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Abstract

We studied methods for the automatic segmentation of neonatal and developing brain images into 50 anatomical regions,
utilizing a new set of manually segmented magnetic resonance (MR) images from 5 term-born and 15 preterm infants
imaged at term corrected age called ALBERTs. Two methods were compared: individual registrations with label propagation
and fusion; and template based registration with propagation of a maximum probability neonatal ALBERT (MPNA). In both
cases we evaluated the performance of different neonatal atlases and MPNA, and the approaches were compared with the
manual segmentations by means of the Dice overlap coefficient. Dice values, averaged across regions, were 0.8160.02 using
label propagation and fusion for the preterm population, and 0.8160.02 using the single registration of a MPNA for the
term population. Segmentations of 36 further unsegmented target images of developing brains yielded visibly high-quality
results. This registration approach allows the rapid construction of automatically labeled age-specific brain atlases for
neonates and the developing brain.
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Introduction

Anatomical structures can be segmented in biological images by

transfer of voxel labels from an analogous image previously

segmented into anatomical regions, or atlas [1]. This requires an

accurate alignment and correspondence of structurally equivalent

regions between the atlas and the target image usually achieved

using non-rigid registration [2,3,4,5,6]. Segmentation methods

often first register the atlas to the target image and then segment

the target image into anatomical structures based on transferred

information [5,7,8,9,10,11,12], although registering multiple

atlases to the same target with subsequent fusion of different

segmentations will frequently improve the final segmentation

result, compensating for nonsystematic errors in single registra-

tions [13,14,15,16,17].

Magnetic Resonance (MR) images of the brains of newborn

infants have been particularly difficult to segment [18] due to: the

low tissue contrast; signal inhomogeneity; intersubject differences

due to the rapid development of the brain, especially in white

matter (WM) structures [19]. The development of automatic

segmentation methods has been further hindered by the lack of

gold standard data for comparison and validation [20].

In this paper we present two methods for the automatic

segmentation of neonatal and developing brain MR images into

50 regions of interest (ROI) utilizing a new set of manually defined

neonatal atlases called ALBERTs [21]. The first approach is based

on fusion of anatomical prior information from various neonatal

atlases. The second approach is based on propagation of labels

from a maximum probability neonatal ALBERT (MPNA). For

both methods we evaluated the performance of different atlases

and MPNAs and compared the results to the gold-standard

manual segmentations.

Materials and Methods

Image Acquisition
MR images were acquired using a 3.0 Tesla Philips Achieva

scanner (Philips Medical Systems, Best, The Netherlands). The

technical characteristics of the scans, as well as detailed

demographics, can be found in our previous work [21]. T1-

weighted magnetization prepared rapid-acquisition gradient echo

volumes in the sagittal plane were acquired with an echo time of

4.6 ms and repetition time 17 ms; 124–150 sagittal slices of

1.6 mm thickness were acquired with a 210 mm field of view, a

flip angle of 30u, and a 2566256 matrix, resulting in voxel sizes of

0.8260.8261.6 mm3. We used the following data sets:

N 15 preterm neonates scanned at term (eight female), with a

median gestational age at birth of 29 weeks (range 26–35
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weeks) and a median gestational age at the time of the scan of

the subjects of 40 (37–43) weeks, manually segmented [21].

Two were twins with a gestational age of 29 weeks, scanned at

40 weeks.

N Five term control neonates (two female), with a median age at

scan of 41 (39–45) weeks, manually segmented [21].

N 36 preterm neonates scanned at birth that had not been

manually segmented (sixteen female), with a median gesta-

tional age at birth of 29 (24–36) weeks.

Approval for scanning the subjects had been obtained from the

Hammersmith Hospital Research Ethics Committee, and written

informed consent obtained prior to scanning. Post-processing of

anonymised scan data that had been acquired for clinical purposes

did not require individual consent from the individuals who had

been scanned.

MR Image Pre-processing
T1-weighted 3D image volumes were obtained in DICOM

format and converted to the NIfTI format using the UCLA

Laboratory of Neuro-Imaging’s Debabeler Software (www.loni.

ucla.edu/Software/Debabeler). The image matrix was reduced in

superior, anterior, posterior, and lateral directions to contain five

empty slices (560.82 = 4.1 mm) after the last slice containing skin.

Inferiorly, five empty slices (561.6 = 8 mm) were added after the

last slice where the posterior floor of the skull was visible. The

reduction in matrix size simplified the subsequent bias correction

step in that inferior extracranial signal would not have to be

Figure 1. Illustration of the algorithm for the creation of an average space/template, emphasizing schematically on the different
spaces involved in the transformations. 1a First Iteration: 1st Step: Non-rigid registration of cohort to the candidate target; 2nd Step: Averaging
of the nonrigid 10 mm transformation (blue arrow); 3rd Step: Inversion of the average nonrigid 10 mm transformation (red arrow); 4th Step:
Composite transformation (nonrigid 2.5 mm+inverted average 10 mm); 5th Step: Averaging of the MRIs in average (AV) space. 1b. Second Iteration:
1st Step: Non-rigid registration of cohort to the new candidate (AV space); 2nd Step: Averaging of the nonrigid 10 mm transformation (blue arrow);
3rd Step: Inversion of the average nonrigid 10 mm transformation (red arrow); 4th Step: Composite transformation (nonrigid 2.5 mm+inverted
average 10 mm); 5th Step: Averaging of the MRIs in New AV space.
doi:10.1371/journal.pone.0059990.g001

Table 1. Neonatal Templates based on different candidate
target and different prior MRIs.

Template Candidate Target Fused information

Template_01 Term-born All 19 remaining MRIs.

Template_02 Term-born All 15 preterm MRIs.

Template_03 Preterm All 14 remaining preterm MRIs.

Template_04 Term-born All 4 remaining term-born MRIs.

doi:10.1371/journal.pone.0059990.t001
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considered. The padding around the skull was maintained because

our previous work had shown the skull to be an essential landmark

for successful registration in young children [16,17]. T1-weighted

image volumes were corrected for non-uniformity using the FAST

Software from the FMRIB Software Library (FSL version 4, [22]).

T1-weighted images were resampled, creating isotropic voxels of

0.8260.8260.82 mm3 using windowed sinc interpolation, to make

them compatible with Analyze AVW 8.1 software. Re-orientation

of the sagittal T1 volumes was performed with the horizontal line

defined by the anterior and posterior commissures (AC-PC

orientation) and the sagittal planes parallel to the midline [23].

We reduced the number of interpolation steps during reorientation

by coregistration of the native images onto the re-orientated

versions of themselves. This was performed using a method based

on normalised mutual information and 7th degree B-spline

interpolation. Coregistration was performed using SPM2 (Statis-

tical Parametric Mapping, Wellcome Trust Centre for Neuroim-

aging, UCL, London) [24,25] under Matlab version 6.5 (Math-

works Inc, Sherborn, MA, USA). A 16-bit voxel depth was

maintained throughout the process.

