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Abstract

Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically
modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process
the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to
pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry
proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in
flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km
outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span,
the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion
compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than
98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic
modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial
communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and
Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B.
thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of
detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse
honey bees.
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Introduction

During the last 15 years several regions of the world have

explored the increasing introduction of transgenic crops into

agriculture [1] and a significant proportion of them have been

engineered to produce insecticidal proteins which are naturally

synthesized by bacteria summarized under the species name

Bacillus thuringiensis [2,3]. Members of this species are considered to

inhabit soil but they are also found in other environmental niches

including phylloplane [4] and insects [5]. Their crystal delta-

endotoxins (Cry proteins) are highly specific for certain groups of

insects, and the recombination and expression of their encoding

genes in transgenic crops (frequently named ‘‘Bt crops’’), including

maize (‘‘Bt maize’’), has conferred protection against important

pests, i.e., Cry1Ab for the European corn borer (Ostrinia nubilalis;

Lepidoptera) or Cry3Bb1 for the Western corn rootworm

(Diabrotica virgifera; Coleoptera). Stacked Bt maize events, in which

several different Cry proteins are expressed, have more recently

been developed to provide simultaneous resistance towards several

pests.

The safe use of stacked Bt maize in agriculture requires their

environmental risk assessment, in which unintended adverse

effects on non-target organisms expected to share the same

ecosystem are analyzed. Cry proteins develop their toxicity by

forming pores in the gut epithelium of their target insects as

a consequence of binding to specific receptors in the epithelial

membrane [6]. While single Cry proteins have extensively been

assessed for adverse side-effects on non-target organisms, the

combination of several may result in additive or synergistic

effects, because different Cry proteins may share binding sites

[2]. Therefore stacked events may require a specific risk

assessment beyond an evaluation of their single transformation

events [7,8].
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Due to their high ecological and economic importance as

pollinators and producers of honey, honey bees (Apis mellifera) are

considered a focal non-target insect in environmental risk

assessments of genetically modified crops [9,10]. In most

ecosystems, honey bees have access to a number of different

pollen sources within their foraging range [11], but in agricultural

landscapes with large-scale monocultures, pollen foragers may be

forced to almost exclusively collect pollen from a single source,

even from wind pollinated crops like maize [12]. A number of

studies on effects of purified or pollen-enclosed single Cry proteins

demonstrate that there is to date no indication of acute or chronic

toxicity either for larvae or adult bees [13–16]. However, there is

a lack of information whether this insecticidal specificity for

functional bee colonies is maintained in crops expressing several

different Cry proteins.

Within a honey bee colony, the exposure to Cry protein-

containing pollen is different depending on the bees’ life-stage.

The highest exposure can be expected for nurse bees because of

their central function to convert bee bread (fermented pollen

collected by forager bees) into dietary proteins which they then

pass on to the bee brood [17,18]. During this life-stage, which lasts

from day 3 to day 11 after hatching, pollen is accumulated inside

their gut [19]. Because of their central role in food supply, even

sublethal negative effects of Cry proteins on nurse bees could thus

have far reaching consequences for colony fitness.

Sublethal effects on honey bees triggered by consumption of

Cry protein containing pollen have been studied by analyzing their

physiological characteristics (e.g., weight of their body or their

hypopharyngal gland) [20,21] or behavior (e.g., foraging activity,

learning performance) [21,22]. Furthermore, it has been suggested

that the intestinal bacterial community could be a sensitive

indicator for an altered intestinal physiology [23]. The gut

bacterial community of insects is considered to be important for

nutrient acquisition and pathogen defense [24](Vasquez et al.,

2012, PLoS ONE) and, in honey bees, the bacterial community

structure is highly conserved [25,26]. For the colony collapse

disorder, a threat to A. mellifera populations, alterations in the

bacterial community structure have been reported [27]. While

laboratory studies with Cry1Ab supplemented pollen did not

reveal significant alterations of the gut bacterial community

structure of adult honey bees [23] there is no information whether

this also holds true for nurse bees exposed to pollen with stacked

Cry proteins under field conditions. Interestingly, bacteria of the

genus Bacillus have frequently been isolated from gut material of

bees, but among those, the Cry protein producing B. thuringiensis

has not been detected [28,29]. This suggests that bees might not be

naturally adapted to Cry proteins as they would encounter them in

Bt maize fields during anthesis.

The objective of this study was to analyze whether the presence

of stacked Cry proteins in maize pollen would affect nurse bees

and their gut bacteria in bee colonies exposed to Bt maize during

anthesis. To provide an extreme but not unrealistic scenario of

exposure, colonies of A. mellifera carnica were kept in cages within

replicated field plots with Bt maize. The Bt maize selected for this

study was MON89034 6MON88017, a hybrid expressing three

Cry proteins (Cry1A.105, Cry2Ab2, Cry3Bb1) in their pollen.

This maize variety is already grown in different parts of the world

and used for food and feed [30,31] but their specific effect on nurse

bees has not been analyzed. As controls, bees were kept under the

same conditions in plots with two conventional varieties.

Furthermore, additional controls of nurse bees from colonies

without cage and ad libitum access to mixed pollen sources were

also considered. Maize pollen digestibility and the Cry protein

concentrations in the gut of nurse bees were analyzed. It was also

analyzed whether Cry proteins from other sources (native B.

thuringiensis) could occur in the gut of bees not exposed to Bt maize.

Consequences of the different pollen diets, including those with

stacked Cry proteins for the gut bacterial community were

analyzed from directly extracted DNA of gut material by PCR-

based cultivation-independent quantification, fingerprinting and

DNA-sequencing of the bacterial 16S rRNA genes.

