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Abstract

Sampling techniques such as Respondent-Driven Sampling (RDS) are widely used in epidemiology to sample ‘‘hidden’’
populations, such that properties of the network can be deduced from the sample. We consider how similar techniques can
be designed that allow the discovery of the structure, especially the community structure, of networks. Our method involves
collecting samples of a network by random walks and reconstructing the network by probabilistically coalescing vertices,
using vertex attributes to determine the probabilities. Even though our method can only approximately reconstruct a part
of the original network, it can recover its community structure relatively well. Moreover, it can find the key vertices which,
when immunized, can effectively reduce the spread of an infection through the original network.
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Introduction

The representation of data as networks has become increasingly

popular in recent years in diverse application areas, including

social science, biology, and epidemiology. However, real-world

datasets are often incomplete because it may be difficult or

impossible to collect complete data with available time or

resources. In the case of network data, techniques have been

developed to estimate properties of a network from samples of it,

and various methods devised to discover or predict missing

information, which can then be added to the network. For

example, there are numerous strategies for finding missing edges

[1] and even for finding the correct sign or direction of existing

edges, in the context of signed [2] and directed [3] networks,

respectively.

In contrast to the ‘‘edge prediction’’ problem, we are concerned

with a different form of incomplete network. We assume that all

edges, and vertices, are present in the network, but that vertices

may have incorrectly been duplicated. This kind of error is very

common, for example, in bibliographic databases and in

genealogy, where a single individual may be known by more

than one name and therefore represented by more than one

vertex. Our task is to take a network with possibly duplicated

vertices and attempt to coalesce all duplicates into a single vertex.

Clearly, this can be done perfectly only if the identity of each

vertex is known. However, if we have only partial information

about vertices, we can still estimate the probability that each pair

of vertices represent the same individual, and therefore predict

which pairs should be coalesced. Having reconstructed the

network, we can then attempt to identify features of it, such as

the communities or the vertices which are important in some

sense.

One potential application of this is epidemiology. It is well

known that the structure of a contact network strongly influences

the spread of an infectious disease in it. For example, in

community-structured networks, infections travel fast within

communities but slowly between them [4,5]. High-degree vertices

also play an important role in spreading disease [6]: it is effective

to control disease transmission by immunizing high-degree people

in a disassortative social network. There are some other practical

applications, for example, identifying key individuals in a criminal

network [7].

Knowledge of the network structure could clearly be invaluable

in disease control or crime prevention, etc. The problem is that it

is often very difficult to discover the structure of real networks,

especially social networks. However, it is often possible to obtain

samples (subgraphs) of the network. In epidemiology, techniques

such as Respondent-Driven Sampling (RDS) [8] and contact

tracing (CT) [9] are often used for this purpose. Our idea is to

reconstruct networks by collecting samples based on paths

(sequences of adjacent vertices) starting from vertices that are

randomly selected from the population, and using these to

reconstruct the network.

Our technique works as follows. First, a member of the

population is randomly selected as a ‘‘seed’’, which begins the first

sample path. Then one of the neighbors of the seed is randomly

selected and added to the end of the path. The process is repeated

from the last vertex that was added to the path. If the selected

neighbor already exists in any of the paths collected so far, we

choose a different neighbor. The path stops growing if the latest

vertex has no neighbors that have not already been sampled.

When a path stops growing, a new path is started, beginning at a

new randomly-selected seed. This is repeated until the total size

(number of vertices) of all paths reaches a specified limit. We call

this the Random Path Method (RPM). In our High-degree Path
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Method (HPM), we choose the highest-degree neighbor at each

step, instead of a random one.

Both methods produce a set of paths: linear samples of the

network about which we have complete information. In particular,

the sampling strategy implies that we know the identity of every

vertex in the paths, in order to avoid duplicates. For example, in

the case of social networks, the members of these paths can be

interviewed to obtain arbitrarily detailed information about them.

