
Modeling Stem Cell Induction Processes
Filipe Grácio1,2, Joaquim Cabral1, Bruce Tidor2,3,4*

1 Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal, 2 Computer Science
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Abstract

Technology for converting human cells to pluripotent stem cell using induction processes has the potential to revolutionize
regenerative medicine. However, the production of these so called iPS cells is still quite inefficient and may be dominated
by stochastic effects. In this work we build mass-action models of the core regulatory elements controlling stem cell
induction and maintenance. The models include not only the network of transcription factors NANOG, OCT4, SOX2, but also
important epigenetic regulatory features of DNA methylation and histone modification. We show that the network
topology reported in the literature is consistent with the observed experimental behavior of bistability and inducibility.
Based on simulations of stem cell generation protocols, and in particular focusing on changes in epigenetic cellular states,
we show that cooperative and independent reaction mechanisms have experimentally identifiable differences in the
dynamics of reprogramming, and we analyze such differences and their biological basis. It had been argued that stochastic
and elite models of stem cell generation represent distinct fundamental mechanisms. Work presented here suggests an
alternative possibility that they represent differences in the amount of information we have about the distribution of cellular
states before and during reprogramming protocols. We show further that unpredictability and variation in reprogramming
decreases as the cell progresses along the induction process, and that identifiable groups of cells with elite-seeming
behavior can come about by a stochastic process. Finally we show how different mechanisms and kinetic properties impact
the prospects of improving the efficiency of iPS cell generation protocols.
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Introduction

Stem cells are in an undifferentiated state of development and

have the potential to progressively differentiate to become adult

somatic cells. Following the classification and nomenclature

suggested by Jaenisch and Young [1] there are cells that can

form all the lineages of the body – these are called pluripotent stem

cells – and there are cells that form cell types of only a single

lineage – multipotent stem cells. Because pluripotent stem cells can

become any cell type in the body, they have strong potential to be

transformative in a range of medical applications. In fact, the use

and application of stem cells in the field of regenerative medicine

are now well documented [2–5]. Possible advantages and

flexibility of embryonic stem cells are countered by a variety of

concerns resulting in different degrees of regulation around the

world that can restrict possible applications as well as available

funding [6]. Thus, it was a significant breakthrough when, in

2006, it was reported that partially differentiated mouse cells had

been reprogrammed to become induced pluripotent stem cells

(iPSCs) [7] and, more significantly, in 2007 adult human

fibroblasts were also reprogrammed to become human iPSCs

[8]. The experimental protocol made use of viral vectors

transfected into fibroblasts driving the exogenous expression of 4

transcription factors (OCT4, SOX2, c-MYC, and KLF4). These

experimental protocols, given sufficient time of exogenous gene

expression and posterior selection, produced a subpopulation of

iPSC. It has been recognized that human iPSCs have chromatin

and gene expression patterns that are very similar to embryonic

stem cells [9], and in functional essays show pluripotency potential

[10–12]. There have since been several other reports of related

methods with variations to obtain iPSC (see two excellent recent

reviews by Patel and Young [13] and by Amabile and Meissner

[14]). It has also been recognized that induced pluripotent stem

cells, like embryonic stem cells, are of great potential for

regenerative medicine [5], in particular due to the possibility of

matching the cell donor to the recipient (who can be the same

individual). Some of this excitement has been tempered by some

difficulties with iPSC including potentially deleterious mutations

that may need to be overcome [15].

Despite the relative success of the technology to induce

pluripotency, a persistent issue is the low level of efficiency of

the protocols. In fact, the average efficiency has been reported to

be close to 0.5% with some protocols having efficiencies in the

order of 1 iPSC cell transformed for each 1|106 adult cells that

were subjected to the experimental conditions [14]. Other reports

put the average efficiency of the process somewhere between

0.02% and 0.002% [16]. Low reported efficiencies indicate that
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there is room for improvement in stem cell generation protocols

[3].

Mechanistic understanding of cellular reprogramming is still at

an early stage of understanding. Nevertheless effort has been put

into trying to find ways of improving the efficiency of reprogram-

ming; there has been work studying the effect of varying

transcription factor concentrations and their relative quantities

in the efficiency of the process [16], as well as work investigating

the effect of the addition of small molecules to the protocols

[17,18]. Despite the progress enabled, the underlying processes

that lead to the observed effects are only beginning to be

explained. In fact, arguably one barrier to progress in improving

the efficiency of these protocols is that, although the end point is

relatively well characterized, little is known about the detailed

mechanisms that underlie the necessary changes for reprogram-

ming to be completed. Among some of the outstanding problems,

is the intriguing observation that subjecting a large populations of

cells to the same experimental conditions results in different

outcomes for different cells with only a subset being repro-

grammed. This outcome variability has created a debate about the

nature of the reprogramming process. Yamanaka proposed two

distinct hypothesis for stem cell generation that he called

"stochastic" and "elite" [19]. The elite hypothesis posits that the

low efficiency in reprogramming comes from only some cells

having the potential to reprogram and upon induction doing so;

whereas the stochastic hypothesis posits that all cells have potential

to reprogram, and low efficiency is explained by random events

that cause some to reprogram and others not to, under the

particular conditions of the experiment. The distinction seems

important and bears consequences if one wants to increase the

efficiency of reprogramming protocols. In one case attention

should focus on identifying, amplifying, or producing more elite

cells capable of being induced, whereas in the other case attention

should be on improving protocols to shepherd more cells along the

induction pathway.

There has recently been valuable work in building dynamic

models of the core circuitry of cellular pluripotency. Despite the

important progress such work represents, the models are still in an

early stage of development – as indeed would be expected from the

early stage of kinetic and mechanistic understanding of the

biological foundations of cellular reprogramming. For example

Hanna and co-workers, alongside their experimental work,

modeled the reprogramming process as a two-state, single-step

stochastic transition from adult to reprogrammed cell [20].

However, such a model cannot account for the influence of

biological features like regulatory network interactions. A step in

that direction is a two-species model for the genes OCT4 and

NANOG that uses ordinary differential equations to simulate their

interaction as mutual regulators [21]. The model is used to show

consistency with the experimental observations of bimodality of

the distribution of gene expression. However, the reported model

does not have two steady states that one might expect to

correspond to an adult state, and a reprogrammed state. Other

work focuses on lineage specification, and includes the gene SOX2

and its interactions with OCT4 and NANOG as well as other

genes. It gives an account of how the system of regulatory

interactions can form the foundation of cellular differentiation

[22].