Materials and Methods

Experimental Field Setup
A 6-ha experimental maize field at the Thünen-Institute

consisted of 40 randomized plots (30 m642 m) of which 24 were

used in this study (see Figure S1). These plots were part of

a randomized plot design and represented three different maize

varieties (‘‘treatments’’). The genetically modified Bt maize was the

hybrid MON 89034 6 MON 88017 (indicated here as ‘‘treat-

ment’’ BT) in the genetic background of the conventional variety

DKC 5143. The other two maize varieties were DKC 5143 with

no genetic modification (treatment DKC) and Benicia (BEN). The

maize varieties were sown on May 18th 2009. Seeds were obtained

from Monsanto (Düsseldorf, Germany) and Pioneer HiBreed

(Buxtehude, Germany). The Bt maize produces three different

insecticidal delta-endotoxins: Cry1A.105, Cry2Ab2, Cry3Bb1, and

the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate

synthase). Cry1A.105 is a chimeric protein comprising domains

of Cry1Ab, Cry1F and Cry1Ac [32]. All delta-endotoxins of this

study are naturally produced by strains of Bacillus thuringiensis

subspecies kumamotoensis. The gene encoding for the EPSPS

originates from Agrobacterium sp. CP4 and confers tolerance

towards the herbicidal compound glyphosate. In 2009, the

expression levels in maize pollen of this study were 4.2 mg g21

(fresh weight) for Cry1A.105, 1.2 mg g21 for Cry2Ab2, 7.0 mg g21

for Cry3Bb1 and 170 mg/g for CP4-EPSPS [16]). No Cry proteins

were detected in material from the conventional maize varieties.

Calculations of exposure levels to honey bees in this study refer to

1-mg average fresh weight of one pollen grain.

Five days before the onset of anthesis (August 1st, BEN; August

8th, BT and DKC), artificial swarms of Apis mellifera carnica were

prepared from one breeding line (Institute for Apiculture Celle).

Each new colony contained one queen with approximately 1,100

workers (122.9 g bee biomass 67.2 SD, n= 49 colonies). All

queens were sisters mated with a controlled drone population. The

polystyrene hives (24 cm615 cm617 cm, ApideaTM Vertriebs

AG, Steinhausen, Switzerland) had three empty frames

(10 cm610 cm) to build combs and, the bees were given ad libitum

access to a 72% invert sugar (glucose, fructose) solution (Apiinvert,

Südzucker AG, Mannheim, Germany).

The placement of the standardized honey bee colonies to the

maize pollen was synchronized to anthesis of the different maize

varieties. As soon as 5 to 10% of the maize anthers had opened,

two colonies were put into a flight cage within the experimental

plots (see Figure S1). Each field plot of this study contained one

flight cage. One cage covered a 48 m2 area with a height of 3 m,

with the gauze having a 1.3 mm mesh-width. Simultaneously to

the placement of colonies in the flight cages, 8 honey bee colonies

with ad libitum access of various pollens sources were placed

without cages in a field with flowering Phacelia tanacetifolia

(treatment PHA) at 1 km distance from this experimental field site.

Synchronized to the peak anthesis time of the individual maize

varieties, freshly hatched worker bees (,24 h) from the Apis

mellifera carnica donor colonies were marked with a pen and added

to the experimental colonies (mean 23 bees per colony; a total of

1130 bees). At the dates of field sampling, the colonies contained

Effect of Bt-Maize on Nurse Bees
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newly built wax combs with maize pollen and sugar stores and

open brood. The marked bees were recollected after 9 d of in-hive

exposure, thus sampling 10-d old nurse bees. Bees were frozen at

270uC.
In addition, 24 bees from the A. mellifera carnica donor-colonies

were collected and immediately frozen at270uC as controls. They

originated from colonies 50 km north of the experimental field

site, at the Institute of Apiculture (Celle) sampled on August 1st,

August 8th and September 28th; 3 times eight bees). It should be

noted that these bees did not come in contact with commercial Bt

products, as neither Bt plants are admitted to grow in Germany,

nor Bt based anti-waxmoth treatments were used at the apiary.

Analyses of Nurse Bees
To monitor for lethal and/or sublethal effects, the rate of

retrieval and the weight of the bees (including intestine) were

analyzed. To isolate the gut material, all nurse bees were dissected

immediately after thawing. The midgut and hindgut were

separately transferred to sterile 1.5 ml polypropylene tubes and

kept on ice. A total of 300 mL sterile PBST buffer (137 mM NaCl,

27 mM KCl, 100 mM Na2HPO4, 10 mM KH2PO4, 0.5% Tween-20,

pH 7.4) was added. The gut material was manually stirred with

a sterile pipette tip, followed by 20 s of vortexing. For each gut

segment, a 50 mL sample volume was stored for pollen analyses

(220uC). The remaining suspension was centrifuged at 16,2006g

and 4uC for 10 min and the supernatant was analyzed for Cry

proteins. Before extraction of bacterial DNA, the centrifuged

pellets were stored at 270uC.
The survival rates of the test bees were determined by the

proportion between retrieved and non-retrieved bees of the

marked cohort of introduced nurses. Bees from a total of 49

colonies (14 from BT, 14 from DKC, 13 from BEN and 8 from

PHA) were examined. The survival rates of the different colonies

were analyzed with a generalized linear mixed model with the logit

function and a binomial error distribution. The weight of the nurse

bees was measured at the moment of their retrieval (n = 195 for

BT; 201 for DKC; 219 for BEN; 99 for PHA).