In the second stage of our process, we convert each sample path to

a sample tree, in which the seed becomes the root of the tree and the

successor of each vertex v in the path becomes an offspring of v in

the tree. Now a vertex v may have additional offspring in the tree:

these are neighbors of v in the underlying network, and may (but

need not) include v’s predecessor and successor in the path. In the

case of social networks, these additional offspring of v are ‘‘friends’’

of v which have been reported by v, but we do not have complete

knowledge about them; in particular, they may be duplicated.

Thus, a sample tree contains vertices of two types, which we call

respondents and friends.

Each respondent is asked to provide a description of each

chosen friend which, for practical reasons, is very unlikely to

uniquely identify the friend. We use these descriptions to choose

which pairs of vertices might represent the same individual, and

coalesce them into a single vertex. Naturally, the success of this

technique depends on the accuracy of descriptions (increased

detail reduces the chance of incorrect matching) as well as on the

size and number of the trees. Only if the trees cover the whole

network and the descriptions are unique can we expect to

reconstruct the underlying network perfectly. However, by

exploiting knowledge of the frequency of individuals in the

population matching each description, we can probabilistically

coalesce vertices to build a large ensemble of possible networks,

from which we can estimate some properties of the underlying

network.

We explore this technique in the remainder of the paper.

Essentially, we evaluate the similarity between the reconstructed

network and the original underlying network, varying the features

of the underlying network and the parameters of the sampling

procedure. ‘‘Similarity’’ can be defined in several ways: similarity

of edges, similarity of community structure, and similar ranking of

various vertex properties. Finally, we use the technique to identify

key vertices in a contact network for an infectious disease (i.e.,

those that might be important to the spread of infection) and

immunize them. We find that choosing the key vertices from a

relatively small sample can control the spread of infection almost

as well as choosing them from the entire network.

Methods

The underlying network
We assume the existence of an a priori unknown network, which

we call the underlying network. This is a simple undirected,

Figure 1. Underlying network, samples, and reconstructed network. A. Underlying network. B. Sample paths, with respondents in red and
friends in green. C. True network. D. Reconstructed network: green vertices represent incorrectly coalesced pairs.
doi:10.1371/journal.pone.0061006.g001
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unweighted network. Every vertex is characterized by a single,

discrete-valued, attribute. For example, in a social network, this

could represent any real-life property of the individual, such as

gender, age, hair color, etc., or a tuple of them, e.g., (male, 34,

brown). In general, this divides the vertices into a number (g) of

categories. Therefore, without loss of generality, we assume that

the attribute of v, av, is an integer in the range [1,g]. The

distribution of attribute values can vary; for example, a uniform

distribution could be used for age while a normal distribution is

more realistic for height.

Sampling procedure
The first phase of our procedure collects a sample comprising a

set of paths with a total size of approximately nr vertices:

1. Choose any vertex s (that does not already appear in a path)

from the underlying network, as seed.

2. Add s to a new path.

3. If size of all paths = nr, terminate.

4. For the most recently added vertex v, try to obtain a neighbor u

of v that is not in any path.

5. If u is found, add u to current path and repeat from step 3.

6. If u is not found, repeat from step 1.

In step 4, the vertex that we find must be a neighbor of v in the

underlying network and must not have already been added to a

path. This way we construct paths sequentially, until the total size

is approximately the required size, nr.

In the second phase, we obtain from each respondent vertex v

up to f ‘‘friends’’, which again must be neighbors of v in the

underlying network. If v has more than f neighbors, any f of the

neighbors can be chosen. If v has f neighbors or fewer, all of v’s

neighbors are chosen. The friends chosen by v are added as

offspring of v in the sample tree. A vertex can be chosen as a friend

even if it already appears in a tree. Finally, each friend vertex u is

labeled with a ‘‘description’’ du: a set of categories that includes u’s

actual category. Descriptions are assumed to be correct but not

necessarily precise. For example, if the vertex has (age) attribute 34

in the underlying network, its description in the sample tree could

be, for example, {33,34} or {34,35,36}. If the same network

vertex appears as a friend more than once, each occurrence may

have a different (correct) description. The final trees contain nr+nf

vertices: nr respondents and nf friends.

