table 5. The performance and comparison of our models SAAC and Hybrid on the datasets used in previous studies.

Details of datasets Method/model Sensitivity Specificity Accuracy MCC

Pillai et al., [27], (R5–168, X4–103) WetCat 97.6 75.7 90.86 -

SAAC 97.62 86.41 93.36 0.86

Hybrid 96.43 87.38 92.99 0.85

Jensen et al., [29] (R5–228, X4–51) CPSSM 75* 94 – –

SAAC 72.55 94.74 90.68 0.68

Hybrid 74.51 96.49 92.47 0.74

Boisvert et al., [32] (Train-1425, Test-1425) dskernel-R5 98.75 83.55 96.35 –

SAAC 98.42 91.11 97.26 0.90

Hybrid 95.50 95.11 95.44 0.85

Boisvert et al., [32] (Train-1425, Test-1425) dskernel-X4 87.68 97.56 94.80 –

SAAC 89.70 97.08 95.02 0.88

Hybrid 91.46 98.34 96.42 0.91

Boisvert et al., [32] (Train-1425, Test-1425) dskernel-R5X4 65.89 99.20 95.15 –

SAAC 69.94 98.48 95.02 0.75

Hybrid 65.90 99.36 95.30 0.76

Dybowski et al., [36] (R5–1151, X4–166) 81* 97 – –

SAAC 89.16 98.70 97.49 0.89

Hybrid 94.58 99.65 99.01 0.95

Xu et al., [30] (Train-1516, Test-642) 98.4 85.2 95.1 0.87

SAAC 98.76 87.34 95.95 0.89

Hybrid 99.17 90.51 97.04 0.92

*signify that in case of Jensen et al. [29] and Dybowski et al. [36] the Sensitivity refers to the ‘CXCR4’ prediction, whereas in other studies it denotes the ‘CCR5’
prediction.
doi:10.1371/journal.pone.0061437.t005

Table 6. Comparison of the performance of HIVcoPred with
other methods on subtype D V3 sequences (N = 61), originally
used by Huang et al. [54].

Method
Overall
concordance SenX4 SenR5 SpX4 SpR5X4

11/25 rule 61% 44% 74% 71.42% 16.67%

PSSM 59% 67% 53% 100% 30.76%

HIVcoPred 65.57% 96.29% 41.17% 100% 92.30%

SenX4 - Proportion of all viruses that could use X4 and were predicted to be
X4-tropic; SenR5 - Proportion of all viruses that only use CCR5 that were
predicted to be R5-tropic; SpX4 - correctly predicted CXCR4 usage for all the
X4-tropic clones; SpR5X4 - correctly predicted CXCR4 usage for all the dual-
tropic clones; ‘N’ is the number of V3 sequences used for this analysis.
doi:10.1371/journal.pone.0061437.t006
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logo (Figure 4). The two sample logo clearly showed that the

relative frequencies of the positively charged (R/K) amino acids is

more in X4- than R5-tropic sequences (Figure 5). It has been

found that BLAST performed very well in identifying the R5

sequences (93.16%), but it performed relatively poor in case of X4

(75.75%). This suggests that R5-tropic sequences are more similar

to other R5 sequences whereas X4-tropic is less similar to other

X4 sequences in the BLAST database. This implies that simple

BLAST cannot be used in the prediction of R5- and X4-tropic

sequences, especially X4 sequences.

In order to develop a model with high accuracy of the

coreceptor usage prediction, we integrated our SAAC approach

with BLAST to form an entirely new ‘Hybrid’ approach. The

SAAC based SVM score of a given sequence was modified

depending upon the BLAST hits of that particular sequence. The

modified SVM score was used for the final prediction of

coreceptor usage (Figure 7). As shown in Table 5, our approaches

‘SAAC’ as well as ‘Hybrid’ perform reasonably well on the dataset

of earlier published studies. Moreover, It has been found that our

approaches performed reasonably well when applied on the

independent dataset (Table 4).