The weighted average pollen digestion within bees was

analyzed, using four 0.9 mLL replicate gut samples per bee (See

Table S1). The pollen grains were counted using microscopic

examination at 1006magnification in a counting chamber

(Neubauer improved haemocytometer; Carl Roth, Karlsruhe,

Germany). An absence of other pollen than maize pollen indicated

that the experimental colonies and nurse bees were not

contaminated with external pollen sources.

The level of digestion was scored according to three classes: not

digested (0–20%), partly digested (20–80%) or totally digested (80–

100%) [33,34]). The mean digestion rate per class 10%, 50% and

90%) were used to calculate a weighted digestion rate per bee, as

based on the relative abundance of pollen per class. Bee-weight

and pollen-digestion data were analyzed on the colony level with

a linear mixed effects model. The three models (survival, weight,

digestion) all included the treatment (BT, DKC, BEN, PHA) as

a fixed effect, and colony pairs within the same cage as a random

effect and the colony background of bees as a nested random effect

[35]. The models were fitted using the package ‘lme4’ in R

[36,37], and the results were reported significant at p-values

,0.05.

Quantification of Cry Proteins
For the quantification of Cry proteins, 100 mL of the super-

natants obtained from the gut content in PBST buffer were

subjected to ELISA (enzyme-linked immunosorbent assay, sup-

plied by Monsanto), targeting the Cry proteins Cry1A.105 and

Cry3Bb1, respectively. No test was available in this study for

Cry2Ab2. The antibody reaction products were quantified at

450 nm wavelength. The detection limit (DTC) was determined

for each ELISA test plate [38]. The average DTC for Cry1A.105

was 0.56 ng mL21, corresponding to 0.17 ng Cry1A.105 per bee

gut. For Cry3Bb1 it was 0.40 ng mL21, corresponding to 0.12 ng

Cry3Bb1 per bee gut. A one-way analysis of variance (ANOVA)

was used to evaluate the differences in Cry protein contents of

different gut samples higher than the DTC implementing the

Holm-Sidak method for pair wise multiple comparisons (Sigma-

Plot, Systat Software, Erkrath, Germany). The correlation of the

number of pollen and the concentration of Cry1A.105 and

Cry3Bb1 was established in analyses of 32 individual nurse bees (4

replicates originating from 8 different hives from 6 cages of 5

different plots; due to a quantitative analytical constraint limited in

sampling size) and determined by a linear regression analysis in

SigmaPlot (Systat Software). All data values below the DTC were

omitted in the regression analyses. The bias, by excluding low

concentration values did not alter the positive nature of the

correlation, as verified by substituting all non-detect values by

zeros [39]. Normal distribution of data analyzed with Shapiro-

Wilk.

Detection of Native Cry Proteins from Bacillus
thuringiensis
Serial dilutions of four B. thuringiensis strains were analyzed to

test the response of the ELISA system to natural Cry proteins. The

bacterial strains were obtained from the DSMZ (Leibniz Institute,

Braunschweig, Germany). B. thuringiensis ssp. kurstaki, strain HD-1

(DSM 6102) and HD-73 (DSM 6101), produce Cry1Aa1,

Cry1Ab3, Cry1Ab4, Cry1Ab10, Cry1Ac13, Cry1Ia3, Cry2Aa2,

Cry2Ab1, Cry2Ab2 or Cry1Ac1, Cry1Ac7, Cry1Ac8 respectively

[3]. B. thuringiensis ssp. aizawai strain HD-11 (DSM 6099) and HD-

282 (DSM 6100) also produce Cry proteins (no detailed

information was available). Bacillus subtilis 168 (DSM 402) was

used as a negative control. All strains were cultivated aerobically at

28uC in liquid nutrient medium supplemented with MnSO4 for

better sporulation (5 g L21 peptone, 3 g L21 meat extract, 60 mM
MnSO4, pH 7.0). Growth of the cultures was followed by

microscopic counts of cells using a Thoma counting chamber

(Carl Roth). After 5 d of cultivation at 28uC, the liquid cultures

were shifted to 4uC without shaking for sporulation. The

sporulation efficiency was almost 100%.

DNA Extraction and Microbial Community Analysis
The frozen pellets containing the gut material were thawed by

adding 650 mL sterile PBST buffer. The suspensions were stirred

and after centrifugation for 10 min at 1006g DNA was extracted

from the supernatants using the FastDNA SPIN kit for soil and

a FastPrep-24 system (both from MP Biomedicals, Eschwege,

Germany) for bead beating. DNA was photometrically quantified

with the NanoDrop 2000c (Thermo Fisher Scientific, Epsom,

United Kingdom). A 100 mL-DNA solution from midgut con-

tained approx. 8 ng mL21 and hindgut 9.4 ng mL21. The DNA

solutions were stored at 4uC.

Analyses of the Bacterial Abundance, Diversity and
Community Similarities
For each treatment, 24 replicate nurse bees (4 replicates from 6

hives) were analysed of their hind- and midgut contents. The

abundance of the bacterial 16S rRNA genes was determined by

a quantitative real-time PCR (qPCR) applying universal bacterial

primers F27 and Eub338rev [40] and the Maxima SYBR green/

Effect of Bt-Maize on Nurse Bees
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fluorescence qPCR Master Mix (Thermo Fisher Scientific

Fermentas, Waltham, MA). The performance of the qPCR system

was evaluated according to Bustin et al. [41]. The efficiency was

85.9% and all Ct-values were within the linear range of the

standards.

