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Abstract

Social networking services (e.g., Twitter, Facebook) are now major sources of World Wide Web (called ‘‘Web’’) dynamics,
together with Web search services (e.g., Google). These two types of Web services mutually influence each other but
generate different dynamics. In this paper, we distinguish two modes of Web dynamics: the reactive mode and the default
mode. It is assumed that Twitter messages (called ‘‘tweets’’) and Google search queries react to significant social movements
and events, but they also demonstrate signs of becoming self-activated, thereby forming a baseline Web activity. We define
the former as the reactive mode and the latter as the default mode of the Web. In this paper, we investigate these reactive
and default modes of the Web’s dynamics using transfer entropy (TE). The amount of information transferred between a
time series of 1,000 frequent keywords in Twitter and the same keywords in Google queries is investigated across an 11-
month time period. Study of the information flow on Google and Twitter revealed that information is generally transferred
from Twitter to Google, indicating that Twitter time series have some preceding information about Google time series. We
also studied the information flow among different Twitter keywords time series by taking keywords as nodes and flow
directions as edges of a network. An analysis of this network revealed that frequent keywords tend to become an
information source and infrequent keywords tend to become sink for other keywords. Based on these findings, we
hypothesize that frequent keywords form the Web’s default mode, which becomes an information source for infrequent
keywords that generally form the Web’s reactive mode. We also found that the Web consists of different time resolutions
with respect to TE among Twitter keywords, which will be another focal point of this paper.
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Introduction

Approximately 90% of the World Wide Web’s (hereafter

referred to as ‘‘Web’’) data stream is said to have been created

within the last few years [1], and the total amount of data is

increasing every day. It is also said that Web data volumes are

doubling every two years. This exceptional growth is mainly due to

emerging social network services (SNSs), such as Twitter and

Facebook. The advantage of SNSs became widely recognized after

the Egyptian revolution of February 11, 2011 and the earthquake

of March 11, 2011 in Tohoku, Japan. Facebook helped bring

worldwide attention to the historical event in Egypt, and Twitter

served as an efficient platform for communicating and obtaining

information regarding the earthquake. This shift in the Web from

search to communication over the last 10 years has been

remarkable. People are using the Web to see what other people

are doing and to share feelings and ideas.

The two types of Web services, represented here by Google and

Twitter respectively, constitute the majority of the information

being diffused and circulated on the Web. Google and Twitter

have different memory structures. For example, only 126 out of

the 3,479 unique trending topics (3.6%) from Twitter exist in the

4,597 unique hot keywords of Google [2]. These keywords are

mostly associated with real-world events, celebrities, and movies.

On average, 95% of the hot keywords per day are new in Google,

while only 72% of the hot keywords are new in Twitter [2]. This

feature is worth noting, since it reflects that retweets, replies, and

mentions are prevalent in Twitter; however, such interaction

among users is not possible with Google searches. Retweet is a

unique feature in Twitter called retweeting (RT), whereby people

repost their favorite messages (called ‘‘tweets’’) on their timelines.

Statistics show that half of the RT occurs within an hour and 75%

in less than a day [2]. However, approximately 10% of the

retweets occur a month later. This implicit cooperative feature of

Twitter makes Twitter’s time series different from Google’s time

series and as the data show, because of this, the same trending

topics persist over a relatively longer period of time in Twitter.

In order to investigate these differences between Google and

Twitter, we examined how these two services affect each other.

How are their time series different from each other? Does

information flow from Twitter to Google or vice versa? We

conducted an intensive time series analysis to answer these

questions, and to better characterize Web dynamics with respect

to Google and Twitter. In this paper, we distinguish between two

modes of Web dynamics: one is reactive mode and the other is default

mode. There are examples in which Twitter and Google react
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strongly to social movements by producing bursting behaviors. This

is what we call the Web’s reactive mode. For example, a burst in the

popularity of keywords such as ‘‘earthquake’’ or ‘‘nuclear plant’’

was observed on and after the earthquake of March 11, 2011 in

Japan.

The Web also demonstrates aperiodic non-stationary temporal

dynamics without necessarily showing bursting behavior, forming

a baseline Web activity. We define this baseline activity as the

Web’s default mode. People’s tweets may or may not be affected by

other users’ tweets appearing in their timelines, which shows the list

of tweets from users they are following. Thus, although global

information is not explicitly shared to cooperatively generate

tweets that include the same keywords, these tweets may reflect a

weak correlation by circulating within Twitter through users’

timelines. This reminds us of the classic network theory called weak

ties [3]. The potential for organizing informational structures and

patterning through weak ties is nicely realized by the interactions

mediated by timelines. We argue that Twitter as a weak tie

generates a default mode in Web dynamics. The default mode can be

an important Web mode, not only for supporting baseline activity

but also for reducing uncertainty in information circulation on the

Web, thereby regulating the consistency of information between

the Web and the actual world.