It is important to mention the advantages of any newly

developed method. Since we have trained our models on a large

dataset containing sequences of all the subtypes of HIV-1, it is

efficient in predicting the coreceptor for all the subtypes of HIV-1,

except subtype ‘O’. Previous reports suggested that the bioinfor-

matics programs perform poorly in case of HIV-1 subtype ‘O’

[57]. This is due to the non-availability of the subtype ‘O’

sequences required in the training of various prediction models. It

has been reported that the CXCR4 coreceptor usage in R5X4-

tropic sequences is underestimated; our method predicted

correctly and achieved accuracy up to 90%, which is equal to

the highest performance reported by Mefford et al. [53]. It has

been observed that on 61 unique sequences of HIV-1 subtype D,

our method achieved the ‘highest concordance’, in comparison to

11/25 rule and PSSM (6). It has also been observed that

‘HIVcoPred’ method achieved the highest accuracy in CXCR4 as

well as CCR5 coreceptor usage prediction for HIV-1 subtype D

sequences (Table 7). In short, it can be said that ‘HIVcoPred’ is an

efficient method for coreceptor usage predictions, not only for

HIV-1 subtype B but also for non-B subtypes. We anticipate that

the webserver ‘HIVcoPred’ would be highly useful in interpreting

the coreceptor usage and successful management of HIV-1

infected patients.

Conclusion
Knowing that the coreceptor usage determination is vital before

starting the CCR5-antagonist based regime, the accurate predic-

tion of the coreceptor usage is of high importance. Various

genotypic methods predicted the CCR5 coreceptor usage with

high accuracy, but poor in case of CXCR4. In this study, we have

tested various approaches and found that the Hybrid (SAAC+-
BLAST) approach is highly accurate in predicting the R5- as well

as the X4-tropic sequences. A SVM based model was developed

using this technique and integrated into coreceptor usage

prediction webserver. This webserver will be helpful in the

prediction of R5- as well as X4-tropic sequences with high

accuracy. The webserver ‘HIVcoPred’ is freely available at http://

www.imtech.res.in/raghava/hivcopred.

Methods

Datasets
We extracted 5181 R5, 1018 R5X4- and 612 X4-tropic V3

sequences of HIV-1 from the Los Alamos HIV sequence database

(http://www.hiv.lanl.gov/). After removing all the duplicate

sequences, finally we got 1799 R5, 352 R5X4- and 246 X4-tropic

unique V3 sequences. We merged the R5X4 sequences into X4-

tropic dataset to form a dataset of 598 sequences. Out of these,

1525 R5- and 408 X4-tropic V3 sequences have 35 amino acids.

In summary, our main dataset have 1799 R5- and 598 X4-tropic

unique V3 sequences where no two sequences were identical

(http://www.imtech.res.in/raghava/hivcopred/suppliment.html).

Independent Dataset
It is important to evaluate the performance of a newly

developed method on an independent dataset. For independent

dataset, we extracted all the V3 sequences used in the previous

studies [27,29,32,36] and removed the sequences that were

common with our main dataset (1799/598). We have also

removed any possible identical sequences from remaining V3

sequences. In this way, we obtained an independent dataset

containing 256 R5- and 81 X4-tropic V3 sequences.

Support Vector Machine
In this study, we have employed a highly successful machine

learning technique known as ‘‘Support Vector Machine’’ which is

freely available at http://www.cs.cornell.edu/People/tj/

svm_light/, version SVM-light V6.01. SVM is based on the

structural risk minimization principle of statistics learning theory

[58]. It is a set of related supervised learning methods used for

classification and regression purposes. Users can choose a number

of parameters and kernels in SVM (e.g. linear, polynomial, radial

and sigmoid) or any user-defined kernel. The complete detail of

SVM can be obtained from Vapnik, 1995 [59].