Terminal restriction fragment length polymorphism (T-RFLP)

was applied to estimate the relative abundance and phylotype

richness (diversity) of the dominant bacterial community members.

T-RFLP profiles were conducted as described elsewhere [23] but

were run on a CEQ8800TM Genetic Analysis System (Beckman

Coulter, Krefeld, Germany), requiring a Cy5-labeled forward

primer 27F and an unlabeled reverse primer 1378R. Terminal

restriction fragments (T-RFs) representing less than 1.5% of the

total peak heights were considered as background noise and

excluded. Rare peaks which occurred in less than 3% of all profiles

(less than 5 of 192 profiles) were not considered. T-tests were

applied for the identification of significant differences in the

abundance of particular T-RFs from different treatments.

Significant differences were only considered to be indicative for

a respective treatment, if the T-RF occurred in more than 80% of

the replicates.

Comparisons of T-RFLP-profiles were carried out with PAST

(PAleontological STatistics, version 1.79; http://folk.uio.no/

ohammer/past; [42]. Bray-Curtis index [43] was used to generate

similarity matrices and analysis of similarities (ANOSIM) was

performed [44]. ANOSIM compares the ranks of distances

between groups with ranks of distances within groups. In the

resulting R-test statistic, high values (R.0.75) are commonly

interpreted as ‘‘well separated’’, medium values (0.75.R.0.25) as

‘‘separated but overlapping’’ and low values (R,0.25) as ‘‘barely

separable’’ [45]. Diversity patterns of gut bacterial communities

were visualized by non-metric multidimensional scaling (NMDS)

ordination approach. The importance of particular environmental

variables, i.e., treatments (BT, DKC, BEN, PHA), pollen numbers,

bacterial 16S rRNA gene copy numbers and Cry protein

concentrations, were analyzed by redundancy analysis (RDA)

using R [36].

DNA-sequencing of Bacterial 16S rRNA Genes and
Phylogenetic Analyses
The 16S rRNA genes were PCR-amplified with unlabelled

primers 27F and 1378R and the PCR products were cloned in E.

coli JM109. In order to compare the T-RFs of the cloned

sequences to the theoretical fragment sizes obtained by in silico

analyzes, all PCR products were sequenced in forward orientation.

DNA sequencing was performed by GATC Biotech (Konstanz,

Germany) and the sequences were processed by the MEGA4

software [46], analyzed using the BLASTN routine (www.ncbi.

nlm.nih.gov/BLAST) and, for chimera check, with the Pintail tool

(www.bioinformatics-toolkit.org). The taxonomic position was

evaluated using the RDP classifier [47] and ARB [48]. All new

sequences of this study are deposited in the EMBL Nucleotide

Sequence Database (Accession numbers HE613272 to

HE613312).

Results

Effects of the Pollen Diets on Bee Survival, Body Weight,
and the Efficiency to Digest Maize Pollen
From a total of 1,130 introduced bees, 714 bees were retrieved

after 9 d, corresponding to 63% survival. On the basis of 373

microscopically examined nurse bees, a total of 41,703 pollen

grains were rated for their level of digestion. Only 1,131 grains

were found undigested, leaving more than 97% of the pollen partly

or fully digested (partially 26,146; fully: 14,408 grains). Bt maize

pollen, compared to the other maize pollen treatments (DKC,

BEN, PHA), did not affect survival rates (Fig. 1A; Chisq = 0.95,

Df=3, P=0.81) or the weighted average pollen digestion rates of

nurse bees (Fig. 1B; F(3,18) =2.29, P=0.11), with the overall

weighted digestion rate at 62.7%. The control colonies (PHA),

with ad libitum access to Phacelia and other pollen sources, had

significantly heavier nurse bees than the maize treatments (Fig. 1C;

F(3,18) =4.61, P=0.015). Between the different maize treatments

BT, DKC and BEN in flight cages, no difference in body weights

were found (Fig. 1C; F(2,18) =1.12, P=0.34).

The amount of maize pollen found in the hindgut of the nurse

bees kept in field plots with Bt maize was on average 16,000 pollen

grains, though the variability between individual bees was high,

with a standard deviation of 85.7% (Table S1). Prevalence of Bt-

maize pollen was found restricted to the hindgut of the respective

bees. The maize pollen uptake in colonies with free flying bees

(PHA) was less frequent (528 grains, with a standard deviation of

71%). These pollen grains did not necessarily originate from maize

plants grown at the experimental site (distance 1000 m), as other

maize fields were located in closer vicinity (.250 m).

Detection of Cry Proteins from the Bee Gut
Nurse bees were analyzed for presence of Cry1A.105 and

Cry3Bb1 in their mid- and hindgut (Fig. 2). For the bees from the

Bt maize plots, 100% of the analyzed hindgut samples were

positive for Cry1A.105 and 81% for Cry3Bb1 (Cry1A.105

0.9160.69 ng (positive n= 32) and Cry3Bb1 0.2960.17 ng

(positive n = 26)). The detection of Cry proteins in the midgut

was less frequent: 66% were positive for Cry1A.105 and 50% for

Cry3Bb1. In cases of positive detection, the respective amounts of

the Cry proteins were not significantly different in the mid- and

hindgut, even though pollen numbers of the hindgut clearly

exceeded those of the midgut. However, while the amounts of

Cry1A.105 and Cry3Bb1 were comparable in the midgut,

significantly more Cry1A.105 compared to Cry3Bb1 was detected

in the hindgut, suggesting higher instability of Cry3Bb1 after

passage through the gut.

