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Abstract

Identifying subspace gene clusters from the gene expression data is useful for discovering novel functional gene
interactions. In this paper, we propose to use low-rank representation (LRR) to identify the subspace gene clusters from
microarray data. LRR seeks the lowest-rank representation among all the candidates that can represent the genes as linear
combinations of the bases in the dataset. The clusters can be extracted based on the block diagonal representation matrix
obtained using LRR, and they can well capture the intrinsic patterns of genes with similar functions. Meanwhile, the
parameter of LRR can balance the effect of noise so that the method is capable of extracting useful information from the
data with high level of background noise. Compared with traditional methods, our approach can identify genes with similar
functions yet without similar expression profiles. Also, it could assign one gene into different clusters. Moreover, our
method is robust to the noise and can identify more biologically relevant gene clusters. When applied to three public
datasets, the results show that the LRR based method is superior to existing methods for identifying subspace gene clusters.
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Introduction

With the advent of the DNA microarray technology, it is now

possible to study the transcriptional response of a complete

genome to different experimental conditions. However, recon-

struction the regulatory networks from the high throughput DNA

microarray data is one of the foremost challenges of current

bioinformatics research. Fortunately, many studies have unveiled

that regulatory networks are modular and hierarchically organized

[1–7]. Since subspace gene clusters may represent co-regulated

genes to some degree, so we can reconstruct the whole regulatory

network start with identifying the clusters. In addition, since genes

can be clustered with similar cellular functions, therefore,

identifying the clusters from DNA microarray data might provide

much deeper insight into biological function and relevance.

Traditional clustering methods, such as hierarchical clustering

[8], K-means clustering [9], self-organizing maps [10], and model-

based methods [11–14] can organize gene expression data into

clusters of genes possessing similar expression profiles using all the

conditions, and the clusters are exclusive and exhaustive (Figure 1

(A)). These methods identify gene clusters by assuming that genes

with similar expression profiles share similar functions or the same

pathway. Although these clustering methods classify genes

successfully when applied to relatively small data sets, when used

for analyzing large-scale expression data, it is limited by three well-

recognized drawbacks [3]. Firstly, commonly used algorithms

assign each gene to a single cluster, whereas in fact many genes

may participate in several functions and should thus be included in

several clusters [3,10]. Secondly, these algorithms group genes on

the basis of their expression under all experimental conditions,

whereas cellular processes are generally affected only by a small

subset of these conditions, so that a gene can participate in

multiple clusters or in none at all [15]. In the analysis of

a particular cellular process, therefore, most conditions do not

contribute information but instead increase the amount of

background noise [3]. Thirdly, due to the complex procedures

of microarray experiments, gene expression data often contains

a huge amount of noise. These algorithms force each gene into

a cluster, which may cause the algorithm to be sensitive to noise

[15–17].

Recently, subspace clustering methods have been proposed to

find subgroups of genes that exhibit similar behavior across subsets

of samples, experimental conditions, or time points [15,18].

Subspace clustering was first proposed by Agrawal et al. in general

data mining domain [19] to find subsets of objects such that the

objects appear as a cluster in a subspace formed by a subset of

features. Figure 1 (B) shows an example of the subspace clusters (a

and b) embedded in a gene expression matrix. From Figure 1 (B),

we can found that a subspace cluster is defined as a submatrix

spanned by a set of genes and a set of samples. Genes or samples

can be part of more than one subspace cluster or of no subspace

cluster. In addition, the subsets of samples for various subspace

clusters can be different. Two subspace clusters can share some

common genes and samples, and some genes may not belong to

any subspace cluster [15]. Therefore, the goal of subspace

clustering technique is to find a set of significant subspace clusters
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in a matrix. Until now, subspace clustering approaches have found

widespread applications in many fields [20], e.g., pattern

recognition, data compression, image processing and bioinfor-

matics. These methods include algebraic methods [20], such as

Generalized Principal Component Analysis(GPCA) [21], iterative

methods [20], statistical methods [20], and spectral clustering-

based methods [20].

GPCA presents an algebraic way to model the data drawn from

a union of multiple subspaces. The intersections between

subspaces are automatically allowed; hence, GPCA can deal with

both independent and dependent subspaces. However, this

method is sensitive to noise and outliers due to the difficulty of

estimating the polynomials from real data, which also causes the

high computation cost of GPCA [20].

Algebraic algorithms are sensitive to the noise. A very simple

way of improving the performance of algebraic algorithms in the

case of noisy data is to use iterative refinement. The main

advantage of algebraic method is its simplicity since it alternates

between assigning points to subspaces and estimating the

subspaces via PCA. While the algorithm’s convergence to the

global optimum depends on a good initialization, and the method

is sensitive to outliers.

Statistical methods include Mixture of Probabilistic PCA

(MPPCA) [22], Agglomerative Lossy Compression (ALC) [23]

and Random Sample Consensus (RANSAC) [24]. MPPCA is

a simple and intuitive method, where each iteration can be

computed in closed form by using PPCA. An important drawback

of MMPCA is that the number and dimensions of the subspaces

need to be known beforehand. In principle, ALC does not need to

know the number of subspaces and their dimensions. In practice,

however, the number of subspaces is directly related to the

parameter of ALC. When the number of subspaces is known, one

can run ALC for several values of its parameter. This typically

increases the computational complexity of the method. Another

disadvantage of ALC, perhaps the major one, is that there is no

theoretical proof for the optimality of the agglomerative pro-

cedure. The main advantage of RANSAC is its ability to handle

outliers explicitly. An important drawback of RANSAC is that its

performance deteriorates quickly as the number of subspaces

increase. Another critical drawback of RANSAC is that it requires

the dimension of the subspaces to be known and equal.