Figure 1(b) shows one possible set of sample trees, sampled from

the underlying network of Figure 1(a), with vertices 1 and 3 as

seeds. Notice that a vertex (e.g., 31) appears more than once in the

trees (e.g., 31, 31’, 31’’), if it is a friend of more than one

respondent.

Network reconstruction
In this phase we attempt to convert the sample trees to a

network by coalescing all vertices that represent the same vertex in

the underlying network. If we could do this perfectly, we would

end up with a subgraph of the underlying network which contains

all nodes and edges that appear in the sample trees; we call this

subgraph the true network. Figure 1(c) shows the true network

corresponding to Figure 1(b).

Our network reconstruction algorithm repeatedly performs the

following steps:

1. Choose any two vertices u and v from the sample trees.

2. Calculate the probability p that u and v represent the same

individual.

3. With probability p, coalesce u and v.

4. If u is a respondent and v is a friend, the coalesced vertex is u,

still labeled with au.

5. If u and v are both friend vertices, the coalesced vertex is a

friend vertex labeled with the description du > dv.

These steps are repeated until the network size is reduced from

nr+nf vertices to the desired size, nt.

The probability p calculated in step 2 depends on whether u and

v are respondents or friends. If they are both respondents, p = 0 (all

respondents are known to be distinct).

For respondent u and friend v:

N If there is an edge {u,v}, p = 0, because a respondent cannot

choose himself as a friend.

N If au 1 dv (u does not satisfy the description of v), p = 0.

N Otherwise,

p~
1

nt Pr (dv)
: ð1Þ

where Pr(dv) is the probability of an arbitrary vertex satisfying

description dv. This is because there are, on average, nt Pr(dv)

vertices satisfying that description and u is equally likely to be any

of them.

For friend u and friend v:

N If u and v have a common neighbor (a respondent), p = 0,

because all friends of a respondent are distinct.

N Otherwise,

p~
( Pr (du\dv)=Pr (du))( Pr (du\dv)=Pr (dv))

nt Pr (du\dv)

~
Pr (du\dv)

nt Pr (du) Pr (dv)
:

ð2Þ

The probabilities Pr(d) depend on what is known about the

underlying network. For example, if descriptions are ages (in years)

and are uniformly distributed over a range of 50 years,

Pr({34,35,36}) = 3/50. If we try to match two friend vertices with

descriptions {33,34} and {34,35,36}, p would be (1/50)/(nt(2/

50)(3/50)) = 50/6nt, assuming that nt is reasonably large.

Figure 1(d) shows one possible network produced by our

network reconstruction. Most duplicate vertices have been

Table 1. Real-world networks.

Networks Ref. Type Vertices Edges

Email [11] social 1133 5451

Blogs [12] social 3982 6803

CA-GrQc [13] collaboration 5242 28980

Erdös1997 [14] collaboration 5482 8972

doi:10.1371/journal.pone.0061006.t001
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coalesced correctly ({2,2’}, {23,23’}, and {31,31’}), but one pair

({27,28’}) has been merged wrongly, shown in green.

Experimental framework
In the next section, we evaluate our method empirically. In

order to evaluate our reconstructed networks, we begin with a

known underlying network and simulate our sampling procedure

on it.

For the underlying network we use a selection of real social

networks, listed in Table 1. We also use synthetic benchmark

networks generated by the method of Lancichinetti et al. [10],

which allows us to vary the parameters, especially the strength of

community structure. The LFR networks have several parameters:

1. n is the number of vertices.

2. Ækæ and kmax are the average and maximum degree.

3. t1 and t2 are the exponents of the power-law distribution of

vertex degrees and community sizes.