Compositions Patterns
The general length of V3 sequence is 35 amino acids, but it may

vary from 31 to 39. The aim of calculating the composition of V3

sequence is to convert the variable length of the sequences to the

fixed length vectors. This is important and a crucial step because

SVM requires definite length numerical vectors as input. The

Table 7. Comparison of HIVcoPred with other methods on 26 V3 sequences of HIV-1 subtype D, the sequences originally used by
Raymond et al. [55].

Method
Correctly predicted X4/
No. of X4

Correctly predicted R5/
No. of R5 Sensitivity Specificity Accuracy

Geno2pheno10 4/4 12/12 100% 54% 61.53%

SubtypeB combined rule 4/4 15/22 100% 68% 73.07%

HIVcoPred 4/4 19/22 100% 86.36% 88.46%

doi:10.1371/journal.pone.0061437.t007
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AAC is the fraction of each amino acid in a V3 sequence and

provides a vector of 20 dimensions. The DPC was used to

encapsulate the global information about each V3 sequence,

which gives a fixed length pattern of 400 (20 620) dimensions of

vector. In the case of SAAC, a sequence was divided into non-

overlapping fragments and amino acid composition of each

fragment was calculated independently [60,61]. Thus, the

dimension of the final input vector was N 6 20, where N is the

number of fragments. In this study, V3 sequences were divided

into two parts (N = 2) generating 40 input dimensions, respectively.

All these input vectors have been used to develop SVM models.

Binary Patterns Generation
It has been shown in previous studies that the binary patterns of

presenting amino acids in a protein result in good prediction

methods [62]. The peptide of length N was represented by a vector

of dimension N 6 20, where each residue is represented by a

vector of 20 dimensions (e.g. Ala by

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; Cys by

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); contains 20 amino acids.

Considering V3 peptide length of 35 only, input vector of 700

dimensions were generated and used as input variables for SVM

model generation and classification purpose.

Figure 7. Procedure of Modified SVM scores generation by the Hybrid approach. The SVM score is first generated by SAAC based SVM
model. Depending upon the top matched sequences and its E-value (in BLAST output) the SVM score has been modified by 1(+/2), which finally used
in the prediction purpose.
doi:10.1371/journal.pone.0061437.g007
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TSL Matrix Based Input Vectors
TSL is an online tool (http://www.twosamplelogo.org/cgi-bin/

tsl/tsl.cgi) which distinguishes the residue frequency between two

types of datasets, on each of the positions of the given sample

sequences. Besides generating a graphical representation of the

two given datasets (Positive and Negative sample), it also generates

the output format as TXT (raw values) which is the residues’

frequency difference in the two samples with significance value (as

shown by p-value). This table with position-specific frequency

value was used to generate the frequency score of residues in

CCR5 and CXCR4 sequences independently. Since each V3

peptide was 35 amino acids long, so an input vector of 35

dimensions was generated and used as an input vector for the

SVM model generation (Table S26).

Basic Local Alignment Search Tool
In this study, we have used BLAST (blast-2.2.18) for predicting

the R5- and X4-tropic sequences against the database (1799 R5-

tropic and 598 X4-tropic sequences), using ‘blastpgp’ program at

E-value cut-off 0.001. Using the same set of sequences (1799/598)

as the query, leaving the top self-hit, we have calculated the

performance of BLAST in terms of accuracy (percentage coverage)

as well as the percent of correct prediction. The number of positive

and negative sequences not having any hit (target) is considered as

false negative and false positive, respectively.

Hybrid Approach (SAAC+ BLAST)
In this study, we have introduced an entirely different approach

for predicting coreceptor usage by integrating the best SVM

model (SAAC) with BLAST. In this Hybrid approach, prediction

was carried out done in four steps: (i) SAAC based SVM score was

calculated by the model; (ii) BLAST of this sequence was done

against the main database (1799/598) and recorded the E-value of

sequence with maximum similarity; (iii) SVM score, and the E-

value of the same sequence were analyzed and (iv) depending upon

the E-value of the BLAST output; SVM score was modified in the

following two ways: If the ‘top matched sequence’ was CCR5 and

the E-value was ‘‘217 or less e.g. 218, 219,’’ SVM score was

modified by adding ‘‘1’’ in it. Similarly, if the ‘top matched

sequence’ was CXCR4 and the E-value was ‘‘217 or less e.g. 218,

219,’’ SVM score was modified by subtracting ‘‘1’’ from it. This

was a unique way to combine the features of both SAAC based

SVM model and BLAST. The final score was used to predict the

status of the query sequence. In this way, the best of both the

approaches have been integrated into a single output which was

used in the prediction purpose (Figure 7).