Despite representing important progress, these works do not not

capture several important physical properties of the system under

study. Namely, they do not allow for explicit modeling of the

reprogramming protocols (inducing adult cells with transcription

factors), they do not include epigenetic events that are known to be

important to stem cell reprogramming, and they cannot be used to

study the low copy number of biological molecules (most notably

DNA strands) that strongly influence the stochastic nature of the

system. Furthermore, the previously published kinetic models do

not allow for computational interrogation of the influence of the

rates of particular steps, or different biological mechanisms, which

are the focus of this work. We contribute to the field by building a

mathematical model that includes some of the known details of the

mechanism of regulation and addresses some of the main

questions important for understanding and improving induced

reprogramming processes. Such a model is not to be viewed as a

finished product but rather as a step in the development of ever

more accurate models of the process of induction. We build a

model of stem cell reprogramming and the first question we

address with the model is simple but essential: if we model the

interactions and relations between species for which there is

documented experimental evidence, does the outcome for the

model match that observed experimentally? A positive result

indicates that known events, species and interactions are sufficient

to account for the observed biology. There are three particular

properties that we wish to reproduce: (1) Bistability, i.e. the

existence of two states of gene expression, one corresponding to an

adult cell with low expression level of the pluripotency associated

genes, and another state corresponding to the stem cell, of high

levels of expression of these same genes; (2) Inducibility, i.e. the

capability of transitioning from one state to the other under

conditions that correspond to the experimental protocols of stem

cell induction; and (3) Variability, i.e., the feature that under the

same conditions different cells in a population have different

outcomes. Here we focus on the distribution of times at which

individual cells reprogram, if they reprogram at all. The results of

simulations demonstrate that current biological knowledge is

sufficient to account for observed behavior.

Next, we investigate how the pattern of kinetic steps affects the

dynamics and distribution of reprogramming outcomes. Preferred

pathways and slow steps lead to bottlenecks that can produce

signatures in the distribution of reprogramming times. Moreover,

cellular treatments or perturbations that accelerate rate limiting

steps can be effective at improving reprogramming efficiency and

need not be applied continuously. Because populations tend to

build up just prior to slow reaction steps, a brief pulse applied at an

appropriate time can lead to dramatic increases in reprogramming

yields. Furthermore, patterns of bottlenecks could exist such that

different sub-populations of cells reprogram at vastly different

rates. Finally, whether one views the behavior as elite or stochastic

is partially semantic, as discussed in more detail herein.

Methods

The Model Core
To study and understand the processes involved in stem cell

reprogramming, we built several simplified models of the process.

We first describe the core shared by all the models and how that

leads to our base model, and then proceed to introduce subsequent

models and the differences among them.

The models include the promoter regions of the core genes in

the circuitry responsible for pluripotency: OCT4, SOX2, and

NANOG [21,23,24]. These genes encode transcription factors and

experimental evidence shows each of the promoters can have each

of the factors (OCT4, SOX2 and NANOG) bound to it or not

[1,23,25,26]. Based on promoter state the genes produce mRNA,

and protein gene product is produced by translation at a rate

proportional to the quantity of mRNA (Figure 1A). We also

consider each gene to be characterized by the presence or absence

of three epigenetic features known to be important for pluripo-
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tency [27], namely, DNA methylation, histone-3 K27 (H3K27)

methylation, and histone-3 K4 (H3K4) methylation (Figure 1B).

Actively transcribing pluripotency genes are known to be

characterized by low DNA methylation, low H3K27 methylation,

and high H3K4 methylation [14,24,28,29]. These features are

incorporated in our model by assigning that epigenetic state the

highest transcription rate for pluripotency genes; all other

promoter states have a low basal transcription rate.

The modeled effect of transcription factor proteins is two fold.

First, when bound to promoters they facilitate transcription (the

transcription rate is higher when all three factors are bound).

Second, consistent with current literature (although the mecha-

nism is not known) they mediate epigenetic changes [30,31]

involved in gaining pluripotency: i.e., they facilitate the loss of

DNA methylation, loss of H3K27 methylation, and gain of H3K4

methylation by making these changes more likely when the factors

are bound. Figure 1C represents the two end states and six

intermediate states in which each promoter in the system can exist,

and the transformations required to move from one state to the

other. On the left side the promoters have only DNA methylation

Figure 1. Cellular states and reprogramming. (A) Our model includes promoters capable of binding the three transcription factors NANOG,
OCT4, and SOX2. Transcription from the corresponding genes produces mRNA, and translation of mRNA leads to protein. (B) Each promoter also has 3
epigenetic variables, creating 8 possible states for each of the genes. (C) Reprogramming protocols consist of starting with low transcription rates of
these transcription factor genes and a particular combination of epigenetic marks, and through external induction (addition of transcription factors)
progressing through modifications in the cell that lead to the actively transcribing state with the alternate combination of epigenetic marks. We
simulate this reprogramming process with different models that explore the consequences of different mechanisms and kinetics.
doi:10.1371/journal.pone.0060240.g001
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and H3K27 methylation, with no transcription factors bound to

them and low transcription rate; upon external induction, the

epigenetic state of the genes changes (represented in the figure in

unknown order and multiple pathways) until only the H3K4

methylation is present and the pluripotency genes have the

transcription factors bound to them and high endogenous

transcription rates (far right of figure). Each promoter changes

states, independently of the others, such that each promoter in the

system (two for each gene, six in total) can be in any of the states

represented in the figure regardless of the state of the others.

The model also includes the dimerization of the protein

NANOG to create the active form of the transcription factor

[32]. We further incorporate the reported cooperativity in binding

of the OCT4 and SOX2 transcription factors [33,34] by making

the factors bind more easily and dissociate less easily when the

other factor is already bound. The model includes two copies of

each of the genes and degradation of all the mRNA and protein

species.

Model Variants
In order to study the effects of mechanistic differences in iPSC

generation protocols, we built several model variants that reflect

different biological possibilities and system behavior with respect

to the epigenetic marks. We focused on epigenetic changes

because they are known to be important limiting factors in

reprogramming [35].

We start with a base model, which we call Independent

Equiprobable, and then create variants by introducing different

reaction rates that reflect different assumptions about the

mechanistic and kinetic aspects of reprogramming. We alter the

reactions rates only for the NANOG gene, which is activated for the

cell to be considered a stem cell – both experimentally [20] and in

this model – and therefore the one that we track in this work.

Independent equiprobable. The Independent Equiproba-

ble model reflects the hypothesis that the epigenetic reactions

happen independently and at similar rates (hence equiprobable).

This is achieved by making all the rate parameters of all the

epigenetic changes equal. The consequence is that at any point,

any of the epigenetic changes is equally likely to occur

independently of the others (Figure 2A). This model serves as

our base model; the other models will be constructed starting from

this through changing rate constants.

Cooperative equiprobable. An alternative biological mech-

anism is that there is a specific order in which the reactions must

occur. This corresponds to a cooperative mechanism (for example,

a situation in which the enzyme responsible for K4 methylation

can only bind the histone after it has lost the K27 methylation). To

create this model we started from the Independent Equiprobable

model and reduced the rate constants to create the necessary

cooperativity. In particular, for H3K4 methylation is favored once

H3K27 demethylation occurs, and H3K27 demethylation is

favored once DNA demethylation has occurred. Thus, there is a

single preferred path involving DNA demethylation then H3K27

demethylation and finally H3K4 methylation (Figure 2B). The

goal here is to study the effect of having a preferred path, not to

claim the in stem cell reprogramming this is the preferred one.

Independent 1 slow step. To model the case in which

particular reactions are less likely (slower) than others without a

preferred path, we changed the Independent Equiprobable model

to create one with a reaction step – loss of H3K27 methylation –

that is independent of the others and ten times slower. This is the

Independent 1 slow step model. Because loss of H3K27

methylation can occur from any of the states with any combination

of the other two epigenetic marks, four overall arrows in the

reaction network are actually slowed (Figure 2C).