4. cmin and cmax are the minimum and maximum community size.

5. m is the mixing parameter: each vertex shares, on average, a

fraction m of its edges with vertices in other communities.

Having obtained or created the network, we then label the

vertices with attributes which are integers in [1,g]; the number of

categories, g, can be varied. The values are assigned randomly,

according to a uniform or normal distribution. As an optional step,

the network can then be made more assortative by swapping the

attribute values of two vertices so that the values of neighboring

vertices become more similar. By default, for most experiments in

this paper, we use a normal distribution and do not try to increase

assortativity.

In our Random Path Method, each seed is chosen randomly

from the underlying network and each subsequent vertex is chosen

randomly from the neighbors. In our High-degree Path Method,

each seed is randomly chosen from vertices with degree 5 or more,

and we always add the highest-degree neighbor to the path. The

friends (at most f) of v are selected randomly from v’s neighbors in

the underlying network. The description attached to each friend is

a randomly-chosen range of c (which can be varied) consecutive

categories that includes the actual category of the corresponding

vertex in the underlying network.

In our experiments, we assume that we know the size of the true

network, nt, so that the network reconstruction phase stops

coalescing vertices when that size is reached. This allows us to take

the true network as the best possible reconstructed network. In real

use, nt would not be known, but it should be possible to devise

suitable alternative termination criteria; for example, to stop

coalescing when the average degree (or other network property) of

the reconstructed network reaches a realistic value.

Results and Discussion

Evaluation of the algorithm
First we evaluate our method for reconstructing networks: in

particular, how its accuracy is affected by the properties of the

Figure 2. Performance of our method. Precision, for varying g, on assortative and non-assortative LFR networks with normal distribution with
n = 1460, Ækæ = 20, kmax = 30, m = 0.1, t1 = 3, t2 = 1, cmin = 10, and cmax = 20. A. Random Path Method. B. High-degree Path Method.
doi:10.1371/journal.pone.0061006.g002

Figure 3. Performance of our method. Precision, for normal distribution and uniform distribution of vertex attributes, on non-assortative LFR
networks with n = 1460, Ækæ = 20, kmax = 30, m = 0.1, t1 = 3, t2 = 1, cmin = 10, and cmax = 20. A. Random Path Method. B. High-degree Path Method.
doi:10.1371/journal.pone.0061006.g003
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underlying network and the parameters of the sampling proce-

dure. Network properties are:

1. Number of categories of vertex attributes, g.

2. Distribution of vertex attributes: e.g., uniform or normal

distribution.

3. Whether the vertex attributes are assortative or non-assortative.

In an assortative network we attempt to make vertex attributes

similar to their neighbors’, while attributes in the non-

assortative network are randomly assigned.

4. Strength of community structure, m: each vertex shares, on

average, a fraction m of its edges with vertices in other

communities.

By default, we use normally distributed, non-assortative,

networks.

Parameters of the sampling procedure include:

1. Number of neighbors named as friends, f.

2. Number of consecutive categories in descriptions of friends, c.

Increasing c reduces the precision of the description; for

example, describing a friend’s age to the nearest 5 years (c = 5)

instead of giving the exact age in years (c = 1).

3. Size of reconstructed network after coalescing, nt.

Default values that we use are f = 5 (a common value in surveys

of friendship networks) and c = 1, while nt is set to 8% of the

underlying network size; this is approximately the fraction used in

some real surveys of ‘‘hidden populations’’ such as drug users.

However, we also examine the effect of varying each of these

parameters.

To measure the accuracy of the network reconstruction, we use

coalescing precision, which we define as:

coalescing precision~number of correct coalesced pairs=

number of coalesced pair
ð3Þ

where a pair of vertices {u,v} in the sample trees is a coalesced pair if

our method coalesces them, and a correct coalesced pair if (also) u and

v represent the same vertex in the underlying network.