For the purpose of revealing and characterizing the Web’s

default mode, we computed the transfer entropy (TE) between the

time series of Twitter keywords and Google queries as well as the

information transfer within keywords. TE is one of the information

entropy measurements for estimating how the uncertainty of a

time series is reduced by using either its preceding states or other

time series [4]. TE cannot measure the causal effect but can

provide a predictive measure, as discussed in [5,6]. We hope that

this study provides useful information for understanding other

complex adaptive and autonomous systems, such as brain systems.

Materials and Methods

Data Collection
We collected two types of time series data; one is the time series

data of a set of keywords contained in Twitter and the other is the

time series data of the same set of keywords issued as Google

queries. The data were crawled over an 11-month period using

Google Trends [7] and Twitter API (Japanese tweets only) from

July 16, 2011 to May 13, 2012, which is 302 days. The set of

keywords was chosen by selecting the top 1,000 keywords that

appeared in Twitter during this period. Google Trends only

provides the volume of how many queries are issued on a daily

basis, thus the time series data for Google is an aggregation of the

popularity of a particular keyword that day. As for Twitter, data

are available on a much finer timescale; thus, we prepared two

types of time series, one in which popularity was aggregated per

day and the other in which popularity was aggregated per hour.

The one-day unit time series was used to compute TE between

Google and Twitter, and the one-hour unit time series was used to

compute TE within Twitter.

Bursts
We define a bursting behavior as ‘‘a keyword’s popularity that

shows a sudden increase.’’ This was observed in the time series of

Twitter keywords and Google queries. For example, the keyword

‘‘earthquake’’ bursts every time there is an earthquake. Since the

most salient property of the time series is bursting behavior,

counting the number of bursts is a first step toward characterizing

the reactive or default modes of the time series.

A state-of-the-art burst detection method determines the local

maximum of the peaks (e.g., log derivatives [8]). However, our

Twitter dataset analysis revealed that the most dominant

distributions among the 1,000 most-frequent keywords were those

with log-normal distributions. Therefore, to more accurately

detect the bursts in our dataset, we first determined the burst

Figure 1. Examples of frequent keywords in Twitter keywords and Google queries. Burst behaviors are not salient and synchronization
between the two time series was not observed.
doi:10.1371/journal.pone.0060398.g001

Information Transfer between Twitter and Google
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region, using the standard deviation (s) and the mean value (m) of

the logarithm of popularity; second, we defined the burst region,

where popularity first goes above s + m and then goes below this

value; and third, we extracted the maximum popularity within the

region as a peak. More precisely, m and s were defined as

m~S log x=T ,

s~½S( log x{m)2�=T{m2,

where T denotes the total number of points in the time series,

which is determined by the time resolution (i.e., 302/Dt). If the

successive bursting time points were less than or equal to 1, we do

not consider this as a bursting period. In this paper, we take these

peaks as the definition of ‘‘bursts.’’

Time resolution is another complex factor to be considered.

Bursts of each keyword vary with different time resolutions. For

example, the keyword ‘‘good night’’ has 24-hour periodicity and in

order to detect this periodic burst, a one-hour time resolution is

adequate. If the time resolution is shorter than one hour, too many

bursts are detected. In order to suppress periodic bursts in the time

series, we should choose the adequate time resolution for each

keyword, but there is no universal time resolution that is applicable

to any keyword. We will come back to this point in subsequent

sections.

The effects of tweets generated by bots also need to be

considered. It is known that 51% of traffic on average Web sites is

potentially generated by bots [9]. Bots tend to post a large number

of tweets that include the same keyword in a very short time

period. We can mitigate the effects of bots by removing bots that

post an extreme number of tweets, say, in a few seconds [10];

however, obviously, it is not possible to remove all the bots. In fact,

these indistinguishable bots can be considered as an essential part

of the Web, which function to maintain overall activity that may

also induce human actions. Overall, these various temporal scales

organize a background temporal structure in Twitter’s time series

and, together with sudden bursting behavior and autonomous bot

tweets, act to form the Web’s temporal dynamics.

Information Flow
The information transfer observed in Twitter keywords and

Google queries is computed on the basis of TE, which was

developed by Schreiber [4], Staniek and Lehnetz [11,12], and

Bertschinger [13]. TE is one of the information entropy

measurements for estimating how the uncertainty of a time series

is reduced by using either its preceding states or other time series.