The relatively high variability of the Cry protein concentrations

(standard deviation of 76% for Cry1A.105; 59% for Cry3Bb1) in

the hindgut of the nurse bees from the plots with Bt maize was

linked to the different amounts of pollen ingested by the individual

bees, as underlined by the positive correlation of both Cry1A.105

and Cry3Bb1 with the respective pollen numbers in their hindguts

(Fig. 3). Considering the concentrations of Cry proteins of intact

pollen (see Materials and Methods), the ingestion of 16,000 Bt

pollen grains per bee, digested by 61.7% (see Fig. 1B), would have

resulted in a release of 42 ng Cry1A.105 and 69 ng Cry3Bb1 into

the gut lumen. However, the actual amounts detected were much

smaller, with 0.8060.62 ng for Cry1A.105 and 0.3360.21 ng for

Cry3Bb1 in mid- and hindgut together, indicating degradation

rates of 98.1% for Cry1A.105 and 99.5% of the Cry3Bb1,

respectively.

Remarkably, Cry proteins were also detected, even though less

frequently, but with similar concentrations in nurse bees with no

direct exposure to Bt maize, i.e., from colonies of the DKC, BEN

and PHA treatments and even in controls for which exposure to

recombinant Cry proteins could be excluded (Fig. 2). In contrast to

the BT treatment, Cry protein detection from the other treatments

and controls was mainly in hindgut samples, which were positive

for one or both Cry proteins in 38% of the nurse bees kept in the

maize field plots and in 60% of those from colonies with the free

flying bees (PHA). This result from the PHA treatment was

especially remarkable since in 68% of the positive samples no
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maize pollen grains were detected, and for those, which contained

maize pollen, there was no correlation between the concentrations

of the Cry1A.105 and Cry3Bb1 proteins. This was also the case for

the unexposed controls.

Origin of Cry Proteins in Bees
For the control group of nurse bees with no exposure to Bt

maize, five of 24 midgut samples were positive for Cry1A.105, and

six for Cry3Bb1. Notably, two Cry3Bb1 positive midgut samples

occurred in absence of a parallel Cry1A.105 detection in mid- or

hindgut. This presence of Cry3Bb1 in absence of Cry1A.105 was

never seen with nurse bees from the Bt treatment (where the

digestion of Bt pollen would release both Cry1A.105 and Cry3Bb1

proteins), suggesting that Cry proteins detected in the control

group originated from other, natural sources, i.e., bacteria

belonging to B. thuringiensis.

Since the synthetic Cry1A.105 protein, for which the ELISA

applied in this study had been developed, could not occur in

natural B. thuringiensis strains, the positive signals, suggesting

amounts between 0.5 to 1.8 ng ‘‘Cry1A.105’’ in their hindgut,

must have been caused by cross-reaction with natural Cry1A or

other proteins. Not all extracts of the bee guts responded in the

ELISA, which excluded false-positive detection by other gut-

derived proteins. Furthermore, additional pure culture studies with

sporulated B. thuringiensis strains demonstrated that cross-reaction

with the Cry1A.105 antibody in fact occurred, while controls with

Bacillus subtilis were negative (Figure S2). The correlation between

sporulated cell numbers and Cry1A.105 signal intensities allowed

the calculation of B. thuringiensis spore/cell numbers which would

be required for detection of natural Cry1A-like proteins with the

Cry1A.105-specific ELISA (Table 1). Only 50 sporulated cells of

B. thuringiensis ssp. kurstaki HD-73 were sufficient to cause an

ELISA signal equivalent to 1 ng Cry1A.105 in a bees gut. In

Figure 1. Response of nurse bees after a 9 d exposure period either to Bt maize (treatment BT), or two conventional maize cultivars
(DKC, BEN), or controls with ad libitum access to different pollen sources from colonies kept at a Phacelia field (PHA). The survival (A)
was indicated by the retrieval rate of marked bees, their weight (B) was determined at the moment of their retrieval. Microscopic analysis of bee
hindguts was performed to calculate a weighted average degree of maize pollen digestion (C). The error bars indicate 95% confidence intervals.
*indicates significant difference of a specific treatment.
doi:10.1371/journal.pone.0059589.g001

Figure 2. Quantification of Cry1A.105 (A) and Cry3Bb1 (B) from mid- and hindgut samples of nurse bees exposed to Bt maize
(treatment BT), other conventionally bred maize varieties (DKC, BEN) or other pollen sources (Phacelia, control); n indicates the
numbers of replicate samples analyzed. Each individual sample is represented by a circle. Samples below the detection limit were set to zero.
doi:10.1371/journal.pone.0059589.g002
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comparison 914 cells of another kurstaki strain were required for

the same response. In contrast, more than 107 spore/cell numbers

were necessary for indicating 1 ng with two B. thuringiensis ssp.

aizawai strains, suggesting that either expression of Cry1A-proteins

was low or antibodies were not specific for their particular Cry

proteins.

Bacterial Diversity in Response to Pollen Exposure
The different maize pollen diets from BT, DKC and BEN had

no significant effect on the overall bacterial abundance in midgut

or hindgut (Fig. 4). In contrast, the bacterial population sizes in the

hindgut, but not midgut, from nurse bees from the free-flying

colonies (PHA) were significantly higher.

Assuming an average bacterial genome size of 5 Mbp and four

16S rRNA gene operons, the expected maximal copy number

amplifiable from one ng total DNA would correspond to 76105.