Figure 2 shows the effect of varying g on coalescing precision, for

both assortative and non-assortative networks. A high g represents

more accurate, less ambiguous, descriptions. As expected, the

more information about descriptions obtained, the higher the

precision. Our method performs better on non-assortative

networks than assortative networks because, in the latter, the

descriptions of vertices in sample trees are more likely to be similar

and therefore harder to coalesce correctly. The High-degree Path

Method performs better than the Random Path Method, and this

is true of subsequent experiments; we discuss this in the

conclusions.

Figure 3 shows the effect of different distributions of vertex

attributes for the underlying networks on coalescing precision. Our

method works slightly better for uniform than for normal

distribution; this is because, with a normal distribution, more

Figure 4. Performance of our method. Precision, varying m on non-assortative LFR networks with normal distribution with n = 1460, Ækæ = 20,
kmax = 30, t1 = 3, t2 = 1, cmin = 10, cmax = 20, and g = n. A. Random Path Method. B. High-degree Path Method.
doi:10.1371/journal.pone.0061006.g004

Figure 5. Performance of our method. Precision, varying f on non-assortative LFR networks with normal distribution with n = 1460, Ækæ = 20,
kmax = 30, m = 0.1, t1 = 3, t2 = 1, cmin = 10, cmax = 20, and g = n. A. Random Path Method. B. High-degree Path Method.
doi:10.1371/journal.pone.0061006.g005
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individuals fall into a smaller number of categories, so the

categories are less effective in distinguishing them.

Figure 4 shows the effect of community structure on coalescing

precision. The parameter m controls the community structure of

the underlying network. When we increase m (for a less distinct

community structure), the coalescing precision gradually falls. This

is because, with a smaller m, the vertices in each sample tree are

more likely to belong to the same community and therefore any

coalescing of them is more likely to be correct by chance.

As f increases, the sample trees tend to become larger, and so

we need fewer of them because nt (the total size of all trees) is fixed.

They also contain a larger fraction of friends, which carry less

information than respondents and, unlike them, might be

duplicated. Therefore, we expect worse results when f is larger.

Figure 5 shows the coalescing precision when we vary f. In this

example, the number of friends does not noticeably affect the

coalescing precision of the method. Therefore, we use f = 5,

because it is a common value in surveys of friendship.

In reality, the descriptions of friends are not necessarily

accurate, for example, a range of heights can be described for a

friend. Therefore, we vary c, the number of categories in a range

for describing friends. Figure 6 shows the effect of different ranges

of categories on coalescing precision. As expected, a wider range

results in lower precision because there are more pairs of vertices

that could be (incorrectly) coalesced.

Community structure detection
The topological features of networks have attracted much

attention in recent disease transmission research [5]. In particular,

in a contact network, a disease spreads quickly between individuals

inside communities and slowly between communities. Our

hypothesis is that community structure in the underlying network

can be predicted by the community structure found in the

reconstructed network. We test this by using a good community

detection algorithm (Infomap [15]) to detect communities in the

reconstructed and true networks and then using the Normalized

Mutual Information (NMI) measure to compare the partitions

found in each network. However, we cannot use this to compare

the partitions obtained in the underlying network and recon-

structed network, because the reconstructed network omits most of

the vertices and edges from the underlying network. Therefore, we

use another measure, which we call community precision:

community precision~number of pairs in same community

in reconstructed and underlying networks=

number of pairs in thesame community

in the reconstructed network:

ð4Þ

Figure 7 shows a comparison of the partitions obtained in the

true network and the reconstructed network by using NMI, and

varying g. Figure 8 shows the community precision between the

Figure 6. Performance of our method. Precision, varying c on non-assortative LFR networks with normal distribution, with n = 1460, Ækæ = 20,
kmax = 30, m = 0.1, t1 = 3, t2 = 1, cmin = 10, cmax = 20, and g = n. A. Random Path Method. B. High-degree Path Method.
doi:10.1371/journal.pone.0061006.g006