Cooperative 1 slow step. In a similar manner we changed

the Cooperative Equiprobable model by decreasing by twenty-fold

the loss of H3K27 methylation compared to related reactions (loss

of DNA methylation and gain of H3K4 methylation). This

produces a preferred path with a bottleneck (Figure 2D).

Cooperative 2 slow steps. Finally, to reflect the case of

multiple bottlenecks along the way to reprogramming, we changed

the Cooperative Equiprobable model to introduce two slow steps –

loss of DNA methylation and loss of H3K27 methylation – when

compared to the remaining step of gain of H3K4 methylation.

This produces a preferred pathway with consecutive bottlenecks

(Figure 2E).

It should be noted that the set of variants is useful to explore the

behavior of this general reaction scheme. The variations are not

exclusive and can be generalized and adapted to other epigenetic

changes of gene activation circuits that might be considered

important.

Implementation
All of the models were built in MATLAB 2008b (Mathworks

Inc; Natick, MA) with the SimBiology toolbox. To simulate the

models we used the MATLAB-compatible KronckerBio toolbox

previously developed in this lab. In the absence of experimentally

measured parameters for our system, parametrization of the model

was initially taken from previous theoretical and experimental

work. Model parameters were then adjusted so that our system

produced the experimental observation of reasonable amounts of

mRNA and protein, as well as two steady states. Table 1 provides

a comparison between the range of parameters found in references

[36–46], and the ones used here for transcription, translation,

mRNA degradation, protein degradation, and transcription factor

binding and dissociation. The reactions that can happen in the

model (binding and dissociation of transcription factors, gain and

loss of epigenetic traits, transcription, translation, dimerization and

dissociation of NANOG dimer, and degradation of species) follow

mass-action kinetics. This means that the rate r of the reaction j is

defined by the equation,

rj~kj P
n

i~1
½Ri�aij ð1Þ

where n is the number of species in the model, ½Ri� are the

concentrations of species, aij is an exponent (0, 1 or 2) representing

the order of involvement of the species i in reaction j, and kj is the

rate constant of reaction j. Models were thus constructed so that

they could be represented as a series of ordinary differential

equations (ODEs) for each species with terms corresponding to the

reactions that either consume or create it. To exemplify how we

build the equations to simulate the model, we here give an

example for a particular state of the promoter of the Nanog gene.

The state does not have DNA methylation, does have H3K27

methylation, does not have H3K4 methylation, and has only the

transcription factor SOX2 bound to it. The concentration of that

species is represented by the symbol ½N K27me Sox2�. The letter

N representing the fact that it is the NANOG promoter, the

K27me representing the H3K27 methylation, and Sox2 repre-

senting the transcription factor SOX2 being bound to the

promoter. The reactions in which species N K27me Sox2 can

be formed, and those that can consume it, are given in Table 2.

The species is consumed by 6 reactions and is formed by 6 other

reactions. It is consumed by (1) OCT4 binding to it, (2) NANOG

dimer binding to it, (3) SOX2 dissociating from it, (4) gaining

Modeling Stem Cell Induction Processes
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DNA methylation, (5) losing H3K27 methylation, and (6) gaining

H3K4 methylation. All these reactions create different species and

consume the original species. This promoter state is also generated

from other species by specific reactions and modifications. Namely

it is formed by, (7) OCT4 dissociating from

N K27me Sox2 Oct4, (8) the NANOG dimer dissociating from

N K27me Sox2 Nanog2, (9) N K27me and SOX2 binding

together, (10) N DNAme K27me Sox2 losing its DNA methyl-

ation, (11) N Sox2 the acquiring H3K27 methylation, (12)

N K27me K4me Sox2 losing H3K4 methylation. From these

reactions that produce or consume N K27me Sox2, we write the

appropriate ordinary differential equation for the time dependent

variation in the concentration of the species.

d½N K27me Sox2�
dt

~

{k1½N K27me Sox2�½Oct4�

{k2½N K27me Sox2�½Nanog2�

{k3½N K27me Sox2�{k4½N K27me Sox2�

{k5½N K27me Sox2�{k6½N K27me Sox2�

zk7½N K27me Sox2 Oct4�

zk8½N K27me Sox2 Nanog2�zk9½N K27me�½Sox2�

zk10½N DNAme K27me Sox2�zk11½N Sox2�

zk12½N K27me K4me Sox2�

The equation contains each of the depletion or production

terms corresponding to the reactions in Table 2. This equation,

and all others like it for the other species of the model, is then

simulated using deterministic mass-action kinetics by means of the

ode15s routine in MATLAB.

The model was also implemented in a stochastic form and

simulated using Gillespie’s stochastic simulation algorithm (SSA),

which we implemented and used except where otherwise noted.

The Gillespie SSA is a methodology to simulate the behavior due

to the stochasticity of random times of biochemical reactions. The

algorithm works by considering molecule counts (as opposed to

concentrations) and assuming that each biochemical reaction can

be described as a Poisson process with exponentially distributed

Figure 2. Graphic depiction of different models. (A) Independent Equiprobable model. (B) Cooperative Equiprobable model. (C) Independent 1
Slow Step model. (D) Cooperative 1 Slow Step model. (E) Cooperative 2 Slow Steps model. In each of the panels the thickness of the lines represents
the rate of the corresponding reaction.
doi:10.1371/journal.pone.0060240.g002

Table 1. Table of parameter values.

Parameter Values found in literature Values used here

Transcription ½1|10{3 1|100� ½0:50:04�

Translation ½1|10{1 1|102 0:1

mRNA degradation ½1|10{3 1|101� 0:01

Protein degradation ½1|10{4 1|10{1� 0:003

TF dissociation ½1|100 1|10{2� ½0:10:05�

TF binding ½1|10{2 1|10{6� ½5|10{4 1|10{4�

One column shows a range of representative values present in the literature,
and the other column shows the value used in this work. All parameters, except
last row, are of first order reactions and therefore have units of min{1 . The TF

binding constant has units of CellVolume|min{1|Molecules{1 , with cell
volume assumed to be in the range measured for mammalian cells [58].
doi:10.1371/journal.pone.0060240.t001
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waiting time to occur. Once the algorithm is initialized, a random

number generation is used to draw from the appropriate

distributions to obtain a time for the next reaction and the

identity of that reaction (relative probabilities are calculated based

on their rates); once the reaction is selected, the time step and the

number of molecules of the reagents and products are updated

appropriately. Details for the implementation of the algorithm can

be found in the original work [47].

The first simulation method described (using ODEs) is

deterministic and only provides results that are the average for

identical experiments that are in reality non-deterministic. The

second simulation method (the Gillespie SSA) is non-deterministic

and, by using several simulations (that differ by the sequence of

random numbers generated), is used to investigate statistical

properties of the simulated model system. In cases where the

differences between single simulations is important, such stochastic

transitions between states, or when the counts of molecules are low

(for example, two copies of DNA strands per cell and their

respective promoter states), then this methodology is appropriate.

All models are provided as MATLAB files as Supplementary

Material.