In this sense, TE is similar to Granger causality [14–16], which

calculates the degree to which one time series drives another.

However, TE has advantages over Granger causality, since TE

can eliminate the false contribution from the common temporal

pattern that is present in both time series when comparing two

temporal time series. For this same reason, TE has an advantage

over mutual information. On the other hand, TE cannot measure

the causal effect but can provide a predictive measure, as discussed

recently in [5,6].

Suppose the TE between two different temporal time series is

associated with the keywords i and j, respectively. If the TE from i

to j is greater than that from j to i, it can be said that knowing the

temporal sequence of i decreases the uncertainty of j compared

with the opposite case. Differing from mutual information, TE has

the advantage of being able to ascertain the direction of

information flow, rather than mere temporal correlation. Practi-

cally speaking, it is generally difficult to measure the causal effect

without knowing the underlying equation and, since Granger

causality calculates the linear approximation, it is not adequate for

highly nonlinear systems, which is the case with our datasets. For

these reasons, we use TE in our study.

Figure 2. Examples of infrequent keywords in Google queries and Twitter keywords. Burst behaviors were clearly detected and
synchronization between the two time series was often salient.
doi:10.1371/journal.pone.0060398.g002
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For example, according to [4], an advantage of TE is that it can

be used to evaluate the causes of epilepsy in the brain using EEG

sequences [11]. Another example is comparing heartbeat and

breathing sequences to evaluate which affects the other’s dynamics

[4]. Recently, TE has been used to successfully reveal the

underlying network of information transfer in the popularity of

hashtags in Twitter [17]. By using the computationally feasible

quantity called permutation entropy, TE differentiates between

upstream and downstream information flow in a realistic time

series with a large, dynamic range of values. That is, the TE of the

given pair of time series can be computed in two steps. The first

step is to compute the permutation entropy of the m number of the

possible ways of labeling local temporal patterns. The second step

is to compute TE on the permutated time series.

Transfer Entropy (TE)
Shannon entropy, with the probability distribution of p(x), is

commonly defined in the following manner (where x is an

extracted state of a target system; e.g., time sequence X ) :

H(X )~{Sx5X p(x)log2p(x):

Using this notation, we define mutual information (MI ) between

two time series X and Y in the following manner:

MI(X ,Y )~H(Y ){H(Y jX ),

where H(Y ) is the uncertainty of Y and H(Y jX ) is the

uncertainty of Y for knowing X : By definition,

MI(X ,Y )~MI(Y ,X ), so that no causal relationship is detected

with MI. By introducing the time delay, we can improve the

situation, although it remains difficult to capture the direction of

causality.

On the other hand, TE from X to Y , which is denoted as

TE(X?Y ), is defined by

TE(X?Y )~H(YtzsjY (d0)
t ){H(YtzsjY (d0)

t ,X
(d)
t ),

where H(X jY ) denotes the conditional entropy and X
(d)
t and

Y
(d0)
t denote the past history of d and d 0 length counted from the

present time (i.e., xt,xt{1, . . . ,xt{d or yt,yt{1, . . . ,yt{d0 ), respec-

tively. Here, we also considered the time delay effect s and the

different time length of the past X and Y , (i.e., d and d 0),
respectively. TE measures the decrease of uncertainty in the state

ytzs by knowing the uncertainty of x
(d)
t from the past history of

other variables such as x: If there is no information flow from X to

Y , TE(X?Y ) disappears but TE(Y?X ) does not, as the TE is

explicitly non-symmetric with respect to Y and X :
Let us express the formulas in a more explicit manner by using

the probabilities of each element of the time series, such that

TE(X?Y )~{Sytzs,yt[Y Sxt[X p(ytzs,xt,yt)log
p(ytzsjx(d)

t ,y
(d0)
t )

p(ytzsjy(d0)
t )

:

Here, p(xjy) denotes conditional probability. The opposite TE is

obtained in the same manner; for example,

TE(Y?X )~{Sxtzs,xt[X Syt[Y p(xtzs,xt,yt)log
p(xtzsjx(d)

t ,y
(d0)
t )

p(xtzsjx(d)
t )

:

Then, we measured the direction of the information flow by

comparing the TE for the pair of time series. In particular, we use

the difference between TE(X?Y ) and TE(Y?X ) as the

quantity of information flow denoted by

TE(X ,Y )~TE(X?Y ){TE(Y?X ) in the remainder of this

paper. In order to calculate TE practically, we should discretize

the continuous state flow. Because of the trends in the time series,

it is difficult to discretize the state by its absolute value. Thus, we

used permutation entropy as explained below to have a stable

measurement.