Figure 7. Comparison of partitions obtained in true network and reconstructed network. Normalized Mutual Information, varying g, with
n = 1460, Ækæ = 20, kmax = 30, m = 0.1, t1 = 3, t2 = 1, cmin = 10, and cmax = 20. A. Random Path Method. B. High-degree Path Method.
doi:10.1371/journal.pone.0061006.g007
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Figure 8. Comparison of partitions obtained in underlying network and reconstructed network. Community precision, varying g, with
n = 1460, Ækæ = 20, kmax = 30, m = 0.1, t1 = 3, t2 = 1, cmin = 10, and cmax = 20. A. Random Path Method. B. High-degree Path Method.
doi:10.1371/journal.pone.0061006.g008

Figure 9. Rank correlations for Email network. A. Degree (RPM). B. kout (RPM). C. Embeddedness (RPM). D. Degree (HPM). E. kout (HPM). F.
Embeddedness (HPM).
doi:10.1371/journal.pone.0061006.g009
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underlying and reconstructed networks. Both results show

substantial similarity between the correct communities and those

found in the reconstructed network. Figure 7 shows that

community structure is found more accurately when the network

is assortative even though the coalescing precision is lower

(Figure 2). This is because, with our reconstruction method, even

incorrect coalescing is likely to coalesce vertices that are in the

same community if the network is assortative.

Rank correlation
In addition to detecting community structure, we are also

interested in identifying the important vertices, which may be

more important in spreading disease. Controlling (e.g., immuniz-

ing) key vertices could prevent a current or potential epidemic. In

our experiments, we consider three vertex properties:

1. degree(v). the number of neighbors of a vertex v. The vertices

with high degree are important.

2. kout(v). the number of neighbors of a vertex v in other

communities. A vertex with a high kout is important because it

is a ‘‘bridge’’ vertex.

3. embeddedness(v). the fraction of neighbors of a vertex v

that belong to the same community as this vertex [16]. A

‘‘bridge’’ vertex should have a low embeddedness. Embedded-

ness is related to the other two properties by the equation:

embeddedness(v)~(degree(v){kout(v))=degree(v): ð5Þ

We want to discover whether vertices in the reconstructed network

that are ‘‘important’’ (according to each of these three properties)

play the same role in the underlying network. The procedure

follows the steps below:
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Figure 10. Rank correlations for Blogs network. A. Degree (RPM). B. kout (RPM). C. Embeddedness (RPM). D. Degree (HPM). E. kout (HPM). F.
Embeddedness (HPM).
doi:10.1371/journal.pone.0061006.g010
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1. Calculate different properties for each of the vertices in the

reconstructed network and the underlying network separately

(ignoring vertices that do not occur in the reconstructed

network).

2. Rank the vertex lists according to those values.

3. Compare the ranked lists of the reconstructed network and the

underlying network by using a rank correlation coefficient.

Spearman’s rank correlation coefficient [17] has been chosen:

this measures the similarity between two ranked lists of the

same set of items.

Figures 9–12 show the results for our four real networks. In all

cases, the similarity between the true network (TN) and underlying

network (ULN) is less than perfect, because the true network lacks

many of the edges present in the underlying network. The

similarity between the reconstructed network (RCN) and true

network increases with g. The similarity between the reconstructed

network and underlying network is lower still but also increases

with g. Degree is slightly better predicted than kout, while

embeddedness is the hardest to predict of the three measures.

Disease simulation
In the last section, we showed that it is possible to predict certain

vertex properties of a network from a sample, but only with

moderate accuracy. Moreover, since the sample contains only a

small fraction (8% in our experiments) of the underlying network,

our method can predict nothing about the remaining 92% of

vertices. The question is whether it is useful to have this imperfect

information about the vertex properties of such a small sample of

the network. We investigate this by using this information (the key

vertices in the reconstructed network) to try to control the spread

of disease in the underlying network.