Stochastic Simulations of Standard Induction
Simulations of induction processes were carried out, for each of

the models, using 500 independent simulations (corresponding to

500 independent cells in culture). Each cell, unless otherwise

noted, started the simulation with no internal transcription factors

and with all promoters in the epigenetic state with only DNA

methylation and H3K27 methylation (the left-hand side of

Figure 1C). At time 0 an exogenous source of both OCT4 and

SOX2 mRNA was added, and the simulation proceeded until a

time limit specific for each model. We then analyzed the data and

measured the time at which changes of epigenetic state occur and

the time at which the cells changed to the reprogrammed state

(defined by the concentration of NANOG dimer going above a

threshold value of 1200 molecules per cell).

Stochastic Simulations of Accelerating Induction
To study the effect of accelerating reactions in the reprogram-

ming protocols, we followed a similar procedure to the one

described above. Each cell started the simulation with zero

concentration of transcription factors, and with all promoters in

the epigenetic state with only DNA methylation and H3K27

methylation (the left-hand side of Figure 1C). We wanted to study

the effect of two variables: which reaction to accelerate and the

time to do so. We ran ten different experiments, each experiment

consisted of selecting a reaction to accelerate and a time for

intervention. We chose two possible reactions to accelerate: loss of

DNA methylation or loss of H3K27 methylation. The times of

intervention corresponded to intervals with a duration of 10% of

the total protocol time. The acceleration was applied between 0

and 10%, 10–20%, 20–30%, 30–40%, 40–50% (note that 2

reactions at 5 possible times, result in the 10 different experiments

for each model). The acceleration consisted of making the selected

reaction 10 times more likely (faster) than in the original setting.

We ran 100 simulation per trial and we used three models:

Independent 1 Slow Step, Cooperative 1 Slow Step, and

Cooperative 2 Slow Steps.

Population Equilibration and Simulation
To test the effect of cell state on induction outcome, we ran

induction simulations with a prior stochastic equilibration step.

The equilibration of the Independent Equiprobable model

consisted of simulating a group of 1500 cells without induction

factors, for enough time that the distribution of states reached an

equilibrium distribution (that is, the percentage of cells in each

state remained constant over time).

To study the effect of the initial state of the cell prior to

reprogramming on the reprogramming dynamics of all mecha-

nisms, for each model we populated each of the NANOG promoter

states individually with at least 100 cells, then ran the induction

simulation with exogenous source of OCT4 and SOX2 (identically

to what is described previously), and captured the reprogramming

time and other events for each cell.

Results and Discussion

We built a series of models to describe the reprogramming of

adult cells to iPS cells and used these models to gain insight into

stem cell induction processes. We focus on the effects of three

Table 2. Table illustration the reactions that a promoter state can be formed or consumed from.

Reactant1 Reactant2 Product1 Product2 Param. Value

N K27me Sox2 Oct4 N K27me Sox2 Oct4 k1 5|10{4

N K27me Sox2 Nanog2 N K27me Sox2 Nanog2 k2 5|10{4

N K27me Sox2 N K27me Sox2 k3 0:1

N K27me Sox2 N K27me DNAme Sox2 k4 1|10{4

N K27me Sox2 N Sox2 k5 1|10{4

N K27me Sox2 N K27me K4me Sox2 k6 1|10{4

N K27me Sox2 Oct4 N K27me Sox2 Oct4 k7 0:05

N K27me Sox2 Nanog2 N K27me Sox2 Nanog2 k8 0:1

N K27me Sox2 N K27me Sox2 k9 1|10{4

N K27me DNAme Sox2 N K27me Sox2 k10 1|10{4

N Sox2 N K27me Sox2 k11 1|10{4

N K27me K4me Sox2 N K27me Sox2 k12 1|10{4

The example is for the N K27me Sox2 species. Parameters of first order reactions have units of min{1 and parameters for second order reactions have units of

CellVolume|min{1|Molecules{1 .
doi:10.1371/journal.pone.0060240.t002
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genes (NANOG, SOX2, and OCT4) and three epigenetic features

(DNA methylation, H3K27 methylation, and H3K4 methylation).

We will first demonstrate that the base model we built has features

that are observed experimentally. We then use the set of model

variants to perform stochastic simulations to study features of

induction.

Bistability, Inducibility, and Variability
The first question we addressed is whether the simple topology

implemented from experimental evidence can reproduce the three

features of bistability, inducibility, and variability. This question is

important to establish whether known biology is itself sufficient to

account for observed features, or whether additional mechanisms

are required.

To probe for bistability, we performed two different integrations

of the model’s ODEs with two different sets of initial conditions.

One set of initial conditions had low levels of mRNA and protein

for all three transcription factors, and had the promoters for all

genes set with the epigenetic marks characteristic of the uninduced

state (DNA methylated, H3K27 methylated, and H3K4 demeth-

ylated); the other set of initial conditions had high levels of mRNA

and protein for all three transcription factors, and had the

promoters for all three genes set with the epigenetic marks

characteristic of the induced state (DNA demethylated, H3K27

demethylated, and H3K4 methylated). Bistability was demon-

strated by the model converging to two different steady states that

depended on the initial condition (Figure 3A and B). That

bistability is a property of this complex network of interactions

shows not only that the model captures some of the essential

qualitative features of the real system, but also that the current

level of biological knowledge is consistent with the experimental

observation.

To further explore the model properties contributing to

bistability in this model, we studied the effects of different

biological mechanisms. Specifically we investigated (1) epigenetic

cooperativity that couples epigenetic states to changes in

transcription factor binding [30,31], (2) dimerization of the

transcription factor NANOG [32], and (3) cooperative binding

of OCT4 and SOX2 [33,34]. The model has all three properties,

and it is bistable. We explored models having combinations of

subsets these of features and tested for bistability. When bistability

was lost, a quick manual search over parameter space was

performed to investigate whether bistability could easily be

recovered with different parameters but without changing

cooperativity.

The results, in Table 3, indicate that bistability in our models

relies principally on the cooperativity between epigenetics and

transcription factor binding. All models with this property can

achieve bistability, although minor re-parametrization may be

required (rows 2 and 6). The data also show that NANOG

dimerization plays a role: when this property is removed from the

full model (moving from row 1 to row 6 in Table 3) the immediate

effect is a loss of bistability. Finally, cooperative binding of OCT4

and SOX2 in the models does not play a significant role: its loss

from row 1 to row 5 caused no loss of bistability. It is also

interesting to note that epigenetic coperativity alone can be a

mechanism for bistability, without requiring dimerization co-

operativity or cooperative binding of transcription factors. The

data indicate that mechanisms can act together to bring about

bistability and multiple contributing mechanisms may lead to

greater robustness of bistability across varying parameters.

The above results were all obtained with the deterministic ODE

version of each model. An important goal of the current study is to

use stochastic simulation methodology to explore cell-to-cell

variability in reprogramming dynamics, as such variability is a

feature of experimentally observed reprogramming protocols.