Permutation Entropy and Time Resolution
Bandt and Pompe [18] introduced a simple refinement of

entropy with sequences that are practical and that allow feasible

coding of the real-value dataset. This method is based on the re-

ordering of the amplitude values of the time series Xt = {xt} and

Yt = {yt}, so that the amplitudes are arranged in ascending

order. Namely, X (m)
n = (xn,xn{1,xn{2, . . . ,xn{m{1) are arranged

in ascending order and become (xl ,xlz1, . . . ,xlzm{1) such that

(xl§xlz1§xlz2, . . . ,§xlzm{1): We now use the indexes of

these variables instead of their amplitudes; for example,

(x1,x2,x3,x4) is re-ordered as (x4,x2,x1,x3), so that

(x4§x2§x1§x3) and the new temporal sequence is (4,2,1,3):
In this example, m is set to 4, which generates a total of 24 patterns

(4!~24). By shifting a window, we assign a number to each local

time series of the length m: In this manner, any time series can be

mapped onto a string of finite symbols, thereby allowing us to

estimate the probabilities needed to compute the TE. Yet,

choosing a large m could use a large amount of computation

time and resources. This is because the probabilities of the triplet

P(x,x0,y) is defined on the large number of combinations;

therefore, we need the same order of sampling points. In the case

of both Twitter and Google, m is not well estimated; thus, we had

to conduct an elaborate search on the time series of both Twitter

and Google by changing the dimensionality m:
Using permutation entropy, we compute the TE of a given time

series T0 in the following manner:

1. Generate a time series T1 of the length l1 by aggregating the

state x0(t) (i.e., the sum of tweets between t and tzDt) for each

time steps of the original time series T0 of length l0: The length

l1 now becomes l0=Dt and the state now becomes x1(n), where

n ranges from 1 to l0=Dt as follows,

x1(n)~

ðnDt

(n{1)Dt

x0(s)ds:

2. Redefine the time series T1 as T2 which is obtained by

permuting T1 for each m time window. By shifting the time

window individually, we obtain the length l2 ~ l1{m and the

number of possible symbols is m!.

3. Compute the TE on T2 with the parameters d, d 0 , and s: It

should be remarked that d~1 corresponds to m time steps in

T1, which thus correspond to m|Dt time steps in the original

sequence T0:

Information Transfer between Twitter and Google
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In all, we have five parameters (d, d 0, s, m, and Dt) to compute

the TE from the original time series. We set d~d 0~1 and s~1,
and utilize m and Dt as major controlling parameters. This is

based on our understanding that changing d, d 0, and s is not

adequate because the values that must be chosen are also highly

dependent on which Dt is chosen. In other words, changing Dt

and m can also account for changing parameters d,d 0, and s:

Therefore, it is preferable to fix the parameters d~d 0~s~1 and

vary the other two parameters, Dt and m: The optimal Dt and m

must be different for each time series; however, it is pragmatically

Figure 3. Relationship between the number of bursts and keyword frequency rankings. There was a tendency for less-frequent keywords
to have a greater number of bursts and the fewer number of bursts were detected with frequent keywords.
doi:10.1371/journal.pone.0060398.g003

Figure 4. Relationship between the number of local peaks and time resolution Dt in log scales. Data computed from 46 keywords are
superimposed in the figure, showing that the number of local peaks obeys a power-law of up to around 29( = 512) minutes.
doi:10.1371/journal.pone.0060398.g004

Information Transfer between Twitter and Google
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difficult to select different Dt for each sequence. It may not be the

best method, but we adopt our parameters empirically using the

following principles: 1) For computing TE between Google and

Twitter, we checked m~2,3, and 4 and adopted m~3: We did

not use m~2 as it does not take advantage of using the re-

ordering, nor m~4 because if m is greater than 4, it becomes too

large for the number of sampling points we have for the Google

time series. We changed Dt for testing how it changes the TE

distribution, as will be evident in the results section. 2) For

computing the TE inter-Twitter time series, we adopted m~3 for

the same reason. Since we have a relatively larger data set for the

Twitter time series, we changed Dt over different time resolutions

from 20 minute to 210 minutes to see how the change in Dt affects

the results of the TE. Then, we selected one fixed value for Dt to

argue the TE flow within Twitter’s TE network.