Copy numbers detected in the hindgut ranged from 26105 to

36106 (Fig. 4) and thus it appeared that the majority of DNA

extracted from the hindgut was in fact of bacterial and not of

pollen origin. With a total rRNA gene copy number of 36106

rRNA per ng DNA, 100 mL of hindgut DNA with a 9.4 ng DNA

mL21 would indicate under these assumptions a bacterial popu-

lation size of 76108 cells in the hindgut.

Richness of bacterial phylotypes was determined by T-RFLP

and profiles of individual bees revealed 1 to 11 T-RFs for their

midgut (average 5.662.5), and 3 to 11 (6.861.6) for their hindgut.

Based on DNA sequencing the consistently occurring T-RFs could

be assigned to different taxa (Fig. 5; Table S2). The profiles of the

midgut were mainly composed of Proteobacteria, while those of the

hindgut were dominated by Lactobacillus (Firmicutes) and Bifidobacter-

ium (Actinobacteria). ANOSIM confirmed significant differences

between the diversity of bacteria from midgut and hindgut

(R=0.538, P,0.001).

All of the identified T-RFs in this study showed their highest

similarities (97–99%) to bacterial 16S rRNA gene DNA sequences

previously found in bees (mainly Apis mellifera) [25] (Table S2).

With the exception of Bartonella sp. a-1 and Proteobacterium c-2, all
phylotypes proposed as consistent inhabitants of the bee gut

[23,25,27] were detected independent of the pollen source

(treatment). The highest incidence of bacterial phylotypes was

found for Lactobacillus F-5 in the hindgut (97%; n= 96) (Fig. 5 A)

which was significantly more abundant in BT (Fig. 5 B). Two

frequently occurring T-RFs (493, indicating a c-1 Proteobacterium

and 570 indicating a Lactobacillus F-4 or F-5) from hindgut were

significantly higher with BEN. There was no indication for

presence of indigenous B. thuringiensis (hypothetical T-RF 147 bp).

Figure 3. Correlation between the contents of Cry proteins for Cry1A.105 and Cry3Bb1, and maize pollen detected in the hindgut
of nurse bees from colonies caged in field plots with Bt maize MON 890346MON 88017 during anthesis. Correlation data in the graph
excluded values below the detection limit (DTC).
doi:10.1371/journal.pone.0059589.g003

Table 1. Hypothetical numbers of sporulated cells of B. thuringiensis strains expressing natural Cry proteins required for the
detection of a Cry1A.105 equivalent by ELISA.

B. thuringiensis strain Number of cells necessary in a bees gut samples to give an ELISA above DTCa

ssp. kurstaki HD-73 (DSM 6101) 2.50610161.206101

ssp. kurstaki HD-1 (DSM 6102) 9.14610265.866102

ssp. aizawai HD-11 (DSM 6099) 3.26610760.146107

ssp. aizawai HD-282 (DSM 6100) 1.30610860.986108

arefers to an extraction volume of 300 mL; DTC, detection threshold was 0.5 mg mL21.

doi:10.1371/journal.pone.0059589.t001
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Nonmetric multidimensional scaling (NMDS) visualized that the

overall bacterial community structure in midgut and hindgut was

not clearly affected by the particular pollen source (Fig. 6). For

each treatment, analysis of similarities (ANOSIM) however

indicated significant differences, even though the profiles were

barely separable (midgut, R= 0.083; hindgut, R= 0.123) (Table

S3). Similarly, for any comparisons between two treatments,

ANOSIM revealed significant differences but only barely separa-

ble profiles for both midgut and hindgut, with the exception of BT

and its near isogenic DKC from the midgut, which were not

different. RDA revealed that for midgut 6.6%, and for hindgut

10.2% of the variability of the variance of the community profiles

could be explained by the treatment. The content of Cry1A.105

and Cry3Bb1 had a relatively low explanatory value, explaining

1.5% and 4.8% of the variance of community profiles from the

midguts and 2.0% and 1.6% from the hindguts. In the hindgut,

the number of maize pollen explained 3.4%, whereas the bacterial

community abundance (copy numbers of bacterial 16S rRNA

genes) accounted for 2.4% and 3.6% in mid- and hindgut,

respectively. Overall, the selected environmental variables ex-

plained 15.3% of the variability in the bacterial community

structures of the midgut and 20.8% of the hindgut.

Discussion

The flight cages used in this study forced the bee colonies to

cover their protein demand exclusively from pollen of a particular

maize variety (treatments BT, DKC, BEN). Interestingly, the gut

of nurse bees from colonies of the free-flying foragers (treatment

PHA) also contained some maize pollen, indicating that bees

actively forage on pollen of this wind pollinated crop even with

abundant access to alternative pollen sources [12].

Upon ingestion of maize pollen by nurse bees, only 3%

remained undigested, which confirmed digestion rates found with

other Bt maize [34]. This indicates that in fact Cry proteins from

Bt maize pollen are released at large amounts into the gut lumen

of the bees. In contrast to fully grown worker bee larvae which

contained approx. 2,000 pollen grains [34], the gut of the nurse

bees in this study contained on average eight times more,

confirming the underlying assumption of this study that exposure

of Cry proteins from Bt maize pollen in nurses is relatively high.

Once released into the gut, the insecticidal proteins may

potentially interact with resident bacteria and the gut epithelium.

However, the detected concentrations of Cry1A.105 and Cry3Bb1

indicated that the majority of the Cry proteins, i.e., more than

98%, were degraded. The fate of the third Cry protein, Cry2Ab2,

was not analyzed and additional data on the persistence of this

protein would be desirable. However, proteolysis is common in the

bee gut and important for the acquisition of nutrients [19,49],

suggesting that Cry proteins generally do not resist such digestive

processes.