Delineation, Manual Segmentation, and Nomenclature
The MR images had been manually segmented into 50 ROIs

each, covering the whole brain, using newly created protocols

established according to previously described principles

[26,27,28]. Each voxel belongs to one ROI only, and their

ensemble thus constitutes a brain atlas: a label-based encephalic

ROI template (ALBERT), as described in detail in Gousias et al.,

2012 [21]. The 60-pages illustrated Appendix of the aforemen-

tioned companion paper consists of the protocols for all the

regions.

In the remainder, the brain atlases are designated as ALBERTs;

ALBERTs having been registered onto other individual brain

MRIs via their underlying MRI and MRI-to-MRI registrations as

‘‘transformed ALBERTs’’; average greyscale MRIs as ‘‘Tem-

plates’’; fused atlases in a template space (i.e. in an average space

as opposed to an individual space) as maximum probability

neonatal ALBERT (MPNA).

Automatic Segmentation via Multiple ALBERTs
Registration. After pre-processing, every neonatal subject

was paired with every other neonatal subject for image registra-

tion, resulting in 380 (20619) image pairs. All pairs were aligned

using 3D voxel-based registration in three steps using IRTK

Software (available via http://wwwhomes.doc.ic.ac.uk/,dr/

software/): rigid, affine and non-rigid registration. Parameter

settings were tuned to the specific challenges posed by images of

neonates [17]. Blurring of both target and source images during

the subsequent affine registration improved results. Furthermore,

we increased the resolution levels from one to three, increased the

number of iterations from 100 to 200, decreased the length of steps

from 3.2 to 2 and used the correlation coefficient as the similarity

measure in this step. For the final non-rigid registration, iterations

were increased from 10 to 100 compared with adult-to-adult

registration. The non-rigid step was based on the manipulation of

a free-form deformation represented by displacements on a grid of

control points blended using cubic B-splines [29] (available via

http://wwwhomes.doc.ic.ac.uk/,dr/software/) and maximizing

normalised mutual information (NMI; [30]. The registration was

refined in a multi-resolution fashion by stepwise reduction of the

control point spacing from 20 mm to 10 mm, 5 mm and finally

2.5 mm. Registration pairs were processed in parallel on a cluster

of approximately 400 Linux PCs, controlled by Condor software

(Version 6.7.13, http://www.cs.wisc.edu/condor/).

Label propagation. The output of the registration of an

image pair is a transformation that maps the neonatal source

image to the neonatal target image. These transformations were

then applied to the ALBERTs using nearest-neighbour interpo-

lation, resulting in 19 individualized propagated transformed

ALBERTs for each of the 20 target brains.

Decision fusion. Each resulting transformed ALBERT

assigns a structure label to every voxel in the corresponding MR

image volume. To combine the information from multiple

individual label sets into a single segmentation, we applied vote-

rule decision fusion. The consensus class of each voxel was defined

as the modal value of the distribution of the individual label

assignments [31]. This approach yielded good results in our

previous studies [14,16,17,26]). In the case of non-unique modes,

one of the modal values was assigned at random. Even vs. odd

numbers of individual label sets resulted in twice the number of

equivocal voxels, but in absolute terms, the fraction was very small

(less than 1% of the total number of voxels) [16]. Three versions

were created.

First, we created fused atlases for all 20 subjects based on fusion

of all remaining 19 transformed ALBERTs (ALBERTs_19).

Secondly, for the 15 preterms, we also created fused atlases based

on only the remaining 14 preterm transformed ALBERTs

(ALBERTs_14_Pre); and finally for the term population (n = 5),

we also created fused atlases based on only the remaining four

term transformed ALBERTs (ALBERTs_4_Term).

Table 2. MPNAs based on different templates and different ALBERTs.

MPNA Template Fused information in a leave-one-out fashion

MPNA_01 Template 01 19 remaining ALBERTs

MPNA_02 Template 02 19 remaining ALBERTs

MPNA_02_Preterms Template 02 14 remaining preterm ALBERTs

MPNA_03 Template 03 19 remaining ALBERTs

MPNA_03_Preterms Template 03 14 remaining preterm ALBERTs

MPNA_04 Template 04 19 remaining ALBERTs

MPNA_04_Preterms Template 04 14 remaining preterm ALBERTs

MPNA_04_Terms Template 04 4 remaining term ALBERTs

doi:10.1371/journal.pone.0059990.t002
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Figure 2. Automatic segmentation using different groups of ALBERTs and decision fusion. Comparison with manual gold standard
ALBERT.
doi:10.1371/journal.pone.0059990.g002
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Automatic Segmentation via Probabilistic Templates and
MPNAs

Neonatal template creation. One of the term-born controls

was selected as the candidate target. All remaining 19 data sets

were registered to the candidate target with rigid, affine, and non-

rigid registration starting with 20 mm spacing down to 2.5 mm as

described above. The process is illustrated in Figure 1. The 10 mm

non-rigid transformations were averaged and the average trans-

formation was inverted, on the assumption that this average

transformation maps the hypothetical average space we want to

create to the candidate target space. Combining each 2.5 mm

non-rigid transformation with the inverse average 10 mm non-

rigid transformation we transferred each image, through the

candidate target space, to the average space. In the second

iteration (Figure 1b) we used the mean intensity image in average

space as the new candidate target, in order to reduce possible bias

arising from the choice of the first candidate target. We registered

the 19 data sets to the new candidate average and repeated the

steps twice. After the second iteration, we obtained the new

average space. Similar approach has been used for the creation of

pediatric templates [32].

In order to assess the influence of the bias resulting from the

choice of the candidate target on subsequent MPNA registrations

we created four different average spaces. For three of these, the

visually most representative and symmetrical of the term controls

was selected as a candidate target and used to transform 1) the

whole cohort, 2) the preterm data sets only, 3) the term data sets

only. Finally, we selected the visually most representative and

symmetrical preterm data set and transformed only the preterm

data sets to this candidate target (Table 1).

After the creation of the average spaces for the cohort of

neonates, each data set was registered to each average space using

the same parameter settings as previously and the segmentations

were fused to create eight different MPNAs (Table 2), each

corresponding to one of the four template spaces (Table 1). This is

similar to the creation of a maximum probability atlas for the

pediatric population [32].

Validation
Validation of all automatic segmentations was achieved via

overlap measurements, expressed as a Dice index (twice the

intersection divided by the union; [33,34]) between the automat-

ically created segmentations and the corresponding manually

created ALBERT, which served as the gold standard. Automatic

segmentations were based on individual pairwise registrations and

subsequent label fusion of:

N all 19 remaining manually created ALBERTs - ALBERTs_19,

N 14 remaining preterms - ALBERTs_14_Pre,

N four remaining terms - ALBERTs_4_Term.