Deterministic simulations produce the same behavior when started

with the same initial conditions and once they reach a steady state

they remain there if unperturbed. Stochastic simulations use

random event generation to simulate the non-deterministic

characteristics of the timing of chemical reaction events. Thus,

in a stochastic framework, which can be a more realistic treatment

of biochemical systems, bistability can lie along a continuum from

transient to persistent. For the purpose of iPSC generation

protocols, persistent bistability that switches state only when

stimulated by induction protocols would be preferable. Here we

have made stochastic simulations and compared bistability

properties to those in the ODE framework. We simulated

stochastic dynamics for the Independent Equiprobable model

with the Gillespie Stochastic Simulation algorithm [47] for initial

conditions corresponding to the uninduced state (500 times), and

for initial conditions corresponding to the induced state (also 500

times). The distribution of outcomes for each of the two initial

conditions is shown in Figure 3C and D. As expected, the data

show that the model has two different distributions that depend on

the initial conditions, with simulations beginning near the induced

or uninduced state generally remaining there.

Next, we investigated whether the bistable system could be

induced from the low steady state to the high steady state by

adding an exogenous source of SOX2 and OCT4. Simulations

were carried out with mRNA for these genes produced at a

constant rate to emulate viral- or plasmid-based induction, as is

done experimentally. The results of hundreds of stochastic

simulations demonstrate all simulations can eventually reach the

induced state and remain there, although there was great variance

in the time required for induction, ranging from about one day to

several weeks of simulated time. The trajectories for two stochastic

induction simulations are given in Figure 4. At t~0 the induction

protocol began. In one of the illustrated simulations, the system

changes state at day one (Figure 4A), and in the other the change

happens at day six (Figure 4B). It is important to note that at day

20, for both cases, the external induction is removed (hence the

slight drop of transcription factor levels), but the system remains in

the high state.

Thus, the simulation results display marked cell-to-cell variabil-

ity. Beyond the small difference expected when stochastic

dynamics are simulated, dramatic variation in induction times

were observed, with some cells reprogramming in about a day and

others taking several weeks, although each cell was modeled

identically.

Relationship between Pathway Kinetics and
Reprogramming Dynamics

Mechanistic information describing the detailed progression of

steps of cellular reprogramming is still emerging, and this has led

to different abstractions regarding the nature of reprogramming,

including the proposed stochastic versus elite framework [19]. It

would be valuable to develop a better understanding of the

connections between the mechanism and functional properties of

the pluripotency circuitry and how they might be better probed

experimentally. Next we report simulations exploring relationships

between reprogramming pathway kinetic and mechanistic prop-

erties, and overall dynamics of reprogramming.

Event timing carries information about mechanism and

progress of cellular reprogramming. What is the relation-

ship between events along the reprogramming pathway and the

overall reprogramming time? How does this relationship change in

the context of different biological mechanisms? To study this we
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chose to focus on the times at which three types of events happen:

the time at which the first of the two copies of the NANOG

promoter loses DNA methylation, the time at which the first of the

two copies of the NANOG promoter loses H3K27 methylation, and

the time at which the first of the two copies of the NANOG

promoter gains H3K4 methylation. For each model, we simulated

500 cells subject to external induction with OCT4 and SOX2,

acquired the times at which these events occurred, and from the

ensemble of simulations computed the mutual information [48,49]

between the times of each of these three events and the time of

reprogramming. The results are given in Figure 5.

Starting with the Independent Equiprobable model (orange

bars), the results show that each of the events has essentially the

same amount of mutual information with the final reprogramming

time and that amount is relatively low. This implies that none of

the observations is more informative than the others about the

final reprogramming time. For the independent model, knowing

that a single event has happened implies nothing about the other

events and therefore provides little information about when all the

Figure 3. Observation of bistability. (A) Result of simulating the ODE model with initial conditions corresponding to low concentrations of
transcription factor protein and mRNA (close to uninduced state). (B) Result of simulating the ODE model with initial conditions corresponding to
high concentrations of transcription factor protein and mRNA (close to induced state). (C) Distribution of final values for the proteins of the model
with initial conditions in low state (D) Distribution of final values for the proteins of the model with initial conditions in are state. Results for panels C
and D are for 500 stochastic simulations for the Independent Equiprobable model.
doi:10.1371/journal.pone.0060240.g003
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necessary events will finally occur. By contrast the Cooperative

Equiprobable model (dark blue) shows a clear progression of

increasing mutual information with the final reprogramming time

that corresponds to the preferred path of epigenetic changes.

Thus, in a cooperative mechanism, as the cell progresses to the

final state, the time at which events happen increases the

information and predictability about the time of the final event.

This is important because it suggests that, in cooperative

mechanisms, stochasticity (unpredictability) is reduced along the

reprogramming process, and that the information of a single event

is dependent on where that event stands in the chain of

cooperative reactions – crucially that information is preserved if

we measure only that event. We should note that this progressive

increase of information in the cooperative mechanisms does not

come from the step being closer to the final time. In fact, if the

times at which the events of H3K27 methylation happened were

just a constant waiting time after loss of DNA methylation, then

the latter would not add any information at all. Rather, occurrence

of the first event reduces variability in the time of reprogramming.

Comparing the Cooperative Equiprobable model (dark blue)

with the Cooperative 1 Slow Step one (light blue), shows a big

increase in the mutual information at the point of loss of H3K27

methylation – which is precisely the slow step. The results indicate

that the slowest step in the process is also the one whose

occurrence most reduces the uncertainty about the final event

timing. Essentially, the slow step increases variability about when

reprogramming will occur; later steps are faster and thus have a

tighter relationship with the final reprogramming time.

The results from the Cooperative with 2 Slow Steps model

(green) show that the occurrence of the first slow step (DNA

demethylation) adds more information when compared with the

same step in other models. As a slow step, there is greater

variability in its timing, so its occurrence significantly reduces the

variability in the time of reprogramming. Because there is a

further slow step yet to be achieved, the mutual information with

the final reprogramming time is of intermediate magnitude.

Because this is the only model in which this step is slow, the

magnitude is larger than in the other models.

Because reactions are reversible, an acquired epigenetic state

can be lost. Therefore, the importance of – and information

contained in – the "first time" the state changes is dependent on

the stability of the change. If an acquired epigenetic mark is highly

prone to loss, then having gained it for the first time is not very

informative about the progress of the cell over the pathway of

necessary transformations. In our models, under conditions of

induction, the back reactions are less likely than moving forward

(the exact reaction rate depends on the amounts of the reagents).

Probability curves uncover kinetic aspects of

process. How can we glean insight about the process kinetics,

and can we use a probabilistic framework to do so? Here we

analyze the probability of observing reprogramming as a function

of progress in the reprogramming protocol. Figure 6 shows the

Table 3. Bistability studies.