Five-fold Cross Validation
There are three main frequently used cross-validation tech-

niques – (1) single independent dataset test (2) sub-sampling test

(e.g. 5- or 10-fold cross validation) and (3) jackknife test or Leave

One Out Cross-validation technique. These tests are widely used

for examining the accuracy of any new statistical prediction

method [63,64]. In our study, we used 5-fold cross validation

technique, where five sets constructed randomly from the data,

one set was used for testing, and the remaining sets were used for

training. This process was repeated five times in such a way that

each test set was used once for testing [65,66]. The final

performance was average of the performances of five sets.

Evaluation Parameters
The evaluation of performance of a method was done by

calculating the sensitivity, specificity, accuracy and MCC of the

prediction, which were routinely used in similar types of studies

[67]. These parameters can be calculated by using following

equations:

Senstivity~
TP

TPzFN
| 100 ð1Þ

Specifity~
TN

TNzFP
| 100 ð2Þ

Accuracy ~
TPzTN

TPzFPzTNzFN
| 100 ð3Þ

MCC ~
TPð Þ TNð Þ{ FPð Þ FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TPzFP�½TPzFN�½TNzFP�½TNzFN�

p ð4Þ

Where TP is correctly predicted positive (R5-tropic) sequences,

TN is correctly predicted negative (X4-tropic) sequences; FP is

wrongly predicted positive (R5-tropic) sequences, and FN is

wrongly predicted negative (X4-tropic) sequences.

The performance of a method is an average of the five subsets,

created by five-fold cross validation technique. For evaluation of

any prediction method, MCC is considered as the most robust

parameter [68]. The MCC value ‘1’ corresponds to the perfect

prediction, whereas ‘0’ points to a completely random prediction.

The limitations of all above-described parameters are that they are

threshold-dependent and they require proper optimization for the

better performance. We have manually optimized all these

parameters and selected the one which gave the best performance.

A known threshold independent parameter is Receiver Operating

Curve, which is a plot between the true positive (TP/TP+FN)

proportion and false-positive (FP/FP+TN) proportion. We have

used the ROCR package to plot ROC and calculating the AUC.

Supporting Information

Figure S1 Amino acid composition of N-terminal (17
residues) in 1799 R5- and 598 X4- tropic V3 sequences.

(TIF)

Figure S2 Amino acid composition of C-terminal (18
residues) in 1799 R5- and 598 X4- tropic V3 sequences.

(TIF)

Table S1 The performance of SVM model (Learning Param-

eter: 2z c –t 2–g 0.05–c 1–j 1) using Amino acid composition

method.

(DOC)

Table S2 The performance of SVM model (Learning Param-

eter: 2z c –t 2–g 0.01–c 3–j 1) using Dipeptide composition

method.

(DOC)

Table S3 The performance of SVM model (Learning Param-
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(DOC)

Table S4 Performance of BLAST on CCR5 dataset of 1799 V3

sequences at different E-values cut-off.

(DOC)
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Table S5 Performance of BLAST on CXCR4 dataset of 598 V3

sequences at different E-values cut-off.

(DOC)

Table S6 The performance of SVM model using Hybrid

method.

(DOC)

Table S7 The performance of SVM model (Learning Param-
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(DOC)
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(DOC)

Table S12 The performance of SVM model (Learning Param-
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(DOC)

Table S13 The performance of Hybrid approach on Pillai et al.