Figure 3. Average space templates and corresponding MPNAs. All MPNAs shown here are derived from fusion of all remaining 19
transformed ALBERTs. Only the template creation differs in terms of the initial candidate target (see Figure 1): term-born for MPNA_01 MPNA_02 and
MPNA_04, preterm for 03; and in terms of the MRIs averaged to create the template space: all remaining 19 for MPNA_01; all 15 preterms for
MPNA_02; all remaining 14 preterms for MPNA_03, and all remaining 4 terms for MPNA_04.
doi:10.1371/journal.pone.0059990.g003

Table 3. Validation results by means of SI measurements of the different templates, different ALBERTs of Optimum Segmentation
and different fusion approaches.

Term-borns Preterms

Average SI Stdev CV (%) Average SI Stdev CV (%)

MPNAs

MPNA_01 0.74 0.02 3 0.73 0.03 4

MPNA_02 0.73 0.02 3 0.72 0.02 3

MPNA_02_Preterms 0.70 0.02 3 0.72 0.02 3

MPNA_03 0.69 0.04 5 0.72 0.03 4

MPNA_03_Preterms 0.66 0.04 5 0.71 0.03 4

MPNA_04 0.75 0.02 3 0.75{{ 0.03 4

MPNA_04_Preterms 0.72 0.02 3 0.74 0.03 4

MPNA_04_Terms 0.81{ 0.02 2 0.70 0.03 4

Fusion of individual transformed ALBERTs

ALBERTs_19 0.76* 0.03 4 0.81** 0.02 3

ALBERTs_4 0.79* 0.02 3

ALBERTs_14 0.81** 0.03 4

Twin ALBERTs

ALBERTs_14 0.83 0.01 1

Twin ALBERT Single 0.80 0.002 0.32

SI: Similarity Index, same as Dice Index.
{Significant difference of MPNA_04_Terms with ALBERTs_19 (two-tailed paired TTEST, p,0.001) and ALBERTs_4 (two-tailed paired TTEST, p,0.05).
*Not significant difference with each other.
{{Significant difference of MPNA_04 with ALBERTs_19 and ALBERTs_14 (two-tailed paired TTEST, p,1.0E207).
**Not significant difference with each other.
doi:10.1371/journal.pone.0059990.t003
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as well as back-registration of the eight MPNAs in the four

average template spaces. We also tested the performance of twin

pair ALBERT after single label propagation on the corresponding

twin brain, compared to the fusion of non-corresponding priors.

We compared the performance of the best methods for each

group using two-tailed paired TTEST, after Bonferroni correction

for multiple comparisons, with regards to each ROI. For the

preterm population we compared the results of ALBERTs_19 with

ALBERTs_14 and MPNA_04. For the term-borns we compared

the results of ALBERTs_19 with ALBERTs_4 and MPNA_04_-

Terms. Besides, we used two-tailed paired TTEST to compare the

overall performance of these methods for each group.

Results

A total of forty atlases for 3T MR data sets of neonates resulting

from individual pairwise registration and label fusion were created

automatically (Figure 2), consisting of 50 ROIs each. Each atlas is

the result of label fusion of the remaining 19 ALBERTs (20

atlases), 14 ALBERTs in the cases of preterms (15 atlases), or 4

ALBERTs (5 atlases) in the cases of terms.

In the case of template-based segmentations resulting from

single registrations of a template to a target, we used the four

templates created using different candidate targets and fusing

different cohorts (Figure 3) described in Table 1. The eight

MPNAs created for the corresponding templates (Figure 3) have

been described in Table 2. In total, this resulted in 160 (8620)

individualized segmentations via templates and MPNAs that were

compared with their respective manual gold standard.

Validation was performed by means of Dice measurements.

In Table 3 and Figure 4 we display the results of the validation

of the different approaches for automatic segmentation when

compared with manual gold standards. In Figure 4, we display

some comparative Dice measurements for the approaches that

performed best, either fusing ALBERTs or using MPNAs. The

best methods for each group and the Dice indices for all 50

ROIs are displayed in Tables 4, 5, 6, 7, 8, 9.

We compared the performance of the best methods for each

group using two-tailed paired TTEST, after Bonferroni correction

for multiple comparisons, with regards to each ROI. For the

preterm population we compared the results of ALBERTs_19 with

ALBERTs_14 and MPNA_04. For the term-borns we compared

the results of ALBERTs_19 with ALBERTs_4 and MPNA_04_-

Terms. Two-tailed paired TTEST showed that the overall

performance of ALBERTs_19 and ALBERTs_14 was significantly

better than MPNA_04 (Table 3). Also, for the term population,

MPNA_04_Terms performed significantly better than AL-

BERTs_19 and ALBERTs_4 (Table 3).

For the preterms, in a regional level, ALBERTs_19 performed

similarly to ALBERTs_14, without significant differences after

Bonferroni correction for multiple comparisons (Tables 4–5).

ALBERTs_19 performed better than MPNA_04 in all the regions

in either one or both hemispheres, apart from the posterior part of

the superior temporal gyrus and the posterior part of the cingulate

gyrus (Tables 4, 6).

For the term-borns, in a regional level, ALBERTs_19

performed similarly to ALBERTs_4, without significant differenc-

es after Bonferroni correction for multiple comparisons (Tables 7–

8). MPNA_04_Terms performed better than ALBERTs_19 in the

Figure 4. Validation of different approaches for automatic segmentation of the newborn brain. Dice measurements for 50 ROIs, either
fusing anatomical prior information from various combinations of ALBERTs or propagating labels of various MPNAs. Only the analytical results of the
approaches that performed best are displayed. For translating the numbers into anatomical region names, see Table 4.
doi:10.1371/journal.pone.0059990.g004

Atlasing of Neonatal Brain MRIs into 50 ROIs

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e59990



anterior part of the middle and inferior temporal gyrus and the

parietal lobe (Tables 7, 9). MPNA_04_Terms performed better

than ALBERTs_4 in the posterior part of the parahippocampal

gyrus, the thalamus and the lentiform nucleus (Tables 8–9).

In Figure 5 we display the preliminary results of an automatic

segmentation of developing brain MRIs that do not belong to the

cohort of twenty used for the creation of the manually defined

ALBERTs. In this instance, automatic segmentation was achieved

via a single registration of a template constructed from term-borns

(Template_04), whereas the MPNA was obtained through fusion

of all ALBERTs transformed into the space of Template_04

(MPNA_04, see Tables 1 and 2). The results are visually

acceptable.

ALBERTs and MPNAs with corresponding MRIs and

templates will become available through our website www.brain-

development.org.