Epig.
Coop. (a)

Nanog
Dim. (b)

OCT4/SOX2
Coop. (c) Bistability (d)

1 1 1 H

1 0 0 |?H

0 1 0 |

0 0 1 |

1 1 0 H

1 0 1 |?H

0 1 1 |

Each column represents a different feature of the model: (a) Epigenetic
cooperativity with the Transcription factors; (b) the dimerization of the
transcription factor NANOG; (c) the cooperative binding between OCT4 and
SOX2; and (d) the observation of bistability. Each row represents a different
model variation. The presence or absence of a feature in a model is marked
respectively by a 1 or a 0. In the bistability column an|represents no observed

bistability, and a H represents observed bistability; an arrow from one to the

other represents a successful change in parameters resulting in bistability.
doi:10.1371/journal.pone.0060240.t003

Figure 4. Demonstration of inducibility. Two examples of stochastic simulations of induction for the Independent Equiprobable model. At time
0 exogenous expression of SOX2 and OCT4 was begun. (A) In one simulation the internal circuit changed state at day 1. (B) For a second simulation
the change occurred at day 6. In this demonstration, at day 20 for both cases, the external induction was removed.
doi:10.1371/journal.pone.0060240.g004

Modeling Stem Cell Induction Processes

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e60240



probability of a cell reprogramming in each model as a function of

time after individual events occur. Reprogramming probability

trajectories were computed using each of the three epigenetic

events studied in the previous section, represented in green (DNA),

red (H3K27) and blue (H3K4) curves; also included is the

probability of reprogramming as a function of time after the

beginning of induction, the black curve.

It is interesting to note that the black curves of Figure 6 have a

basic resemblance to recent experimental results. Our data show

cells starting to reprogram after just a few days and, depending on

the model, the majority of cells has reprogrammed after 2 weeks

(Independent Equiprobable model) or after 10–17 weeks (Coop-

erative 1 and 2 slow steps model, respectively). Data collected by

Hanna and co-workers [20] show that 90% of wells seeded with

single cells generate reprogrammed colonies after 16 to 18 weeks.

The shape of the curve of percentage of cells reprogrammed as a

function of time in our models is also similar to that measured

experimentally.

The data for the Independent Equiprobable model (Figure 6A)

shows the three lines for the three events being overlaid. This

makes sense because no modification is more likely than the others

thus; they signal the same level of advancement along the

induction pathways. The fact that the lines are overlaid is also a

basic indication of soundness of our simulations and their statistical

convergence. The data for all three Cooperative mechanisms show

a spread of the trajectories corresponding to the order in the

mechanism (Figure 6B, D, and E). This makes intuitive sense,

because the cooperative models have a strongly preferred ordering

of events.

The results also reveal information about limiting kinetic

aspects. The plot of the Cooperative 1 Slow Step model

(Figure 6D) shows what the limiting step is. The large difference

between the red and green line shows that the probability of

observing reprogramming dramatically increases once H3K27

methylation is lost, the slow step. This is in contrast to the

negligible change observed after we observe loss of DNA

methylation (the green line is very similar to the black line).

The theme that slow steps can be revealed in reprogramming

trajectories is also apparent in the Independent 1 Slow Step model

(Figure 6C). While there is no order for this model, all successful

reprogramming pathways must traverse a slow step that is essential

– to lose H3K27 methylation. This corresponds to a modest

acceleration in reprogramming trajectories once they have

accomplished the slow step. Thus, a separation of scales may

result from a slow step whether or not there is obligate ordering in

the pathway. Figure 6C shows a slow step that tends to happen late

because it is slow but not because the biochemistry requires that it

occur after other epigenetic changes. Figure 6B, C, and E

correspond to cases where the ordering is essentially obligate due

to the modeled biochemistry. The common assumption that late

events are required to occur after some early event is not always

appropriate and may lead to incorrect conclusions, such as that it

is not worth speeding up a late event when, in fact, it is.

Finally, from this data it is also possible to understand some of

the biological principles that might give rise to the proposed views

of elite or stochastic iPSC generation. For example, in Figure 6D,

the state cells are in is an important determinant of reprogram-

ming time. Cells that have already lost H3K27 methylation have

an approximately 80% probability of reprogramming within 15

days; for cells that retain H3K27 methylated the probability drops

to 15%. Cells that have lost H3K27 methylation could thus be

construed as an elite subpopulation that is closer to reprogram-

ming. Similarly, Figure 6E cells that lost DNA methylation (green

line) have a 50% probability of reprogramming at around 30 days,

whereas for the cells at the initial state 50% requires almost double

that time. These results show that one way that elite-type results

Figure 5. Mutual information. On the horizontal axis are represented the 3 measured variables (times of the different events). On the vertical axis
is the mutual information each of the variables has with the reprogramming time.
doi:10.1371/journal.pone.0060240.g005
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can be explained is by the existence of subpopulations of cells that

overcome one (or several) of the low probability reactions on the

way to reprogramming earlier than others.

Regarding these last observations, one key point is that all the

cells in these simulations start with the same initial conditions (as

described in Methods), yet, at any given time after induction, some

will have had that reaction happen and some not. Therefore,

stochastic processes acted upon a population that was homoge-

neous at time of induction and created a subgroup that can be said

to have elite-like properties. The same results are obtained when

cellular populations are already heterogeneous at the time of

induction as shown in the next section.

Effects of pre-existing population variation. The work

described up to this point in the paper reports on simulations that

all began from the same uninduced starting point. Stochastic

variation led to differences in simulated behavior across a

population of initially identical cells. Even with such variation,

key features of the kinetic pathway leading to full induction

produced distinguishing features in the overall reprogramming

dynamics of the populations. In this section we examine how pre-

existing variation of uninduced cells can affect reprogramming

dynamics. Simulations were made of 1500 cells with the

Independent Equiprobable model and stochastic dynamics but

without the inducing factors. The resulting population represents

an equilibrium distribution expected prior to application of each

induction protocol. The distribution shown in Figure 7 indicates

that the population is not uniform. While most of the population is

in the starting low state with each of the corresponding epigenetic

marks set accordingly (H3K27 methylated, DNA methylated, and

H3K4 demethylated), a significant number of cells have one of

those marks changed in at least one of the two copies of the

NANOG gene, and a much smaller number has two or even all

three changed in at least one of the copies. The cells occupy this

distribution of states due to finite, non-zero rates for flipping

epigenetic marks and flipping them back. Stochastic events are

responsible for which cells are in which state at any point in time.

Once a steady-state distribution is reached, individual cells

continue to change state, but the distribution is invariant. Thus,

whereas stochastic events drive the system to its steady state, the

steady-state distribution is deterministic and a characteristic of the

modeled cell population.

We hypothesized that the different subpopulations in the steady-

state distribution could have different reprogramming dynamics,

because some were further along the reprogramming pathway

than others. Sharp differences in reprogramming time could give

the appearance of an elite subpopulation especially primed for

reprogramming. Fundamentally, however, the cells are equally

capable of interconverting among the same set of states, and

emerging differences are due to the state each cell happened to be

in at the time the induction protocol was initiated. To explore the

effect of pre-existing states on reprogramming dynamics, each of

the eight substates was used to start sets of simulations under

induction conditions. Simulations were run for all models, and

results for the distribution of reprogramming times are given in

Figure 8. Distinct subpopulations can have significantly different

reprogramming times. This is especially true of the Cooperative

Figure 6. Probability curves for reprogramming. The horizontal axis represents time after an epigenetic event. The vertical axis is the
cumulative probability of observing reprogramming given that an event has happened for the first time. Each of the lines represents the occurrence
of events in the legend. Models: (A) Independent Equiprobable; (B) Cooperative Equiprobable; (C) Independent 1 Slow Step; (D) Cooperative 1 Slow
Step; (E) Cooperative 2 Slow Steps.
doi:10.1371/journal.pone.0060240.g006
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model variants and particularly those with slow steps. Subpopu-

lations starting further along the reprogramming pathway tended

to complete the process more quickly than those beginning more

distant from the final state. When one or more slow steps was

present, substates after the last slow step reprogrammed much

faster than those before. While terms such as "elite" may be

applied to these subpopulations to indicate that they respond more

quickly to induction protocols than other cells, for the case

described here all cells are equally capable of reprogramming. The

faster time scale available to these cells suggests it may be

advantageous to isolate and induce only them, or even to search

for methods to accelerate slow steps either to prepare cells for

induction or to apply concomitant with induction.