The experiments are designed as follows:

1. Calculate different properties for vertices in the reconstructed

network (8% of the underlying network size) and order the list

Figure 11. Rank correlations for CA-GrQc network. A. Degree (RPM). B. kout (RPM). C. Embeddedness (RPM). D. Degree (HPM). E. kout (HPM). F.
Embeddedness (HPM).
doi:10.1371/journal.pone.0061006.g011
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of vertices. We calculate the average value of each vertex

property over 100 instances of such networks.

2. Immunize the top-ranked vertices.

3. Simulate a disease outbreak in the underlying network.

4. Measure the total epidemic size, to assess the effectiveness of

the control strategy.

We compare this method with an alternative whereby the actual

value of each property is calculated using the whole underlying

network. This is not feasible in real life because the underlying

network is unknown, but can provide an upper bound for

comparison with our strategies.

In step 3, we simulate the spread of an infectious disease using a

susceptible-infected-recovered (SIR) model, taking the real-world

networks in Table 1 as the underlying networks. We initially infect

0.2% of the vertices in the underlying network, then at each time

step, there is a fixed probability (0.08) of the disease being

transmitted to a susceptible vertex from each infectious neighbor,

and a vertex remains infectious for a fixed period (four time steps).

Figures 13–16 (a) show results of the three strategies applied to

the underlying network, together with a strategy of immunizing

vertices selected randomly from the whole network. Figures 13–16

(b) and (c) show the same strategies where the vertex is chosen only

from the reconstructed network with our two sampling methods.

Because the latter is much smaller than the underlying network

(8% of the size), the results are inevitably worse than choosing

from the complete network, but still remarkably good. It may be

thought that the immunization strategy is influenced only by which

vertices appear in the sample trees, and hence reconstructed

networks, rather than the values of the vertex properties. For

example, vertices in sample trees naturally have a higher degree

than average. To show that this is not the case, Figures 13–16 (b)

and (c) also show a ‘‘random’’ strategy in which vertices are

randomly selected from the reconstructed network. Here, because

each reconstructed network contains a different set of vertices, we

Figure 12. Rank correlations for Erdös1997 network. A. Degree (RPM). B. kout (RPM). C. Embeddedness (RPM). D. Degree (HPM). E. kout (HPM). F.
Embeddedness (HPM).
doi:10.1371/journal.pone.0061006.g012
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Figure 13. Performance of four strategies on controlling disease in Email network. Effect on epidemic size, varying number of immunized
vertices. A. Immunizing top-ranked vertices in underlying network. B. Immunizing top-ranked vertices in reconstructed network: Random Path
Method. C. Immunizing top-ranked vertices in reconstructed network: High-degree Path Method.
doi:10.1371/journal.pone.0061006.g013

Figure 14. Performance of four strategies on controlling disease in Blogs network. Effect on epidemic size, varying number of immunized
vertices. A. Immunizing top-ranked vertices in underlying network. B. Immunizing top-ranked vertices in reconstructed network: Random Path
Method. C. Immunizing top-ranked vertices in reconstructed network: High-degree Path Method.
doi:10.1371/journal.pone.0061006.g014
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Figure 15. Performance of four strategies on controlling disease in CA-GrQc network. Effect on epidemic size, varying number of
immunized vertices. A. Immunizing top-ranked vertices in underlying network. B. Immunizing top-ranked vertices in reconstructed network: Random
Path Method. C. Immunizing top-ranked vertices in reconstructed network: High-degree Path Method.
doi:10.1371/journal.pone.0061006.g015

Figure 16. Performance of four strategies on controlling disease in Erdös1997 network. Effect on epidemic size, varying number of
immunized vertices. A. Immunizing top-ranked vertices in underlying network. B. Immunizing top-ranked vertices in reconstructed network: Random
Path Method. C. Immunizing top-ranked vertices in reconstructed network: High-degree Path Method.
doi:10.1371/journal.pone.0061006.g016
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order vertices by the frequency with which they appear in

reconstructed networks. Although this performs better than

random selection from the whole underlying network, it is less

good than our proposed strategies.