Discussion

We present two methods for automatic segmentation of

neonatal brain MR images into 50 ROIs. The first approach is

based on fusion of anatomical prior information from various

manually constructed neonatal atlases after one pairwise registra-

tion per atlas used. The second approach is based on propagation

of labels from various neonatal MPNAs, requiring only one

registration. In both cases we evaluated the performance of

Table 4. Dice statistics for 50 ROIs with fusion approach ALBERTs_19 for preterms.

No Name of Structure Right Hemisphere Left Hemisphere

Mean
Dice SD CV (%) Min Max

Mean
Dice SD CV (%) Min Max

Temporal Lobe

1; 2 Hippocampus 0.79 0.08 10 0.53 0.85 0.79 0.06 7 0.65 0.86

3; 4 Amygdala 0.81 0.04 5 0.75 0.88 0.80 0.04 5 0.72 0.86

5; 6 Anterior temporal lobe, medial part 0.84 0.04 4 0.76 0.90 0.83 0.05 6 0.70 0.88

7; 8 Anterior temporal lobe, lateral part 0.81 0.05 6 0.73 0.89 0.80 0.04 6 0.71 0.85

9; 10 Parahippocampal and ambient gyri ant.p. 0.80 0.06 7 0.67 0.86 0.82 0.03 4 0.74 0.87

25; 24 Parahippocampal and ambient gyri post.p. 0.72 0.05 8 0.60 0.80 0.66 0.08 13 0.43 0.78

11; 12 Superior temporal gyrus, middle part 0.84 0.04 5 0.75 0.89 0.82 0.04 5 0.75 0.88

31; 30 Superior temporal gyrus, post.p. 0.64 0.11 17 0.35 0.78 0.61 0.12 20 0.35 0.78

13; 14 Middle and inferior temporal gyrus ant.p 0.85 0.03 4 0.80 0.88 0.82 0.04 5 0.71 0.87

29; 28 Middle and inferior temporal gyrus post.p. 0.78 0.05 7 0.68 0.85 0.76 0.07 9 0.64 0.84

15; 16 Fusiform gyrus ant.p. 0.75 0.10 13 0.45 0.84 0.75 0.09 13 0.54 0.86

27; 26 Fusiform gyrus post.p. 0.69 0.09 12 0.52 0.80 0.62 0.14 23 0.36 0.78

Posterior Fossa

17; 18 Cerebellum 0.93 0.02 2 0.88 0.95 0.93 0.02 2 0.89 0.96

19 Brainstem 0.93 0.01 1 0.90 0.95 (unpaired)

Insula and Cingulate gyri

21; 20 Insula 0.82 0.05 6 0.71 0.87 0.83 0.05 6 0.72 0.88

33; 32 Cingulate gyrus, anterior part 0.79 0.10 13 0.51 0.88 0.77 0.08 10 0.59 0.88

35; 34 Cingulate gyrus, posterior part 0.80 0.05 6 0.68 0.86 0.80 0.05 6 0.67 0.85

Frontal Lobe

37; 36 Frontal lobe 0.93 0.02 2 0.87 0.95 0.93 0.02 2 0.89 0.95

Occipital Lobe

23; 22 Occipital lobe 0.82 0.07 8 0.68 0.89 0.83 0.05 6 0.69 0.90

Parietal Lobe

39; 38 Parietal lobe 0.88 0.02 2 0.85 0.90 0.88 0.02 2 0.84 0.90

Basal Ganglia and Thalamus

41; 40 Caudate nucleus 0.83 0.04 4 0.73 0.87 0.81 0.05 6 0.71 0.86

43; 42 Thalamus 0.89 0.04 5 0.77 0.93 0.89 0.02 2 0.86 0.92

45; 44 Sub-thalamic nucleus 0.71 0.07 9 0.59 0.82 0.72 0.04 6 0.62 0.77

47; 46 Lentiform nucleus 0.84 0.04 5 0.76 0.91 0.83 0.04 5 0.74 0.88

Corpus Callosum

48 Corpus callosum 0.75 0.04 6 0.65 0.81 (unpaired)

Ventricles

49; 50 Lateral ventricles 0.83 0.03 4 0.77 0.87 0.83 0.04 4 0.77 0.88

doi:10.1371/journal.pone.0059990.t004
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different selections neonatal atlases and MPNAs obtained via

different strategies. The approaches were compared with the

manual ‘‘gold standard’’ segmentations by means of the Dice

overlap coefficient. The maximum Dice values obtained, averaged

across all regions, were 0.8160.02 using label propagation and

fusion for the preterm population, and 0.8160.02 using the single

registration of a MPNA based on term controls only, in

combination with a template based on term controls only, too.

Such Dice overlaps are in line with results using maximum

probability maps in adults, and somewhat lower than multi-atlas

propagation and label fusion in adults [14]. Segmentations of

unlabeled ex-cohort target images yielded segmentations of high

quality on visual inspection.

In terms of atlases used, pre-processing pipeline and parameters

used, we present the first detailed evaluation of several strategies

for the automatic segmentation of neonatal and developing brains.

This was made possible through the availability of manual priors.

It took 18 person-months to delineate the 1000 (50620) structures

and thus create the first cohort of neonatal manual priors, and

another four to check them for consistency with the protocols; it is

unlikely that larger single-investigator datasets will ever become

available. The ALBERTs will become available through our

Table 5. Dice statistics for 50 ROIs with fusion approach ALBERTs_14 for preterms.

No Name of Structure Right Hemisphere Left Hemisphere

Mean
Dice SD CV (%) Min Max

Mean
Dice SD CV (%) Min Max

Temporal Lobe

1; 2 Hippocampus 0.78 0.07 9 0.53 0.85 0.75 0.09 12 0.49 0.86

3; 4 Amygdala 0.77 0.09 12 0.54 0.88 0.81 0.04 5 0.72 0.87

5; 6 Anterior temporal lobe, medial part 0.83 0.04 5 0.75 0.90 0.82 0.07 8 0.66 0.89

7; 8 Anterior temporal lobe, lateral part 0.79 0.07 9 0.64 0.89 0.76 0.09 12 0.47 0.85

9; 10 Parahippocampal and ambient gyri ant.p. 0.80 0.05 6 0.67 0.86 0.81 0.05 6 0.66 0.87

25; 24 Parahippocampal and ambient gyri post.p. 0.72* 0.05 7 0.60 0.80 0.64 0.10 15 0.42 0.78

11; 12 Superior temporal gyrus, middle part 0.83 0.04 5 0.75 0.89 0.77 0.10 13 0.51 0.88

31; 30 Superior temporal gyrus, post.p. 0.66 0.11 16 0.35 0.78 0.56 0.16 29 0.22 0.78

13; 14 Middle and inferior temporal gyrus ant.p 0.84 0.03 4 0.77 0.88 0.78 0.07 9 0.60 0.87