Population dynamics during reprogramming. We repro-

cessed our induction simulation data to examine the timing of the

progression through various states during the reprogramming

protocols. Because cells simulated with the same model exhibited a

wide range of reprogramming times, we adopted the practice of

normalizing the time axis of each cell trajectory by its ultimate

reprogramming time, which produces a population of trajectories

in terms of the relative time t~t=tr where tr is the absolute

reprogramming time for the current cell trajectory (thus, 0ƒtƒ1).

Averaging across all cells in a given model as a function of t
produced the relative population trajectories in Figure 9.

Figure 9A shows that the Independent Equiprobable model’s

population starts in an epigenetic state corresponding to the adult

cell state. As cells leave that state they populate states 2, 3, and 4

(nomenclature of Figure 8) with equal probability; at later relative

reprogramming time cells populate states 5, 6, and 7 (with two of

the three changes) before moving on to the final epigenetic state

and reprogramming at t~1. While the population occupancies

display a steady, progressive accumulation of epigenetic changes

toward reprogramming on average, individual cells can and do

make temporary steps backwards before ultimately reprogram-

ming. In Figure 9A, the grouping of the two sets of three lines that

refer to states of equal distance from the starting state is, in fact,

what we would expect to observe in conditions of statistically

converged simulations.

The introduction of a slow step (Figure 9C) leads to somewhat

different population dynamics with high population accumulation

before the slow steps and population after the slow step generally

advancing quickly to the final state. Cooperative mechanisms

essentially only populate the preferred pathway (Figure 9B, C, and

E). When slow steps are introduced, the resulting bottleneck

creates large buildups of the corresponding intermediate

(Figure 9C and E).

Opportunities for Accelerating Stem Cell Induction
Dynamics

The analysis of reprogramming dynamics from the simulation

showed the presence of bottlenecks occurring before slow steps.

Here we explore the effect of accelerating individual reaction steps

on the overall reprogramming rate. For the purposes of this study,

we artificially increased the rate of the selected reaction by

increasing the associated reaction rate by 10 fold for a brief period

of time corresponding to 10% of the total protocol time for the

given model. Figures 10, 11, and 12 present results for accelerating

each of two different reaction steps (loss of DNA methylation and

loss of H3K27 methylation) in three different models (Cooperative

1 Slow Step, Independent 1 Slow Step, and Cooperative 2 Slow

Steps) with varied time of pulse application. The results show

dramatic increases in overall reprogramming efficiency when the

Figure 7. Population distribution. Distribution of states of the NANOG promoter in an equilibrium population of cells in the Independent
Equiprobable model. A cell counts for a state if it has one of the gene copies in that state.
doi:10.1371/journal.pone.0060240.g007
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slow steps were accelerated but not when a fast step was

accelerated (Figure 10B vs. A and Figure 11 B vs. A). Interestingly,

the overall efficiency improvement was relatively insensitive to the

time of pulse application. This can happen because all cells that

haven’t reprogrammed are trapped in a particular state (this can

be seen, for example, in Figure 9D). Pulses introduced concom-

itant with the start of the induction protocol were somewhat less

efficient because too few cells had left the starting state and were

yet trapped at the slow step by the time the pulse had ended

(Figure 10B). Likewise pulses applied when many cells had already

passed the slow step (Figure 12A) or were waiting at a different

non-accelerated step (Figure 12B) were also less effective.

Understanding the influence of mechanisms and kinetics in

accelerating particular reactions is especially relevant, considering

the evidence that suggests some of the cells that do not reprogram

in the initial weeks of the protocols are relatively stable in partially

reprogrammed states [29,50]. Characterization of these cells

revealed that the promoters of key genes of the reprogramming

circuitry remained heavily methylated and some of the necessary

histone modifications have not happened. Regarding our work,

Figure 9D shows that a dominant slow step can cause cells to

remain in the same state most of time until reprogramming, and

the black line in Figure 6D shows that only 20% of cells collected

at day 14 would have reprogrammed; by implication (Figure 9D),

those that did not reprogram would not have done so because of

the slow step keeping them in their unreprogrammed state. As

illustrated in Figure 10B, had these cells been made more likely to

traverse the slow step in time, the overall efficiency of the process

could have been greatly increased. Taken together, these

observations suggest one of the reasons for low efficiency may be

related to particularly slow kinetic steps in an ordered mechanism.

It also suggests that identifying particular steps that cells struggle to

overcome (because they are inherently slow or rare) and

accelerating them, as shown in Figure 10B, may limit the loss of

efficiency due to partially reprogrammed cells.

Conclusion
This work used computational modeling to examine induced

cellular reprogramming of differentiated adult cells to stem cells.

Our study focused on the relationship between the individual

biochemical steps underlying reprogramming and the dynamics of

the overall process. The use of stochastic models revealed the

distributed behavior of the populations of cells. Much of the

mechanistic biology of the inverse differentiation process leading

to induced pluripotent stem cells is yet to be discovered. Therefore,

our model, despite an improvement on previous modeling work,

can at best be only an approximation of the actual process of

interest. In the absence of experimental measurements that report

kinetic values or definite topologies, this and other models of the

cellular pluripotency network are likely to be missing features that

will be shown to play a role and rate parameters and mathematical

dependencies that can be improved as further studies report their

results. Moreover, by their very nature, models can never be

proven correct; at best they can be consistent with a collection of

available data. Models are nevertheless tremendously useful,

including as a basis for understanding the relationship between

Figure 8. Reprogramming time as function of initial state. Time of reprogramming on the vertical axis. Red line is the median, blue box
encompasses all points from 25th to 75th percentiles of the distribution. Initial state prior to induction in the horizontal axis numbered as indicated in
the respective panel. Also, the black contour on the arrows represents the order in the cooperative mechanisms (in those models, only such states
were used as initial conditions for these simulations). Models in each panel: (A) Independent Equiprobable; (B) Cooperative Equiprobable; (C)
Independent 1 Slow Step; (D) Cooperative 1 Slow Step; (E) Cooperative 2 Slow Steps.
doi:10.1371/journal.pone.0060240.g008
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Figure 9. Analysis of fractional state occupancies. The horizontal axis represents fraction of reprogramming time, the vertical axis represents
the percentage of cells that has one or two copies of the NANOG gene in the state corresponding to the curve legend. Models: (A) Independent
Equiprobable; (B) Cooperative Equiprobable; (C) Independent 1 Slow Step; (D) Cooperative 1 Slow Step; (E) Cooperative 2 Slow Steps.
doi:10.1371/journal.pone.0060240.g009

Figure 10. Acceleration plots – Cooperative 1 Slow Step. Fraction of cells that has reprogrammed as a function of time. (A) Accelerating the
reaction of loss of DNA methylation. (B) Accelerating the reaction that leads to loss of H3K27 methylation. Different times of acceleration,
corresponding to percentages of total time, correspond to the lines identified the in the legend.
doi:10.1371/journal.pone.0060240.g010
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network construction and overall functional operation. The model

and parameterization we use are consistent with the basic

experimental observations (bistability, inducibility, stochasticity,

and the basic shape and timing of the reprogramming curves) and

can be used to understand some of the relationships of the

reprogramming protocols we focus on in this work. Here we

examined how detailed kinetic properties, such as the existence

and placement of slow steps and the degree of cooperative

ordering of kinetic events, affects the distribution of overall

reprogramming dynamics for a population of cells. Models are also

fundamental substrates for engineering and design. Here we

evaluated approaches to accelerating cellular reprogramming

using a modeling framework.