Results

The inherent patterns and dynamics of Google’s and Twitter’s

time series were investigated to define and characterize the Web’s

reactive and default modes, using the top 1,000 most-frequent

keywords found on Twitter. For example, the top 10 most-

frequent keywords were ‘‘today,’’ ‘‘thing,’’ ‘‘people,’’ ‘‘RT,’’ ‘‘this

day,’’ ‘‘laughter,’’ ‘‘now,’’ ‘‘best,’’ ‘‘I,’’ and ‘‘tomorrow.’’ In the

subsequent subsections, we show the relation between the number

of bursts and the frequency ranking of keywords as well as the

results of TEs that quantify inherent patterns and dynamics.

Dynamics of Frequent and Infrequent Keywords
Figure 1 shows the temporal dynamics of some of the most-

frequent keywords, such as ‘‘people’’ (ranked 3rd), ‘‘now’’ (ranked

7th), and ‘‘I’’ (ranked 9th). These frequent keywords form the daily

life dynamics of Twitter. Interestingly, we rarely observe bursting

behaviors in frequent keywords. Rather, more periodic behaviors

are observed because these keywords reflect people’s repetitive

habits, such as tweeting more frequently during the day and less at

night. This apparent periodic rhythm becomes explicit in

frequently used keywords. On the other hand, Figure 2 presents

examples of infrequent keywords, such as ‘‘warning’’ (ranked

862nd), ‘‘marathon’’ (ranked 930th), and ‘‘wedding’’ (ranked

983rd). Interestingly, these infrequent keywords show synchroni-

zation between Google’s and Twitter’s time series and reveal more

bursting dynamics with sudden aperiodic spikes.

Frequency of Keywords and Number of Bursts
Figure 3 depicts the relationship between the number of bursts,

defined as a sudden increased popularity, and the keyword

frequency ranking. As this figure shows, frequent keywords tend to

Figure 5. The TE(Twitter,Google) histogram for all the 1,000 keywords, and the top and bottom 150 keywords, by changing Dt from
one to four days. It was found that the information has the tendency to flow from Twitter to Google. For example, 692 keywords show that
information is transferred from Twitter to Google (where TE(Twitter,Google)w0) and 308 keywords show that the information is transferred from
Google to Twitter (where TE(Twitter,Google)v0) in the case of Dt equals to one day.
doi:10.1371/journal.pone.0060398.g005

Information Transfer between Twitter and Google
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have almost no bursts and infrequent keywords have more bursts.

Infrequent keywords such as ‘‘warning’’ or ‘‘marathon,’’ are rarely

tweeted in everyday life, but they may be triggered by real-world

events that impact numerous people. We say that these infrequent

keywords constitute the Web’s reactive mode toward real-world

events. On the other hand, frequently used keywords constitute the

Web’s baseline activity without being activated externally.

Namely, these keywords rarely respond to particular events, but

continue to fluctuate by themselves. The reactive mode is

sustained by external causes and the Web’s baseline activity is

maintained intrinsically. We call this baseline activity the default

mode.

In the following sections, we show that transfer information can

characterize the time series of frequent or infrequent keywords and

discuss the Web’s reactive and default modes in greater detail.

Determining the Time Resolution Dt
We are free to choose a base duration for each time series Dt,

thus, we investigated how the change in Dt differs in the resulting

time series. More specifically, we aggregated tweets from 20

minute to 210 minutes and simply counted the number of local

peaks (i.e., xn{1ƒxn§xnz1). The analysis was conducted on a set

of 46 keywords that were randomly chosen from 1,000 keywords.

The results are presented in Figure 4. It is evident from the figure

that the number of peaks approximately obeys the power-law with

an exponent of around {1 for Dt~20 to 29 irrespective of

keywords. After 29 minutes, the individual difference in keywords

gradually became apparent. It is evident that these two features

correspond to the micro and macro time scales of Twitter,

respectively. In the micro time scale in the order of minutes to an

hour, it reflects each user’s online tweeting action. In the macro

time scale in the order of hours to a day, it reflects the mood of a

society, that is, what people care about and what people are

anticipating.

In computing the entropy transfer between Google and Twitter,

we examine the macro time scale domain because Google only

supplied a one day dataset and we are only concerned with how

information is circulated at a societal level. On the other hand, in

computing the entropy transfer of inter-Twitter time series, we

examine the micro time scale because we are concerned with the

action pattern of users. Namely, each Twitter user is basically

concerned about what appears on his/her timelines and that

should be part of the micro time scale.

Information Transfer between Twitter and Google
In order to investigate the Web’s reactive and default modes, we

computed the TE between Twitter and Google for each keyword.