29; 28 Middle and inferior temporal gyrus post.p. 0.77 0.06 7 0.66 0.85 0.70 0.13 19 0.38 0.84

15; 16 Fusiform gyrus ant.p. 0.74 0.09 12 0.45 0.84 0.73 0.11 15 0.46 0.86

27; 26 Fusiform gyrus post.p. 0.69 0.09 13 0.52 0.80 0.61 0.14 23 0.36 0.78

Posterior Fossa

17; 18 Cerebellum 0.92 0.02 2 0.88 0.95 0.92 0.03 3 0.85 0.96

19 Brainstem 0.93* 0.01 1 0.90 0.95 (unpaired)

Insula and Cingulate gyri

21; 20 Insula 0.82 0.05 6 0.72 0.88 0.82 0.05 6 0.72 0.88

33; 32 Cingulate gyrus, anterior part 0.79 0.09 12 0.51 0.88 0.77* 0.08 10 0.59 0.88

35; 34 Cingulate gyrus, posterior part 0.81 0.05 6 0.68 0.88 0.81 0.05 6 0.67 0.87

Frontal Lobe

37; 36 Frontal lobe 0.93 0.02 2 0.87 0.95 0.93* 0.01 1 0.89 0.95

Occipital Lobe

23; 22 Occipital lobe 0.82 0.06 7 0.68 0.89 0.83 0.05 6 0.69 0.90

Parietal Lobe

39; 38 Parietal lobe 0.88 0.02 2 0.85 0.90 0.88 0.02 2 0.84 0.90

Basal Ganglia and Thalamus

41; 40 Caudate nucleus 0.80 0.07 9 0.61 0.87 0.82 0.04 5 0.71 0.86

43; 42 Thalamus 0.89 0.04 4 0.77 0.93 0.88 0.04 5 0.75 0.92

45; 44 Sub-thalamic nucleus 0.72 0.06 8 0.59 0.82 0.72 0.04 6 0.62 0.77

47; 46 Lentiform nucleus 0.83 0.05 6 0.68 0.91 0.83 0.04 5 0.74 0.88

Corpus Callosum

48 Corpus callosum 0.75 0.04 6 0.65 0.82 (unpaired)

Ventricles

49; 50 Lateral ventricles 0.81 0.06 7 0.64 0.87 0.81 0.07 9 0.59 0.88

*Significant difference (two-tailed paired TTEST, p,0.05) with corresponding value in Table 4. Not significant after correction for multiple comparisons with Bonferroni
correction.
doi:10.1371/journal.pone.0059990.t005
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website (www.brain-development.org). While validation of auto-

matic labeling methods is only possible within-sample, where

labels created manually with the same protocol are available for

calculating overlaps, the availability of the atlases will make it

possible to assess automatic segmentation of other cohorts, e.g.

NIHPD (http://pediatricmri.nih.gov/nihpd).

The validation of the two different methods is based on leave-

one-out approaches, which have been widely used by researchers

in the past, including our team [14,16,26,35,36]. In such an

approach, for the validation of the ALBERTs_19 performance for

example, for each of the target brains we use as priors the

remaining 19. This means that the manual segmentation of the

target brain and the automatic segmentation we obtain after

registration, propagation and fusion are two totally independent

segmentations. The results of the validation by all means highlight

the potential to segment unseen brains.

Automatic segmentation is commonly used in studies of adult

MR brain images but has been challenging in infants. An initial

spatial normalization to a template or average brain in a standard

stereotaxic space [37,38] can be problematic. Spatial normaliza-

Table 6. Dice statistics for 50 ROIs with MPNA_04 approach for preterms.

No Name of Structure Right Hemisphere Left Hemisphere

Mean
Dice SD CV (%) Min Max

Mean
Dice SD CV (%) Min Max

Temporal Lobe

1; 2 Hippocampus 0.74{ 0.08 11 0.51 0.82 0.74* 0.05 7 0.64 0.80

3; 4 Amygdala 0.77* 0.03 4 0.70 0.83 0.72* 0.10 13 0.51 0.81

5; 6 Anterior temporal lobe, medial part 0.79{ 0.06 7 0.64 0.86 0.68{ 0.12 18 0.49 0.85

7; 8 Anterior temporal lobe, lateral part 0.76 0.07 9 0.64 0.84 0.68* 0.17 36 0.16 0.67

9; 10 Parahippocampal and ambient gyri ant.p. 0.77* 0.06 7 0.61 0.82 0.77{ 0.03 4 0.71 0.82

25; 24 Parahippocampal and ambient gyri post.p. 0.66{ 0.07 10 0.54 0.76 0.59* 0.08 14 0.42 0.74

11; 12 Superior temporal gyrus, middle part 0.80* 0.05 6 0.66 0.85 0.73* 0.05 7 0.60 0.79

31; 30 Superior temporal gyrus, post.p. 0.60 0.12 21 0.40 0.78 0.55 0.14 25 0.20 0.69

13; 14 Middle and inferior temporal gyrus ant.p 0.78{{ 0.03 4 0.73 0.85 0.74{{ 0.06 8 0.60 0.82

29; 28 Middle and inferior temporal gyrus post.p. 0.76 0.05 7 0.65 0.85 0.66* 0.10 15 0.45 0.75

15; 16 Fusiform gyrus ant.p. 0.68* 0.08 12 0.45 0.78 0.69* 0.08 11 0.55 0.78

27; 26 Fusiform gyrus post.p. 0.65* 0.08 13 0.52 0.79 0.57 0.09 16 0.37 0.70

Posterior Fossa

17; 18 Cerebellum 0.89{{ 0.03 3 0.84 0.93 0.86{{ 0.03 3 0.78 0.90

19 Brainstem 0.92{{ 0.01 1 0.90 0.94 (unpaired)

Insula and Cingulate gyri

21; 20 Insula 0.76{ 0.06 7 0.60 0.83 0.68* 0.15 22 0.39 0.82

33; 32 Cingulate gyrus, anterior part 0.73 0.09 12 0.55 0.84 0.71* 0.08 12 0.49 0.81

35; 34 Cingulate gyrus, posterior part 0.78 0.05 7 0.68 0.83 0.77 0.04 6 0.70 0.84