There was no indication from mortality or body weight data

that the Bt maize pollen or their included Cry proteins exhibited

any negative effect on the nurse bees. This confirms data from

laboratory feeding studies on the lack of adverse effects of Cry

protein containing pollen on individual bees outside of their social

context [8,14,16,20,50]. No effect on bee colonies was found with

Bt maize expressing another cry1A gene [21]. The amounts of Cry

proteins which were released into the gut lumen of the nurse bees

and the lack of effects on survival and body weight clearly

demonstrate high tolerance towards these three insecticidal

proteins. Target lepidoptera and their relatives already responded

to less than 100 pollen with Cry1Ab in their diet [51,52] while the

Figure 4. Copy numbers of bacterial 16S rRNA genes in gut material from nurse bees as determined by qPCR. Different letters on top
of columns indicate significant differences. Nurse bees originated from colonies exposed to Bt maize MON 89034 6MON 88017 (treatment BT),
conventional maize varieties (DKC, BEN) or other pollen sources including Phacelia (PHA).
doi:10.1371/journal.pone.0059589.g004
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Figure 5. Schematic figure on the incidence (A) and abundance (B) of bacterial phylotypes detected by T-RFLP based on 16S rRNA
genes. The T-RF patterns for each treatment, i.e., exposure to Bt maize (BT), two conventional maize varieties (DKC, BEN) and mixed pollen sources
including Phacelia (PHA), are based on 24 replicates from individual bees. Frequencies of incidences and abundances are indicated by squares and
correlate with the grey scale. Abundance values in B indicate % of a particular T-RF in relation to total TRFs of the corresponding TRFP-profiles.
Abundance values were averaged only from scored T-RFs. Significant differences in abundances of frequently occurring T-RFs are indicated with
coloured boarder lines. Bacterial phylotypes indicated by the particular T-RFs were identified by DNA-sequencing (see also Table S2).
doi:10.1371/journal.pone.0059589.g005

Figure 6. Nonmetric multidimensional scaling (NMDS) ordination plot of b-diversity patterns of bacterial community differences
represented as Bray–Curtis distances of T-RFLP profiles. Stress values (0.21, 0.25) indicate that the distance between points in the ordination
plot is a good representation of the degree of similarity between the bacterial communities in each sample. Each point represents the gut bacterial
community obtained an individual nurse bee. Treatments: BT, exposure to pollen of Bt maize, DKC and BEN to conventional maize and PHA to other
pollen sources including Phacelia.
doi:10.1371/journal.pone.0059589.g006
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presence of 16,000 pollen with the three different Cry proteins in

the hindgut of nurse bees in this study had no apparent effect.

The bacterial diversity in the gut of the nurse bees was analyzed

by PCR amplification of their 16S rRNA genes from DNA directly

extracted from gut material of the bees. This approach yields

genetic signatures (phylotypes) and avoids non-detection of

bacteria which would fail to grow on laboratory media [53]. A

large discrepancy between the bacterial community recovered by

cultivation and independent of cultivation was found when the

bacterial community of the same gut material from bees was

analyzed with both methods [29,54]. The dominant bacterial

phylotypes detected in this study confirmed for the highly

conserved bacterial community structure seen generally for adult

bees in other studies applying a similar methodological approach

[23,25,27], however, with the exception of Bartonella sp. a-1 and

Proteobacterium c-2. Genetic profiling of the dominant 16S rRNA

genes by T-RFLP analyses on honey bees from Thailand also

failed to detect the Bartonella sp. a-1 [55] possibly because their

abundance was too small to be detected by T-RFLP [56].

Despite the highly conservative bacterial community structure

ANOSIM revealed significant diet dependent differences, sugges-

tion quantitative responses to particular properties of the re-

spective diets. The high number of replicates (24 individual

profiles for each treatment) analyzed in this study allowed to test

the diet-dependent significance for specific TR-Fs (indicating

phylotypes) and there was in fact a significantly higher abundance

of a Lactobacillus from the F-5 group with Bt maize in the hindgut.

However, significant differences were not typical for Bt maize but

occurred also with other treatments. T-RFs of the Proteobacterium c-
1 or Lactobacillus F-4 and F-5 were more abundant in the hindgut

of nurse bees feeding on Benicia (BEN) than on the other pollen

sources. Differences between BT and conventional maize pollen

sources were in the same range, suggesting that Cry proteins did

not differ in their effects from other protein sources.

Multivariate statistical analyses (NMDS, RDA) also visualized

that the differences to BT were in the same range as to other

pollen sources. RDA indicated that only 7% and 10% of the

variance of the gut bacterial community structure in midgut and

hindgut were linked to the different pollen sources. Interestingly,

the bacterial community structure selected by mixed pollen

sources (treatment PHA) was not more distantly related to the

ones exclusively receiving maize pollen. This may be explained by

the fact that in this study the exposure of nurse bees and their gut

bacteria was restricted to only nine days, i.e., coinciding with the

nurse bee life-stage period and that at the onset of the incubation,

all bees came from the same source as newborns. Thus, the

conclusions on the lack of GMO-specific effect of the gut bacterial

community in this study relate to immediate responses of their

structural diversity to the different pollen sources.