As discussed above, we used the time resolution of one day as a

base unit and the window size was set to 302 steps (which

corresponds to 302 days) in order to satisfy the required sampling

points (i.e., 216 points for m~3). We increased the time resolution

Figure 6. Integrated TE of a given keyword to/from the other 46 keywords by varying the time resolution Dt from 20(~1) minute to

210(~1024) minutes. Type a) a keyword (e.g., ‘‘today’’ ranked 1st) acts as an information source, type b) a keyword (e.g., ‘‘wind’’ ranked 256th) acts as
an information mediator, and type c) a keyword (e.g., ‘‘typhoon’’ ranked 551st) acts as an information sink.
doi:10.1371/journal.pone.0060398.g006

Figure 7. The role of each keyword. (Top) The ratio of keywords becoming sources and sinks shown as a function of keyword frequency over
time. Red shows the source ratio and blue shows the sink ratio, as a function of keyword frequency over time. The frequent keywords tend to become
source nodes and infrequent keywords tend to become sink nodes. (Bottom) Strong mediators are defined as having ample incoming and outgoing
TE flow and weak mediators are defined as those with both weak incoming and outgoing TE flow. The number of strong and weak mediators is
incorporated with the number of sinks and sources for each keyword.
doi:10.1371/journal.pone.0060398.g007

Information Transfer between Twitter and Google

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e60398



Dt from one day to four days to see how it affects the entropy

transfer.

Figure 5 shows the TE(Twitter, Google) for 1,000 keywords for

m~3 and Dt~2,3,4 days with their plotted distribution,

respectively. Further, the distribution of the top 150 and the

bottom 150 most-frequent keywords is superimposed. If the TE is

positive, it implies that the information transfer is from Twitter to

Google, otherwise it is from Google to Twitter. It is suggested from

this figure that information is transferred more from Twitter to

Google than from Google to Twitter as a whole. Indeed, when

examining the TE for individual keywords when m~3 and

Dt~60 minutes, the total of 692 keywords (out of 1,000) shows

that information is transferred from Twitter to Google and 308

that it is transferred from Google to Twitter.

When comparing the top 150 frequent and bottom 150

keywords, we see a weak trend indicating that the top 150

keywords transfer from Twitter to Google more than the bottom

150 do. This suggests that the Web’s default mode (or frequent

keywords with rare bursting behaviors) contributes to reducing

uncertainty in the information circulation on the Web more than

the Web’s reactive mode (or infrequent keywords with many

bursts).

Next, we measured the information transfer among Twitter

keywords and discovered an inherent network behind the keyword

network connected through TE. Based on their information

transfer, we call this network among keywords the transfer entropy

network (TE network); we examine this in the next section.

Information Transfer on Twitter
Before computing the TEs of all the pairs of 1,000 keywords in

Twitter, we used the same 46 keywords as those in the section

entitled Determining the Time Resolution Dt and computed

the TEs of all the pairs in this set of keywords by changing the time

resolution 2n (n~1,2,3, . . . ,10) minutes to see how they affect the

TEs.

We distinguished the results into three TE types as shown in

Figure 6. The first one is type a whereby the TE from this keyword

to other keywords is smaller than the TEs from other keywords to

this keyword in the smaller Dt, and the tendency is reversed in the

larger Dt: For example, the TE from other keywords to this

keyword has the maximum TE value of around 22 minutes and

the TEs from this keyword to other ones have a maximum value of

approximately 26 minutes (or approximately one hour). That is, if

Dt is larger than one hour, the direction of the TE flow is always

from this keyword to other keywords. The second one is type b,

whereby the TE from this keyword overlaps with the TEs from

other keywords to this keyword. That is, there is no stationary TE

flow direction between this keyword and other keywords. Finally,

the third is type c whereby the TE from this keyword to other

keywords is larger than the TEs from other keywords to this

keyword in the smaller Dt, and the tendency is reversed in the

larger Dt:
From this observation and judging from the direction of the TE

flows, we identify type a as an information source to other

keywords, type b as an information mediator, and type c as an

information sink to other keywords. While many keywords act as

type b for most of the time resolutions, interestingly, the higher-

ranking keywords tend to play as type a, the information source,

and the lower-ranking keywords tend to play as type c, the

information sink. As evident from these figures in Figure 6, the

effective Dt that maximizes the TE is different for each keyword.

For the purpose of comparison, we used the time resolution Dt of

one hour to compute the TE.

Finally, we investigated how each keyword plays a role as

source, sink, or mediator for the 1,000 keywords. We computed

the sum of all incoming flow (TEin) and all outgoing flow (TEout)

for each keyword. If TEout{TEin is greater than a given

threshold, we say that the keyword plays the role of the

information source for other keywords. Similarly, if TEin{TEout

is greater than the threshold, we say it plays the role of the

information sink to other keywords. This corresponds to type a and

type c, respectively. We can further distinguish keywords that are

neither source nor sink. If both TEin and TEout are smaller than

the threshold, we refer to this keyword as a weak mediator. On the

other hand, if both TEin and TEout are greater than the threshold,

we refer to this keyword as a strong mediator. These mediator nodes

do not become either sink or source but act as ‘‘relay’’ nodes to

send and receive information to other keywords.