A relatively simple set of models is consistent with the observed

properties of bistability, inducibility, and variability. Our models

share cooperativity in three places (epigenetic cooperativity linked

to transcription factor binding, dimerization of NANOG, and

cooperative promoter binding of SOX2 and OCT4), the first of

which is most important for bistability.

The broad distribution of reprogramming times that occurs in

the stochastic modeling simulations, particularly when there are

slow steps, can make it difficult to ascertain whether all cells are

eventually capable of reprogramming, with some just taking longer

than others. A multi-step reprogramming pathway can lead to

subpopulations that are further along the path than others and

that tend to reprogram more quickly. Here, all cells were

genetically identical and capable of interconverting among all

Figure 11. Acceleration plots – Independent 1 Slow Step. Fraction of cells that has reprogrammed as a function of time. (A) Accelerating the
reaction of loss of DNA methylation. (B) Accelerating the reaction that leads to loss of H3K27 methylation. Different times of acceleration,
corresponding to percentages of total time, correspond to the lines identified the in the legend.
doi:10.1371/journal.pone.0060240.g011

Figure 12. Acceleration plots – Cooperative 2 Slow Steps. Fraction of cells that has reprogrammed as a function of time. (A) Accelerating the
reaction of loss of DNA methylation. (B) Accelerating the reaction that leads to loss of H3K27 methylation. Different times of acceleration,
corresponding to percentages of total time, correspond to the lines identified the in the legend.
doi:10.1371/journal.pone.0060240.g012
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states, yet with fixed times allotted for reprogramming, only a

subset complete the process. Given sufficient time all do. This

behavior appears consistent with recent experiments [20].

Results show that slow steps, because they have a wide range of

waiting times, introduce large variance in overall reprogramming

times. Results also demonstrate that observing a preferred ordered

of kinetic events does not itself allow a conclusion to be drawn

about its source. While it is tempting to imagine an obligate

ordering of events, for example through cooperativity and other

mechanisms, the presence of slow and fast steps can also explain

the observations.

We show that, even when simulated to account for biochemical

stochastic dynamics, cooperative mechanisms lead to unpredict-

ability of outcome being reduced as the cells move along the path

of necessary modifications to reprogram. This is in contrast with

the prediction for independent mechanisms, where observations of

modifications are less informative about reprogramming times.

It’s known that different types of cells have different repro-

gramming potential [51]. In our work we examine the influence of

the existence of subpopulations of cells in reprogramming

dynamics. We studied the scenario where cells are all equal at

induction but accrue differences due to stochastic events, and the

scenario where there are subpopulations of similar cells with

different epigenetic features. In both cases we illustrate how

cellular state, acquired or pre-existing, can lead to elite-type

behavior and cause significantly different reprogramming times.

This, in our predictions, is especially true for the cooperative

mechanisms and particularly when dominated by slow steps. Slow

steps can create kinetic barriers to reprogramming that may create

the appearance of elite behavior.

Kinetics and mechanisms also have an important impact when

the desire is to accelerate reprogramming protocols. If the process

is dominated by a single slow reaction, then accelerating that

reaction is the key to improving efficiency. If the process is

dominated by several slow steps, then accelerating only one of

them has a smaller effect and one might consider having to

accelerate several of them – in which case the order of intervention

for acceleration becomes important. Recent studies suggest that

SOX2 has a specific time window of action [52]. In light of our

results, this is consistent with the hypothesis of a mechanistically

ordered system of modifications on the path to reprogramming.

Further, it raises the possibility that the action of this transcription

factor is one of the limiting steps for reprogramming. Naturally,

only with further experimentation can this be confirmed. Possible

experiments include inhibiting specific steps to determine whether

those steps are part of an ordered mechanistic chain of events or

an unordered process. If a step is part of an ordered necessary

path, then inhibiting it will trap cells in that state; on the other

hand, if a step is part of an unordered mechanism then inhibiting it

will not impede progress along other necessary modifications.

Similar to the work done with SOX2 there are also recent

indications that the timing of action for promoting DNA

demethylation is an important feature [53], and recent work

showing that cells can become trapped due to-non completion of

this step [29]. Once again, our work suggests that one explanation

for these observations might be that this epigenetic modification is

part of an ordered cooperative mechanism of changes with more

than one slow step. Given these observations and recent

developments that indicate the possibility of substituting factors

for reprogramming with small molecules [54] (which can easily be

supplied at different times), as well as recent work describing

screening approaches that were used to inhibit the action of

specific kinases important for the reprogramming process [55], we

suggest that experiments with time-dependent screening of

inhibition or acceleration of particular steps might be used to

understand not just what steps are limiting, but also the

mechanistic dependencies between the several key steps of the

reprogramming process.

Besides suggesting a different take on the elite versus stochastic

framework proposed by Yamanaka [19], we believe that work

presented here will help increase the efficiency of cellular

programming. Indeed, as illustrated, certain types of data about

the times of milestone events and subsequent analysis can reveal

kinetic and mechanistic information about the process of cellular

reprogramming. We also suggest that time-dependent experiments

with acceleration and inhibition of certain steps can be used to

identify limiting and mechanistic relations. When this information

is obtained, it is possible that accelerating those most sensitive

points in the process at the appropriate times, or focusing on cells

that have passed these barriers to the final stage, might prove to be

effective in improving the efficiency of iPSC generation protocols.

Mechanistic information about the process is also needed to

improve safety of potential future applications. Indeed, alongside

the promise that induced pluripotent stem cells hold for

fundamental research and for medical applications, there is also

recent evidence of unstable or imperfect reprogramming [56,57].

This work underscores the point that if the efficiency and safety of

these protocols is to be improved, then a more mechanistic

understanding may be useful. The work done here also points to

the necessity of single-cell measurements, because measurements

of population averages do not reveal the detailed mechanistic and

kinetic intricacies of the process.

Supporting Information

File S1 The zip file contains all five models used in this
work, in their matlab2008 ‘‘sbproj’’ format. Models are:

(Model S1 in File S1) Independent Equiprobable, (Model S2 in

File S1) Cooperative Equiprobable, (Model S3 in File S1)

Independent 1 Slow Step, (Model S4 in File S1) Cooperative 1

Slow Step, (Model S5 in File S1) Cooperative 2 Slow Steps.

(ZIP)
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