The frequent detection of Cry proteins in bees from the donor

colonies which had never been exposed to Bt maize or any other

Bt crop was an unexpected result. There was no indication for

presence of B. thuringiensis, which belongs to the Bacillus cereus group

and is not distinguishable from B. cereus itself by their 16S rRNA

genes [57,58]. In accordance with this study, cultivation in-

dependent analyses have never indicated the presence of B. cereus

among the dominant gut bacteria. On the other hand, B. cereus has

been detected in the gut of bees by means of cultivation [59]. The

detection of Cry proteins from gut material of A. mellifera in this

study clearly indicates the presence of B. thuringiensis (the only

producer of Cry proteins) as an inhabitant of the gut, even though,

on a theoretical basis, it cannot be excluded that Cry proteins

would also be produced by other yet unknown bacteria. Since the

Cry protein producing bacteria obviously do not cause negative

effects for A. mellifera, they may use this host for non-pathogenic

rather than infective growth, as suggested for members of the B.

cereus group, including B. thuringiensis [5]. As little as 50 spores of

a B. thuringiensis kurstaki strain were sufficient to give rise to positive

signals with the ELISA system applied why they were not picked

up by the TRFLP analysis which only visualizes the dominant gut

residing bacteria.

Conclusion
This study shows that honey bee nurses which were forced to

cover their full protein demand by pollen from a stacked Bt maize

showed no apparent effects on survival rates, body weight and

pollen digestibility. The community structure of the gut bacteria

significantly responded to the different pollen diets, but differences

found with the Bt maize pollen were in the range of those

occurring between pollen from conventionally bred varieties or

mixed pollen sources. The relatively low Cry protein concentra-

tion measurements compared to the high exposure of nurse bees

indicate that the recombinant proteins were actively digested. The

natural occurrence of Cry proteins in the gut of nurse bees with no

exposure to Bt maize and the lack of detectable effects on nurse

bees and their gut bacteria give no indication for harmful effects of

this Bt maize on honey nurse bees.

Supporting Information

Figure S1 Experimental field design (schematic overview). The

figure illustrates the location of field plots on the 6-ha maize field

site of this study. The ‘‘x’’ marks indicate the position of flight

cages within the particular plots. Maize varieties grown in the plots

are indicated by BT for Bt maize (Cry1A.105; Cry2Ab2, and

Cry3Bb1 in the genetic background of DKC 5143), DKC, for the

non-engineered near isogenic cultivar DKC 5143, and BEN for,

the conventionally bred cultivar ‘‘Benicia’’. Underlined names

indicate plots from which nurse bees for analyzed for their

intestinal Cry-proteins and bacterial community. For plot size and

more details see Materials and methods. Empty squares without

further indication represent maize field plots with other cultivars

or treatments with no relevance for this study. At the onset of

maize flowering, two honey bee colonies were introduced per

flight cage. Note that an additional group of eight honey bee

colonies, without being caged, was placed in 1 km distance to this

site, with ad libitum access to pollen at a field with Phacelia

tanacetifolia.

(TIF)

Figure S2 Quantification of natural Cry-protein expressed by

four different Bacillus thuringiensis strains. The expression levels of

natural Cry protein by four B. thuringiensis strains were detected

with an ELISA targeting the synthetic protein Cry1A.105 as used

in this study to detect the recombinant synthetic Cry1A.105

protein from Bt maize MON 890346MON 88017. The 12 data

points are the highest diluted cell suspension with a signal above

the respective detection limits. The results show for two type

culture strains of ssp. kurstaki that a relatively low number of

bacterial cells (spores) can result in detecting relative high amounts

of Cry-protein. Contrastingly, the presence of a relative high

numbers of the ssp. aizawai, show for two type culture strains, can

result in detecting only low amounts of Cry-protein. No detection

signal above the DTC was recorded for Bacillus subtilis 168 (DSM

402) (negative control). These results illustrate with the example of

B. thuringiensis spp. kurstaki that Cry protein within the bee gut may

originate from the presence of only a few bacterial cells (or spores).

(TIF)

Effect of Bt-Maize on Nurse Bees

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e59589



Table S1 Consumption of Bt maize pollen by nurse bees within

honey bee colonies. To indicate maize pollen exposure to bees, the

pollen amount in midgut and hindgut samples was quantified by

microscopic examination (Leitz Laboralux K, Wetzlar, Germany).

By transferring each sample homogenate onto a counting device,

complete pollen grains and fragments larger than half of a pollen

grain were counted at 1006magnification within a 0.9 mL volume,

at an 1:4 dilution (Neubauer Improved haemocytometer, Labor-

optik GmbH, Bad Homburg, Germany). Each count with four

subsamples attributed with a factor 333 to the total number of

pollen in the gut segment (0.9 mL/300 mL total sample volume).

The counted pollen in the rectum samples (1305) indicated the

presence of a total of 434,565 Bt-maize pollen; with an average

exposure of 15,520 Bt-pollen per bee (n = 28), 685.7% SD.

Midgut samples did not contribute to additional exposure data of

the Bt-maize pollen, because no pollen was observed (64 negative

counts, in a total of 16 bees). The experimental colonies were free

of pollen stores, and the nurse bees were at time of introduction

less than 24 hrs old. As a result, no other pollen than maize pollen

were found in the nurse bees from the bee cages.

(DOCX)

Table S2 Comparison of 16S rRNA gene sequences retrieved in

this study from the gut material of Apis mellifera and their

affiliation to known bacteria taxa and previously detected bacterial

16S rRNA gene signatures in other studies. For the corresponding

terminal restriction fragment (TRF) sizes, please see also Fig. 5.

(DOCX)

Table S3 Comparison of bacterial community composition (T-

RFLP profiles) between treatments (pollen source, i.e. BT, DKC,

BEN, PHA) for mid- and hindgut by one-way analysis of

similarities (ANOSIM) with Bray-Curtis similarity.

(DOCX)
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