[27] i.e. WetCat dataset. The E-value ‘‘#10215’’ was used to

generate the modified SVM score by Hybrid approach.

(DOC)

Table S14 The performance of SVM model (Learning Param-
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(DOC)
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generate the modified SVM score by Hybrid approach.

(DOC)
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Composition, on dskenel-R5 dataset.

(DOC)

Table S17 The performance of Hybrid approach on Boisvert

et al. [32] i.e. dskernel-R5 method dataset. The E-value

‘‘#10217’’ was used to generate the modified SVM score by

Hybrid approach.

(DOC)

Table S18 The performance of SVM model (Learning Param-
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(DOC)
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(DOC)
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(DOC)
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Table S25 The performance of Hybrid approach on Xu et al.

[30] dataset. The E-value ‘‘#10217’’ was used to generate the

modified SVM score by Hybrid approach.

(DOC)

Table S26 The TXT (raw values) showing residue frequencies of

R5- and X4-tropic sequences generated by using two-sample logo

method.

(DOC)

Acknowledgments

The authors are thankful to Dr Alok Mondal, Dr Amit Arora and Dr

Ankur Gautam for language improvement of this manuscript. We are

appreciative to Dr Chiyu Zhang for providing the dataset for comparative

analysis [30], and we are especially thankful to the reviewers for their

comments and the curators and the contributors of the Los Alamos HIV

sequence database for making the HIV sequence data available for public

use.

Author Contributions

Conceived and designed the experiments: GPSR. Performed the

experiments: RK GPSR. Analyzed the data: RK GPSR. Contributed

reagents/materials/analysis tools: GPSR. Wrote the paper: RK GPSR.

References

1. Sharp PM, Hahn BH (2011) Origins of HIV and the AIDS Pandemic. Cold

Spring Harb Perspect Med 1: a006841.

2. Cormier EG, Dragic T (2002) The crown and stem of the V3 loop play distinct

roles in human immunodeficiency virus type 1 envelope glycoprotein

interactions with the CCR5 coreceptor. J Virol 76: 8953–8957.

3. Cocchi F, DeVico AL, Garzino-Demo A, Cara A, Gallo RC, et al. (1996) The

V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-

mediated blockade of infection. Nat Med 2: 1244–1247.

4. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, et al. (2005)

Structure of a V3-containing HIV-1 gp120 core. Science 310: 1025–1028.

Hybrid Approach for HIV-1 Coreceptor Prediction

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e61437



5. Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1
coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:

657–700.

6. Zaitseva M, Peden K, Golding H (2003) HIV coreceptors: role of structure,
posttranslational modifications, and internalization in viral-cell fusion and as

targets for entry inhibitors. Biochim Biophys Acta 1614: 51–61.

7. Moore JP, Kitchen SG, Pugach P, Zack JA (2004) The CCR5 and CXCR4
coreceptors–central to understanding the transmission and pathogenesis of

human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses
20: 111–126.

8. Grivel JC, Penn ML, Eckstein DA, Schramm B, Speck RF, et al. (2000) Human

immunodeficiency virus type 1 coreceptor preferences determine target T-cell
depletion and cellular tropism in human lymphoid tissue. J Virol 74: 5347–5351.

9. Gorry PR, Churchill M, Crowe SM, Cunningham AL, Gabuzda D (2005)

Pathogenesis of macrophage tropic HIV-1. Curr HIV Res 3: 53–60.

10. Regoes RR, Bonhoeffer S (2005) The HIV coreceptor switch: a population
dynamical perspective. Trends Microbiol 13: 269–277.

11. Wasmuth JC, Rockstroh JK, Hardy WD (2012) Drug safety evaluation of

maraviroc for the treatment of HIV infection. Expert Opin Drug Saf 11: 161–
174.

12. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, et al. (2005) Maraviroc (UK-
427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of

chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency

virus type 1 activity. Antimicrob Agents Chemother 49: 4721–4732.