Frontal Lobe

37; 36 Frontal lobe 0.91{{ 0.02 2 0.87 0.93 0.90* 0.03 4 0.81 0.93

Occipital Lobe

23; 22 Occipital lobe 0.82 0.04 5 0.73 0.89 0.79* 0.05 6 0.70 0.87

Parietal Lobe

39; 38 Parietal lobe 0.86* 0.01 1 0.83 0.88 0.86{{ 0.02 2 0.82 0.88

Basal Ganglia and Thalamus

41; 40 Caudate nucleus 0.76{{ 0.04 5 0.69 0.82 0.71* 0.10 14 0.51 0.81

43; 42 Thalamus 0.89 0.03 4 0.81 0.92 0.86{ 0.02 3 0.80 0.90

45; 44 Sub-thalamic nucleus 0.64* 0.09 15 0.41 0.77 0.69 0.07 10 0.54 0.79

47; 46 Lentiform nucleus 0.78{ 0.06 8 0.63 0.84 0.73* 0.11 15 0.53 0.86

Corpus Callosum

48 Corpus callosum 0.70{{ 0.05 7 0.58 0.77 (unpaired)

Ventricles

49; 50 Lateral ventricles 0.78{{ 0.04 5 0.70 0.84 0.74{{ 0.03 5 0.67 0.80

{{Significant difference (two-tailed paired TTEST, p,0.0001) with corresponding value in Table 4, after Bonferroni correction for multiple comparisons.
{Significant difference (two-tailed paired TTEST, p,0.001) with corresponding value in Table 4, after Bonferroni correction for multiple comparisons.
*Significant difference (two-tailed paired TTEST, p,0.05) with corresponding value in Table 4, after Bonferroni correction for multiple comparisons.
doi:10.1371/journal.pone.0059990.t006
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tion requires an appropriate template [39], and when cerebral

images of children are aligned using an adult template the

variation of anatomical landmarks is increased [40,41], and

greater nonlinear local deformations are required for registration

[42]. Indeed the use of the adult MNI template [43] in infants and

children has been criticized [44,45,46], and pediatric templates

recommended for the analysis of pediatric images [47,48,49].

Transforming neonatal rather than pediatric cerebral images to an

adult template has additional difficulties [37] including age-

dependent differences in regional brain size [50] and unmyelin-

ated white matter with different MR characteristics in neonates

[51], so that several groups have constructed specific neonatal

templates [37,52,53,54,55,56].

Tissue segmentation is also difficult due to the different and

highly variable tissue characteristics [18,57]. Prastawa et al. (2005)

reported an automated method using a three-subject atlas for GM,

CSF and myelinated and unmyelinated WM, but did not attempt

subcortical GM segmentation [20]. Warfield et al. (2000) use a

specific template for newborn brains with predefined classifications

for myelinated and unmyelinated WM [58]. Huppi et al. (1998)

and Inder et al. (2005) showed tissue class segmentation results of

newborn infants using this method [59,60]. Kazemi et al. (2011)

presented a neonatal brain phantom that consists of 9 different

tissue types: skin, fat, muscle, skull, dura mater, gray matter,

myelinated white matter, nonmyelinated white matter and

cerebrospinal fluid [61].

Table 7. Dice statistics for 50 ROIs with fusion approach ALBERTs_19 for terms.

No Name of Structure Right Hemisphere Left Hemisphere

Mean
Dice SD CV (%) Min Max

Mean
Dice SD CV (%) Min Max

Temporal Lobe

1; 2 Hippocampus 0.75 0.03 4 0.71 0.77 0.64 0.09 14 0.49 0.74

3; 4 Amygdala 0.65 0.09 14 0.54 0.77 0.85 0.01 2 0.84 0.87

5; 6 Anterior temporal lobe, medial part 0.81 0.05 6 0.75 0.85 0.77 0.10 13 0.66 0.89

7; 8 Anterior temporal lobe, lateral part 0.72 0.08 11 0.64 0.82 0.66 0.12 18 0.47 0.79

9; 10 Parahippocampal and ambient gyri ant.p. 0.79 0.02 3 0.76 0.82 0.80 0.08 10 0.66 0.85

25; 24 Parahippocampal and ambient gyri post.p. 0.74 0.02 3 0.72 0.77 0.59 0.12 21 0.42 0.71

11; 12 Superior temporal gyrus, middle part 0.81 0.05 6 0.75 0.86 0.63 0.08 13 0.51 0.72

31; 30 Superior temporal gyrus, post.p. 0.69 0.09 13 0.54 0.77 0.50 0.18 44 0.32 0.73

13; 14 Middle and inferior temporal gyrus ant.p 0.81 0.04 5 0.77 0.86 0.68 0.06 8 0.60 0.74

29; 28 Middle and inferior temporal gyrus post.p. 0.76 0.07 9 0.66 0.83 0.52 0.10 20 0.38 0.64

15; 16 Fusiform gyrus ant.p. 0.73 0.07 10 0.60 0.79 0.65 0.14 22 0.46 0.81

27; 26 Fusiform gyrus post.p. 0.69 0.10 14 0.54 0.78 0.57 0.14 25 0.39 0.72

Posterior Fossa

17; 18 Cerebellum 0.92 0.01 2 0.90 0.94 0.90 0.03 3 0.85 0.93

19 Brainstem 0.93 0.01 1 0.92 0.95 (unpaired)

Insula and Cingulate gyri

21; 20 Insula 0.75 0.06 7 0.68 0.82 0.80 0.04 5 0.74 0.84

33; 32 Cingulate gyrus, anterior part 0.79 0.05 7 0.70 0.83 0.77 0.08 11 0.67 0.85

35; 34 Cingulate gyrus, posterior part 0.82 0.06 7 0.73 0.88 0.85 0.02 3 0.81 0.87

Frontal Lobe

37; 36 Frontal lobe 0.92 0.01 1 0.91 0.93 0.93 0.01 1 0.92 0.94

Occipital Lobe

23; 22 Occipital lobe 0.82 0.03 4 0.79 0.85 0.83 0.04 5 0.77 0.90

Parietal Lobe

39; 38 Parietal lobe 0.86 0.01 2 0.85 0.88 0.86 0.01 1 0.85 0.87

Basal Ganglia and Thalamus

41; 40 Caudate nucleus 0.72 0.08 11 0.61 0.83 0.82 0.03 4 0.78 0.86

43; 42 Thalamus 0.89 0.02 3 0.85 0.91 0.82 0.05 6 0.75 0.86

45; 44 Sub-thalamic nucleus 0.72 0.05 6 0.65 0.75 0.73 0.04 5 0.67 0.77

47; 46 Lentiform nucleus 0.78 0.06 8 0.68 0.84 0.83 0.04 5 0.77 0.88

Corpus Callosum

48 Corpus callosum 0.76 0.05 7 0.67 0.82 (unpaired)

Ventricles

49; 50 Lateral ventricles 0.77 0.09 12 0.64 0.87 0.73 0.10 14 0.59 0.87

doi:10.1371/journal.pone.0059990.t007
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Despite the difficulties there have been previous reports of

automatic segmentation methods for newborn infants. Nishida

et al. (2006) presented a semi-automated method for segmentation

of preterm infants at term corrected age into anatomical ROI.