In summary, immunizing a small number of key vertices in the

reconstructed network can control the spread of infection almost

as well as immunizing the same number of key vertices in the

underlying network. The kout strategy is usually the best in the

underlying network, but degree is the best strategy in the

reconstructed network.

Finally, we investigate how sensitive our method is to the size of

the sample. In Figure 17 we plot the effect on epidemic size in two

of our real networks. We immunize the top 1% of vertices,

according to degree and kout, varying the size of the reconstructed

network from which the vertices are chosen. The results suggest

that our method is not particularly sensitive to the sample size,

provided that the reconstructed network (size nt) is at least 5% of

the underlying network size. It is worth mentioning that, although

the underlying network is generally unknown, its size may be easy

to estimate (e.g., the number of drug users in a city can be

estimated from the city’s population and the average prevalence of

drug use). Therefore, the sample size (nr and nf) can be determined

to make nt be approximately the desired fraction of the underlying

network size.

Conclusions

We have described a sampling technique that allows some of the

structure of networks to be recovered. Sampling strategies such as

RDS [8] are already widely used in epidemiology to sample data

from hidden populations. Indeed, Ref. [18] has examined the

relation between community structure and RDS, showing that

community structure in a network has an adverse effect on the

sampling ability of RDS. However, RDS has not hitherto been

used to find community structure in networks.

Our method does this by sampling trees and attempting to

transform the trees to networks. The last step is a kind of missing

data problem, in which the missing information is the identity of

the pairs of vertices that represent the same individual. We solve

this by using vertex attributes to calculate the probability that two

vertices represent the same individual and coalesce them

probabilistically. This is reminiscent of probabilistic linkage

techniques, often used to combine data about the same individuals

from multiple databases [19].

The results indicate that, not surprisingly, our method can

reconstruct networks more accurately when descriptions are more

precise. An interesting point is that community structure can be

recovered quite well even when descriptions are not very accurate,

because of the robustness of community detection methods. When

the network features assortative mixing, which is common with

community structure, the partitions found are even more accurate

than in non-assortative networks. We also find that the ranking of

vertices, with respect to degree and kout, can be estimated quite

accurately. Even though our estimate applies only to a small

fraction of the contact network, it is remarkable that the spread of

disease can be controlled well by immunizing the key vertices

discovered in this way.

We have actually described two methods: the High-degree Path

Method (HPM) and the Random Path Method (RPM). The HPM

generally performs better. This is because the sampled vertices

have higher degree and are more likely to form larger sample

trees, and therefore larger components, in the reconstructed

network; these components contain more information about the

Figure 17. Performance of degree and kout properties in controlling disease in real-world networks. Effect on epidemic size, varying the
size of the reconstructed network. (a) Blogs (RPM). (b) Erdös1997 (RPM). (c) Blogs (HPM). (d) Erdös1997 (HPM).
doi:10.1371/journal.pone.0061006.g017
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network structure than a larger number of very small components.

However, the RPM also works well and is more practical because

it is usually easier to discover any neighbors of a respondent than to

find all of them, as the HPM requires.

It remains to be seen how well the technique will work in real

life. This depends largely on how accurately respondents describe

their friends, which will vary according to the nature of the survey.

To evaluate the reconstructed network, we would also need to

have access to the real underlying network, which is rarely

available.

One area for future work is clearly to test the techniques in

practice, by targeting real members of a clearly defined small

population whose network structure can be verified. This is likely

to be quite expensive because of the need to interview respondents.

Another idea is to modify our sampling procedure to make it

interactive: for example, if the probability of coalescing two friend

vertices (friends of respondents r1 and r2) is too low, we could ask r1
and r2 to provide more detailed descriptions of those friends, or we

could provide r1’s friend description to r2, for confirmation.
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