13. Shoombuatong W, Hongjaisee S, Barin F, Chaijaruwanich J, Samleerat T

(2012) HIV-1 CRF01_AE coreceptor usage prediction using kernel methods

based logistic model trees. Comput Biol Med. 42(9): 885–9.

14. Whitcomb JM, Huang W, Fransen S, Limoli K, Toma J, et al. (2007)

Development and characterization of a novel single-cycle recombinant-virus

assay to determine human immunodeficiency virus type 1 coreceptor tropism.
Antimicrob Agents Chemother 51: 566–575.

15. Raymond S, Delobel P, Mavigner M, Cazabat M, Souyris C, et al. (2010)
Development and performance of a new recombinant virus phenotypic entry

assay to determine HIV-1 coreceptor usage. J Clin Virol 47: 126–130.

16. Trouplin V, Salvatori F, Cappello F, Obry V, Brelot A, et al. (2001)
Determination of coreceptor usage of human immunodeficiency virus type 1

from patient plasma samples by using a recombinant phenotypic assay. J Virol

75: 251–259.

17. Rose JD, Rhea AM, Weber J, Quinones-Mateu ME (2009) Current tests to

evaluate HIV-1 coreceptor tropism. Curr Opin HIV AIDS 4: 136–142.

18. Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R (2007) Bioinformatics
prediction of HIV coreceptor usage. Nat Biotechnol 25: 1407–1410.

19. Schuitemaker H, Kootstra NA (2005) Determination of co-receptor usage of

HIV-1. Methods Mol Biol 304: 327–332.

20. Hartley O, Klasse PJ, Sattentau QJ, Moore JP (2005) V3: HIV’s switch-hitter.

AIDS Res Hum Retroviruses 21: 171–189.

21. Thielen A, Sichtig N, Kaiser R, Lam J, Harrigan PR, et al. (2010) Improved
prediction of HIV-1 coreceptor usage with sequence information from the

second hypervariable loop of gp120. J Infect Dis 202: 1435–1443.

22. De Jong JJ, De Ronde A, Keulen W, Tersmette M, Goudsmit J (1992) Minimal
requirements for the human immunodeficiency virus type 1 V3 domain to

support the syncytium-inducing phenotype: analysis by single amino acid
substitution. J Virol 66: 6777–6780.

23. Fouchier RA, Brouwer M, Broersen SM, Schuitemaker H (1995) Simple

determination of human immunodeficiency virus type 1 syncytium-inducing V3
genotype by PCR. J Clin Microbiol 33: 906–911.

24. Fouchier RA, Groenink M, Kootstra NA, Tersmette M, Huisman HG, et al.

(1992) Phenotype-associated sequence variation in the third variable domain of
the human immunodeficiency virus type 1 gp120 molecule. J Virol 66: 3183–

3187.

25. Resch W, Hoffman N, Swanstrom R (2001) Improved success of phenotype
prediction of the human immunodeficiency virus type 1 from envelope variable

loop 3 sequence using neural networks. Virology 288: 51–62.

26. Lamers SL, Salemi M, McGrath MS, Fogel GB (2008) Prediction of R5, X4,
and R5X4 HIV-1 coreceptor usage with evolved neural networks. IEEE/ACM

Trans Comput Biol Bioinform 5: 291–300.

27. Pillai S, Good B, Richman D, Corbeil J (2003) A new perspective on V3
phenotype prediction. AIDS Res Hum Retroviruses 19: 145–149.

28. Jensen M, Li F, van’t Wout A, Nickle D, Shriner D, et al. (2003) Improved

coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by
motif analysis of human immunodeficiency virus type 1 env V3 loop sequences.

J Virol 77: 13376–13388.

29. Jensen M, Coetzer M, van’t Wout A, Morris L, Mullins J (2006) A reliable
phenotype predictor for human immunodeficiency virus type 1 subtype C based

on envelope V3 sequences. J Virol 80: 4698–4704.

30. Xu S, Huang X, Xu H, Zhang C (2007) Improved prediction of coreceptor

usage and phenotype of HIV-1 based on combined features of V3 loop sequence

using random forest. J Microbiol 45: 441–446.