The result of the computations for the 1,000 keywords is

depicted in Figure 7. The TE was created from the 240-hour time

window for over 302 days. We characterize each keyword by

labeling it as source, sink, weak mediator, or strong mediator. We

Figure 8. A histogram of the ratios for each keyword that becomes sources a) and sinks b) computed from the top 100 and bottom
100 keywords. The top 100 keywords have a higher ratio of becoming sources compared to the bottom 100 keywords, whereas the bottom 100
keywords have a higher ratio of becoming sinks compared to the top 100 keywords.
doi:10.1371/journal.pone.0060398.g008
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used the threshold however, of course, these labels, either source

or sink, are not fixed but temporally changing as with the advent of

time. If keywords are purely uncorrelated, the rate of becoming

sink or source must be flat against the keyword rank order.

Instead, Figure 7-(top) shows that frequent keywords have a higher

tendency to become source nodes when compared to less-frequent

keywords.

To investigate this characteristic further, the top 100 and

bottom 100 keywords were investigated to determine their

tendencies to become source or sink. Figure 8 shows that the

top 100 keywords tend to become an information source, whereas

the bottom 100 keywords have the opposite tendency; i.e., they

tend to become an information sink. Table 1 shows the top 10

most-frequent source keywords and the top 10 most-frequent sink

keywords out of 1,000 keywords. We see that pronouns such as ‘‘I’’

or ‘‘everybody,’’ and ordinary nouns that are used in everyday

situations such as ‘‘lunch’’ or ‘‘thing,’’ become source nodes. More

generic keywords, such as ‘‘game’’ or ‘‘play,’’ and some specific

words, such as ‘‘JST (Japan Science and Technology Agency)’’ or

‘‘Nihonbashi’’ (a district in Tokyo), become sink nodes. Figure 7-

(bottom) shows the actual number of source, sink, and mediator

nodes for all the windows. As we see in the figure, frequent

keywords tend to become source nodes from the perspective of the

sink/source ratio, but they also tend to become relay nodes.

We argue that these Twitter time series are not independent of

each other. When a keyword is an information source, knowing the

time series of the keyword tends to reduce the uncertainty of the

other keywords. When a keyword is an information sink, knowing

the time series of the other keywords can reduce the uncertainty of

that keyword. In brief, our contention is that frequent keywords

have a strong tendency to become source nodes and infrequent

ones to become sink nodes. Since frequent keywords are less

driven by the real world because they have fewer bursts, we

conclude that frequent keywords are mainly activated by their

inherent dynamics (e.g., weak correlation through timelines) and

that they form the default mode of the Web. Frequent keywords as

an information source means they can reduce uncertainty in the

time series of infrequent keywords. The default mode can be an

important Web mode, not only for supporting baseline activity but

also for reducing uncertainty in information circulation on the

Web, thereby regulating the consistency of information between

the Web and the real world. This is consistent with the roles of

frequent keywords of Twitter as discussed in relation to the TEs

between Twitter and Google.

Discussion

This paper explored how to define the Web’s reactive and

default modes by information transfer by computing TE to

characterize the inherent structure of the Web dynamics. First, we

defined whether a keyword is in default or reactive mode in terms

of how burst events are caused internally or externally. There are

reports on YouTube page views and Twitter hashtags, whereby

internally and externally caused bursts are distinguished by certain

criteria [17,19]. Our analysis of the number of bursts in relation to

keyword frequency revealed that while low-frequency keywords

tend to burst more, keywords are more influenced by real-world

events, when compared to high-frequency keywords.

From this observation, we defined that high-frequency keywords

form the Web’s default mode network and low-frequency key-

words constitute the Web’s reactive mode. When analyzing the

information transfer between Google and Twitter, we found that

information is mostly transferred from Twitter to Google and that

this tendency is more apparent for high-frequency keywords than

for low-frequency keywords. We also studied the information flow

network formed among Twitter keywords by taking the keywords

as nodes and flow direction as the edges of a network. We found

that high-frequency keywords tend to become information sources

and low-frequency keywords tend to become information sinks.

These findings suggest that we can use high-frequency keywords

(or default mode of the Web) to reduce uncertainty with the

externally driven low-frequency keywords (or reactive mode of the

Web). However, it is fair to assume that frequently searched

keywords in Google are different from the frequent keywords

found on Twitter. Thus, if we investigated the high-frequency

keywords found in Google queries, the results may be different.