Unfortunately, their cohort did not include any term controls and

they did not validate with any gold standard segmentation and

hence the comparison with our method is difficult [62]. There are

also approaches based on Diffusion Tensor Imaging, resulting in

segmentations with numerous regions with or without clear

anatomical or functional correspondence [63,64]. These ap-

proaches yield results that are visually plausible, but have not

yet been compared or validated against external standards in the

neonatal population, as for example defined anatomical protocols.

It is hence difficult to compare our work with these two studies.

The average spaces required for spatial normalisation were

created using an approach similar to that of Guimond et al. (2000)

and Rueckert et al. (2003) for averaging local deformations

[39,65], also used in the pediatric population [32]. In some

studies, contrary to the main trend of using a standard reference

template like MNI, a single subject data set of the image group is

selected as the reference or template image [66,67,68]. A

disadvantage of this atlas construction method is that the resulting

Table 8. Dice statistics for 50 ROIs with fusion approach ALBERTs_4 for terms.

No Name of Structure Right Hemisphere Left Hemisphere

Mean
Dice SD CV (%) Min Max

Mean
Dice SD CV (%) Min Max

Temporal Lobe

1; 2 Hippocampus 0.73 0.07 10 0.51 0.82 0.71 0.08 11 0.55 0.80

3; 4 Amygdala 0.74* 0.07 10 0.57 0.83 0.75 0.09 13 0.51 0.85

5; 6 Anterior temporal lobe, medial part 0.79 0.05 7 0.64 0.86 0.72 0.12 17 0.49 0.85

7; 8 Anterior temporal lobe, lateral part 0.74 0.08 11 0.60 0.86 0.52* 0.17 33 0.16 0.76

9; 10 Parahippocampal and ambient gyri ant.p. 0.77* 0.05 6 0.61 0.82 0.77 0.04 5 0.69 0.82

25; 24 Parahippocampal and ambient gyri post.p. 0.66 0.06 9 0.54 0.76 0.59 0.08 13 0.42 0.74

11; 12 Superior temporal gyrus, middle part 0.80 0.04 6 0.66 0.85 0.70* 0.08 11 0.51 0.79

31; 30 Superior temporal gyrus, post.p. 0.62 0.11 19 0.40 0.78 0.51* 0.14 28 0.20 0.69

13; 14 Middle and inferior temporal gyrus ant.p 0.79 0.03 4 0.73 0.85 0.73* 0.06 8 0.60 0.82

29; 28 Middle and inferior temporal gyrus post.p. 0.76 0.05 7 0.65 0.85 0.63* 0.10 16 0.45 0.75

15; 16 Fusiform gyrus ant.p. 0.68 0.08 11 0.45 0.78 0.68 0.08 12 0.54 0.78

27; 26 Fusiform gyrus post.p. 0.66 0.08 13 0.52 0.79 0.58 0.08 15 0.37 0.70

Posterior Fossa

17; 18 Cerebellum 0.90* 0.02 3 0.84 0.93 0.87* 0.03 4 0.78 0.91

19 Brainstem 0.93 0.01 1 0.90 0.94 (unpaired)

Insula and Cingulate gyri

21; 20 Insula 0.76* 0.05 6 0.60 0.83 0.69* 0.13 19 0.39 0.82

33; 32 Cingulate gyrus, anterior part 0.73 0.08 11 0.55 0.84 0.73 0.08 11 0.49 0.82

35; 34 Cingulate gyrus, posterior part 0.78 0.05 7 0.68 0.87 0.78 0.04 6 0.70 0.84

Frontal Lobe

37; 36 Frontal lobe 0.91 0.01 2 0.87 0.93 0.91 0.03 4 0.81 0.94

Occipital Lobe

23; 22 Occipital lobe 0.82 0.04 5 0.73 0.89 0.81* 0.05 6 0.70 0.89

Parietal Lobe

39; 38 Parietal lobe 0.86 0.02 2 0.83 0.89 0.86* 0.02 2 0.82 0.88

Basal Ganglia and Thalamus

41; 40 Caudate nucleus 0.75 0.05 7 0.62 0.82 0.73 0.09 13 0.51 0.84

43; 42 Thalamus 0.89 0.03 3 0.81 0.92 0.85 0.03 4 0.75 0.90

45; 44 Sub-thalamic nucleus 0.65 0.09 13 0.41 0.77 0.69 0.06 9 0.54 0.79

47; 46 Lentiform nucleus 0.78 0.05 7 0.63 0.84 0.75 0.11 14 0.53 0.86

Corpus Callosum

48 Corpus callosum 0.72 0.05 7 0.58 0.80 (unpaired)

Ventricles

49; 50 Lateral ventricles 0.77 0.05 7 0.63 0.84 0.73 0.06 8 0.55 0.82

*Significant difference (two-tailed paired TTEST, p,0.05) with corresponding value in Table 7. Not significant after correction for multiple comparisons with Bonferroni
correction.
doi:10.1371/journal.pone.0059990.t008
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atlas can inherently contain unique features of the selected initial

reference image, which results in local topological bias [69].

Group-wise registration, based on the minimization of the average

deformation field, could be a solution to the problem [70,71].

However, the presence of a few very unusually shaped brains (cf.

Figure 1 of Gousias et al. (2012) [21]) coupled with the small

Figure 5. Performance of MPNA_04 in the automatic segmentation of three randomly chosen unlabeled developing brains at
various ages, which did not form part of the cohort of priors. The segmentation is the result of a single step registration and propagation of
the MPNA.
doi:10.1371/journal.pone.0059990.g005
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number of subjects available due to the phenomenal effort

required for manual delineation, leads us to believe that our

strategy of explicitly choosing ‘‘normal looking’’ brains is

appropriate in this situation. Extremely dolichocephalic subjects

or subjects with obvious major asymmetries were not selected as

candidate targets. Group-wise registration remains an area for

future study.

The average Dice indices for the various approaches (Table 3)

and the Dice indices for the best approaches (Tables 4, 5, 6, 7, 8, 9)

indicate that fusing ALBERTs of the same group (in terms of

degree of myelination) yields better or similar results than fusing

more classifiers from different groups: term priors performed

better for a term target and preterm priors better for a preterm

target, confirming our previous findings [17]. Also, single

propagations from twin pair, expected to be more similar than

brain MRIs from unrelated subjects, perform at a level compa-

rable to fusion. This finding highlights the importance of

resemblance in sulcal and gyral patterns between the source and

the target brain, as it has been shown before in corresponding

scans between different ages in the context of longitudinal

segmentation [17]. Optimal template selection approaches have

previously been shown to be effective in atlas-based segmentation

Table 9. Dice statistics for 50 ROIs with MPNA_04_Terms approach for terms.