31. Sander O, Sing T, Sommer I, Low AJ, Cheung PK, et al. (2007) Structural

descriptors of gp120 V3 loop for the prediction of HIV-1 coreceptor usage.

PLoS Comput Biol 3: e58.

32. Boisvert S, Marchand M, Laviolette F, Corbeil J (2008) HIV-1 coreceptor usage

prediction without multiple alignments: an application of string kernels.

Retrovirology 5: 110.

33. Prosperi MC, Fanti I, Ulivi G, Micarelli A, De Luca A, et al. (2009) Robust
supervised and unsupervised statistical learning for HIV type 1 coreceptor usage

analysis. AIDS Res Hum Retroviruses 25: 305–314.

34. Masso M, Vaisman II (2010) Accurate and efficient gp120 V3 loop structure
based models for the determination of HIV-1 co-receptor usage. BMC

Bioinformatics 11: 494.

35. Sing T, Low A, Beerenwinkel N, Sander O, Cheung P, et al. (2007) Predicting

HIV coreceptor usage on the basis of genetic and clinical covariates. Antivir

Ther (Lond) 12: 1097–1106.

36. Dybowski JN, Heider D, Hoffmann D (2010) Prediction of co-receptor usage of

HIV-1 from genotype. PLoS Comput Biol 6: e1000743.

37. Pastore C, Nedellec R, Ramos A, Pontow S, Ratner L, et al. (2006) Human

immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness

mutations compensate for V3 loss-of-fitness mutations. J Virol 80: 750–758.

38. Huang W, Toma J, Fransen S, Stawiski E, Reeves JD, et al. (2008) Coreceptor

tropism can be influenced by amino acid substitutions in the gp41
transmembrane subunit of human immunodeficiency virus type 1 envelope

protein. J Virol 82: 5584–5593.

39. Dimonte S, Mercurio F, Svicher V, D’Arrigo R, Perno CF, et al. (2011) Selected
amino acid mutations in HIV-1 B subtype gp41 are associated with specific

gp120v signatures in the regulation of co-receptor usage. Retrovirology 8: 33.

40. Monno L, Saracino A, Scudeller L, Punzi G, Brindicci G, et al. (2011) Impact of
mutations outside the V3 region on coreceptor tropism phenotypically assessed

in patients infected with HIV-1 subtype B. Antimicrob Agents Chemother 55:
5078–5084.

41. Hoffman NG, Seillier-Moiseiwitsch F, Ahn J, Walker JM, Swanstrom R (2002)

Variability in the human immunodeficiency virus type 1 gp120 Env protein
linked to phenotype-associated changes in the V3 loop. J Virol 76: 3852–3864.

42. Polzer S, Dittmar MT, Schmitz H, Meyer B, Muller H, et al. (2001) Loss of N-
linked glycans in the V3-loop region of gp120 is correlated to an enhanced

infectivity of HIV-1. Glycobiology 11: 11–19.

43. Yamaguchi-Kabata Y, Yamashita M, Ohkura S, Hayami M, Miura T (2004)
Linkage of amino acid variation and evolution of human immunodeficiency

virus type 1 gp120 envelope glycoprotein (subtype B) with usage of the second
receptor. J Mol Evol 58: 333–340.

44. Raghava GP, Han JH (2005) Correlation and prediction of gene expression level

from amino acid and dipeptide composition of its protein. BMC Bioinformatics
6: 59.

45. Garg A, Bhasin M, Raghava GP (2005) Support vector machine-based method
for subcellular localization of human proteins using amino acid compositions,

their order, and similarity search. J Biol Chem 280: 14427–14432.

46. Bhasin M, Raghava GP (2004) Classification of nuclear receptors based on
amino acid composition and dipeptide composition. J Biol Chem 279: 23262–

23266.