The concept of reactive and default modes originates from brain

science [20–22]. A brain region responsible for a given task is

identified by measuring the neural activity that is observably

higher compared to the baseline activity. Raichle et al. [23]

examined the baseline activity by analyzing the regions that

become less active when a specific task is given. This successful

approach uncovered some remarkable perspectives and charac-

teristics of the default mode; based on Buckner’s [22] and

Raichle’s [24] reviews, these are: i) the area associated with the

default mode is found as the integration of various subsystems in

the brain - the medial prefrontal cortex and posterior cingulate

cortex subsystems seem to play central roles. ii) The neural activity

of the aforementioned subsystems were observed as noisy fMRI

signals at a low frequency of about 0.1 Hz or less, showing global

synchronization. iii) The default mode is to do with spontaneous

cognition e.g., day dreaming and internal thoughts such as future

planning. iv) The activity of the default mode is anti-correlated

with the other brain regions that are responsible for focusing

attention on the external world; and v) the brain region associated

with the default mode overlaps with those involved in the

construction of episodic memory.

This notion of the default mode can be generalized for any

living systems with or without brain systems. In the case of the

Web system, it can be said that 1) frequent keywords constitute the

default mode (mostly everyday keywords), 2) these frequent

keywords display less frequent bursting behaviors and are an

information source for other keywords, 3) the default mode may

help reduce uncertainty in the entire Web system, and 4) the

default mode comprises quasi-periodic time series. From this

comparison with the default mode network in brain systems, and

in particular with the possibility that high-frequency keywords may

help to predict essentially unpredictable events, it becomes

apparent the Web’s default mode may have the same property

Table 1. The top 10 source and sink keywords from among
1000 keywords.

Rank source keywords Rank sink keywords

767 lunch 779 RJTY

567 lunchtime 526 game

59 thing 38 mm

48 direction 574 where

9 I 619 map

63 long time 316 Nihonbashi

49 eye 625 play

76 everyone 437 average

7 now 226 JST

100 for 44 wind

doi:10.1371/journal.pone.0060398.t001
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as the default modes in the brain. Differentiating between these

two modes, the reactive and the default, provides a useful

perspective for understanding Web dynamics and predicting the

future of bursting behavior in the time series of keyword

frequencies in tweets in Twitter, as well as in the time series of

search queries in Google. With respect to the examples of complex

networks in general, we believe that the default mode is key for

understanding autonomy in complex systems in general. Any

autonomous system (e.g., robots) possesses primitive forms of the

default mode with different time scales [25].

Determining the adequate time resolution in a time series is

generally a difficult problem, particularly when we compute TE.

In Twitter time series, tweets are basically created out of individual

users’ postings with no simple threshold or global knowledge of

who is posting. With the apparent 24-hour periodicity that we see

in keywords like ‘‘good night,’’ it is rather appropriate to use a one-

hour resolution to analyze information transfer and correlation.

On the other hand, the keyword ‘‘Christmas’’ has a one-year

periodicity and keywords like ‘‘earthquake’’ have no characteristic

time resolutions. However, when we examine the time resolutions

of the order of a few minutes to a few hours, these time series are

similar.

In the section entitled Determining the Time Resolution
Dt, we varied the time resolution of each time series and

computed the information transfer to ascertain how the TE

changes as a function of the time resolution. The TE between

Google and Twitter is relatively robust against the change of Dt:
Moreover, with regard to TE among different Twitter keywords,

the maximum value of outgoing TE is found around one hour for

many keywords, but there are exceptions. Due to the limitation of

data availability and computational power, we chose one day as

the time unit for calculating TE between Twitter and Google, and

one hour as the time unit for keywords within Twitter.

We may have to adopt different time resolutions for different

keywords. Namely, some keywords provide more information

within a smaller time resolution but some provide information in

much longer time resolutions. As a result, the total uncertainty of

Twitter is distributed over different time resolutions. Which time

resolution is important for a keyword is determined by the

dynamics of other keywords. For example, studies on nonlinear

phase coupling systems show that faster phase oscillation generally

entrains the slower one. Here, the situation becomes more

complicated since the system is always perturbed by periodic or

aperiodic open flow in the real-world. Moreover, the time scale

hierarchy is self-organizing rather than given from the beginning.

Google has an additional source of time scales on the Web such as

automated crawling programs that change the search results that

are running on the Web. The default and reactive modes that we

found on the Web are the outcomes of such nested time

architectures. The investigation of nested time scales may also

be applicable to other complex adaptive systems.
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