No Name of Structure Right Hemisphere Left Hemisphere

Mean
Dice SD CV (%) Min Max

Mean
Dice SD CV (%) Min Max

Temporal Lobe

1; 2 Hippocampus 0.76 0.03 4 0.70 0.78 0.74 0.08 11 0.60 0.82

3; 4 Amygdala 0.79 0.07 9 0.67 0.84 0.82 0.03 4 0.78 0.86

5; 6 Anterior temporal lobe, medial part 0.84 0.04 5 0.78 0.88 0.84 0.05 5 0.79 0.89

7; 8 Anterior temporal lobe, lateral part 0.77 0.04 5 0.70 0.79 0.81 0.06 8 0.72 0.88

9; 10 Parahippocampal and ambient gyri ant.p. 0.81 0.02 2 0.79 0.84 0.80 0.05 6 0.74 0.85

25; 24 Parahippocampal and ambient gyri post.p. 0.74 0.07 9 0.62 0.79 0.72{ 0.04 6 0.66 0.76

11; 12 Superior temporal gyrus, middle part 0.83 0.03 3 0.79 0.86 0.82 0.04 4 0.77 0.86

31; 30 Superior temporal gyrus, post.p. 0.72 0.06 8 0.64 0.78 0.76 0.03 4 0.72 0.79

13; 14 Middle and inferior temporal gyrus ant.p 0.82 0.02 3 0.79 0.85 0.82* 0.06 8 0.71 0.87

29; 28 Middle and inferior temporal gyrus post.p. 0.78 0.04 5 0.72 0.82 0.79 0.04 6 0.73 0.85

15; 16 Fusiform gyrus ant.p. 0.74 0.06 8 0.69 0.81 0.71 0.06 9 0.61 0.78

27; 26 Fusiform gyrus post.p. 0.71 0.07 11 0.63 0.80 0.75 0.07 10 0.63 0.82

Posterior Fossa

17; 18 Cerebellum 0.94 0.01 1 0.91 0.95 0.94 0.02 2 0.90 0.95

19 Brainstem 0.94 0.01 1 0.93 0.94 (unpaired)

Insula and Cingulate gyri

21; 20 Insula 0.85 0.01 2 0.84 0.87 0.85 0.02 2 0.83 0.87

33; 32 Cingulate gyrus, anterior part 0.75 0.06 8 0.65 0.81 0.79 0.05 6 0.71 0.82

35; 34 Cingulate gyrus, posterior part 0.82 0.04 6 0.75 0.86 0.83 0.02 3 0.79 0.86

Frontal Lobe

37; 36 Frontal lobe 0.93 0.01 1 0.91 0.94 0.93 0.00 1 0.93 0.94

Occipital Lobe

23; 22 Occipital lobe 0.87 0.04 5 0.79 0.90 0.89 0.01 1 0.88 0.91

Parietal Lobe

39; 38 Parietal lobe 0.89 0.01 1 0.88 0.90 0.89* 0.01 1 0.87 0.90

Basal Ganglia and Thalamus

41; 40 Caudate nucleus 0.78 0.04 5 0.73 0.81 0.80 0.04 5 0.77 0.86

43; 42 Thalamus 0.90 0.02 2 0.87 0.92 0.88{ 0.03 4 0.84 0.92

45; 44 Sub-thalamic nucleus 0.70 0.05 6 0.65 0.78 0.72 0.05 7 0.63 0.75

47; 46 Lentiform nucleus 0.83{ 0.05 6 0.77 0.88 0.85 0.03 3 0.81 0.88

Corpus Callosum

48 Corpus callosum 0.78 0.03 3 0.74 0.80 (unpaired)

Ventricles

49; 50 Lateral ventricles 0.75 0.08 11 0.64 0.83 0.76 0.08 10 0.63 0.84

*Significant difference (two-tailed paired TTEST, p,0.05) with corresponding value in Table 7, after Bonferroni correction for multiple comparisons.
{Significant difference (two-tailed paired TTEST, p,0.05) with corresponding value in Table 8, after Bonferroni correction for multiple comparisons.
doi:10.1371/journal.pone.0059990.t009
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of confocal microscopy images of bee brains [15], as well as in

human brain segmentation [72,73].

An MPNA was created for the term (MPNA_04_Term) and the

preterm brain (MPNA_04_Preterm). This type of atlases [26,32]

has shown its potential in the absence of a bigger database or for

computational time savings [14]. In the present study, their

application results in segmentation accuracies comparable with the

segmentation using fusion of transformed ALBERTs. The results

of the MPNA_04 template registration, between source template

and target image, show the need for crispier and not extremely

smooth templates (MPNA_02, 03), which incorporate the basic

anatomical information from a smaller number of images and not

necessarily the whole cohort (MPNA_01). Besides, the results

illustrated in Figure 5 highlight the effectiveness of the MPNA_04

template registration through its intrinsic smoothness to capture

the lack of prominent cortical anatomical landmarks in the

extremely preterm population. The latter findings highlight the

importance of the feature of smoothness, which has to be present

but not to an extreme level. Template selection is important,

because it has been shown that the choice of the template affects

region-based volumetric analysis, either when the template does

not correspond to the age cohort [49] or when multiple templates

are used [74].

In neonates, the selection of the candidate target was also based

on symmetry and normality criteria. The first template (term

candidate target – all subjects) is slightly rounder on transverse

sections than the second (term candidate target – preterms)

(Figure 3). This happens because the term brains seem to have a

more round/spherical brain shape. The difference between the

second template and the third (preterm candidate target –

preterms) is more obvious, especially in the subcortical tissues,

because of the different candidate target (Figure 3). This could

indicate that a good template, in terms of representation of

anatomy and corresponding tissue properties, should be limited to

a cohort of data sets of tight gestational age range, due to the rapid

progression of myelination of the WM and the contrast issues

arising as a consequence. In case of a wider gestational age range

the template may become extremely blurry. This may be the

reason template 3, which was based on the whole preterm cohort

and not some images of tighter age range, did not perform as

expected for the corresponding preterm population. The fact that

template 04, based on a term control candidate average and MRI

averaging of the transformed ALBERTs of the remaining four

term controls (ALBERTs_4_Term), gave the best results for the

term population also supports this statement.

Atlases containing such detailed segmentation can be useful in

the monitoring of developmental growth of different brain regions

in longitudinal studies or aid group comparisons between normal

controls and pathological cases. The associated templates can be

used as a reference in functional and connectivity studies and will

benefit from the anatomical annotations contained in the

associated MPNAs. Both methods presented here yield very

plausible and comparable results, ALBERTs performing slightly

better in absolute Dice measurements for the preterm. However,

MPNAs have the advantage of requiring only one registration per

target brain and will require fewer computational power resources

(8 hours compared to 2068 = 160 hours for all ALBERTs, even if

the latter process can be calculated in parallel on a cluster of

computers).
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