47. Kumar R, Panwar B, Chauhan JS, Raghava GP (2011) Analysis and prediction
of cancerlectins using evolutionary and domain information. BMC Res Notes 4:

237.

48. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.

49. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing
classifier performance in R. Bioinformatics 21: 3940–3941.

50. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display
consensus sequences. Nucleic Acids Res 18: 6097–6100.

51. Vacic V, Iakoucheva LM, Radivojac P (2006) Two Sample Logo: a graphical

representation of the differences between two sets of sequence alignments.
Bioinformatics 22: 1536–1537.

52. Kumar M, Gromiha MM, Raghava GP (2008) Prediction of RNA binding sites
in a protein using SVM and PSSM profile. Proteins 71: 189–194.

53. Mefford ME, Gorry PR, Kunstman K, Wolinsky SM, Gabuzda D (2008)

Bioinformatic prediction programs underestimate the frequency of CXCR4
usage by R5X4 HIV type 1 in brain and other tissues. AIDS Res Hum

Retroviruses 24: 1215–1220.

54. Huang W, Eshleman SH, Toma J, Fransen S, Stawiski E, et al. (2007)
Coreceptor tropism in human immunodeficiency virus type 1 subtype D: high

prevalence of CXCR4 tropism and heterogeneous composition of viral
populations. J Virol 81: 7885–7893.

55. Raymond S, Delobel P, Chaix ML, Cazabat M, Encinas S, et al. (2011)

Genotypic prediction of HIV-1 subtype D tropism. Retrovirology 8: 56.

56. Shioda T, Levy JA, Cheng-Mayer C (1992) Small amino acid changes in the V3

hypervariable region of gp120 can affect the T-cell-line and macrophage tropism
of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 89: 9434–

8.

57. Rupp D, Geuenich S, Keppler OT (2010) Poor performance of bioinformatics
programs for genotypic prediction of coreceptor usage of HIV-1 group O

isolates. J Acquir Immune Defic Syndr 53: 412–413.

58. Joachims T (1999) Making large-Scale SVM Learning Practical. Advances in

Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press. 169–

184.

59. Vapnik V (1998) The nature of statistical learning theory. New York: Springer.

60. Kumar M, Verma R, Raghava GP (2006) Prediction of mitochondrial proteins
using support vector machine and hidden Markov model. J Biol Chem 281:

5357–5363.

61. Kumar M, Raghava GP (2009) Prediction of nuclear proteins using SVM and
HMM models. BMC Bioinformatics 10: 22.

Hybrid Approach for HIV-1 Coreceptor Prediction

PLOS ONE | www.plosone.org 12 April 2013 | Volume 8 | Issue 4 | e61437



62. Chauhan JS, Mishra NK, Raghava GP (2009) Identification of ATP binding

residues of a protein from its primary sequence. BMC Bioinformatics 10: 434.
63. Chou KC, Zhang CT (1995) Prediction of protein structural classes. Crit Rev

Biochem Mol Biol 30: 275–349.

64. Chen C, Chen L, Zou X, Cai P (2009) Prediction of protein secondary structure
content by using the concept of Chou’s pseudo amino acid composition and

support vector machine. Protein Pept Lett 16: 27–31.
65. Ding H, Luo L, Lin H (2009) Prediction of cell wall lytic enzymes using Chou’s

amphiphilic pseudo amino acid composition. Protein Pept Lett 16: 351–355.

66. Bhasin M, Raghava GP (2004) ESLpred: SVM-based method for subcellular

localization of eukaryotic proteins using dipeptide composition and PSI-BLAST.
Nucleic Acids Res 32: W414–419.

67. Chauhan JS, Mishra NK, Raghava GP (2010) Prediction of GTP interacting

residues, dipeptides and tripeptides in a protein from its evolutionary
information. BMC Bioinformatics 11: 301.

68. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinformatics

16: 412–424.

Hybrid Approach for HIV-1 Coreceptor Prediction

PLOS ONE | www.plosone.org 13 April 2013 | Volume 8 | Issue 4 | e61437