Spectral clustering algorithms are very popular techniques for

clustering high-dimensional data. One of the main challenges in

applying spectral clustering to the subspace clustering problem is

to define a good affinity matrix. This is because two points could

be very close to each other but lie in different subspaces (e.g., near

the intersection of two subspaces). Conversely, two points could be

far from each other but lie in the same subspace. One of the most

popular spectral clustering algorithms is sparse subspace clustering

(SSC) [25,26]. SSC is robust to noise and its computational

complexity dose not grow exponentially with the number of

subspaces and their dimensions. Nonetheless, it requires solving N

optimization problems in O(N) variables, hence, it may be time

consuming. Another possible disadvantage of SSC is that it is

provably correct only in the case of independent or disjoint

subspaces.

In this paper, we propose to use Low-Rank Representa-

tion(LRR) to identify the subspace gene clusters from microarray

data. Compared with traditional techniques, such as K-means

clustering, our method can cluster genes with similar functions but

without similar expression profiles. Moreover, LRR is better fitted

to analyze the microarray data than other subspace clustering

algorithms, such as GPCA, since it is robust to noise and outliers

via lowest-rank criterion, and it also can be capable of extracting

useful information from a high level of background noise. The

contribution of the paper is that a new subspace gene clustering

method based on LRR is proposed, and its theoretical analysis is

also given.

Materials and Methods

Low-Rank Representation
Before we present the Low-Rank Representation(LRR) based

method for identifying gene clusters from microarray data, we first

introduce the algorithm of Low-Rank Representation, which is

a new framework for seeking the lowest rank representation matrix

[27]. Supposing that there is a gene expression dataset with p
genes and n samples, we can denote it as a matrix D with size

p|n. When the data is noiseless, the LRR algorithm looks for

a representation Z by solving the problem

min
z

rank Zð Þ, s:t:D~AZ ð1Þ

We call the optimal solutions Z� of the above problem the

‘‘lowest-rank representation’’ of the data D with respect to

a dictionary A. The above optimization problem is difficult to

solve due to the discrete nature of the rank function. Fortunately,

as suggested by matrix completion methods [28,29], the following

convex optimization provides a good surrogate for problem(1):

min
z

Zk k�, s:t:D~AZ ð2Þ

where :k k� denotes the nuclear norm of a matrix [27,30], i.e., the

sum of the singular values of the matrix. Note that the block

diagonal structure of Z directly induces clustering genes (each

block corresponds to a cluster). So the clustering task is equivalent

to finding a block diagonal representation matrix Z.

However, due to the complex procedures of microarray

experiments, gene expression data often contains a huge amount

of noise. Therefore, the optimization model of LRR is formulated

as:

min
Z,E

Zk k�zl Ek k2,1, s:t:D~AZzE ð3Þ

where Ek k2,1~
Pn
j~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

E2
ij

� �s
is the l2,1-norm of the matrix of

Figure 1. Clustering and subspace clustering of a gene
expression matrix: (A) a gene cluster must contain all columns,
(B) subspace clusters correspond to arbitrary subsets of rows
and columns, shown here as rectangles.
doi:10.1371/journal.pone.0059377.g001

Low-Rank Representation on Gene Clustering
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errors E. Minimizing the l2,1-norm of noise is to meet the

assumption that some data vectors are corrupted and others are

clean. Since in this case, the solution Z� to Eq.(3) may not be block

diagonal, it is recognized as an affinity matrix instead and spectral

clustering methods are applied to DZ�DzD(Z�)T D to obtain a block

diagonal matrix, where T denotes the matrix or vector transpose

and DZ�D denotes a matrix whose entries are the absolute values of

Z.

The LRR algorithm proceeds by solving the optimization

problem in (3) using an Augmented Lagrange Multiplier (ALM)

method [31–33].

Identifying Gene Clusters Using LRR
Denoted the gene expression data matrix as D with size p|n,

each row of D containing the expression levels of a gene in all the n

samples, and each column of D containing the expression levels of

all the p genes in one sample. Our goal of using LRR algorithm to

model the gene expression data is to discover subspace gene

clusters, so we can cluster the genes according to their

representation matrices. When we apply the LRR algorithm to

cluster genes, we need to use DT instead of D. The Eq.(3) can be

written as:

min
Z,E

Zk k�zl Ek k2,1, s:t:DT~AZzE ð4Þ

In order to cluster the genes into their respective subspaces, we

need to compute an affinity matrix that encodes the pairwise

affinities between data vectors. So we use the data DT itself as the

dictionary, i.e., problem(4) becomes

Figure 2. ROC curves for synthetic data. (SNR denotes the signal-to-noise ratio).
doi:10.1371/journal.pone.0059377.g002

Table 1. AUC statistics for synthetic data.

SNR=0.5 SNR=1.0 SNR=1.5 SNR=2.0

K-means 0.6643 0.7547 0.8253 0.9233

GPCA 0.6145 0.7128 0.8652 0.9255

LRR 0.8928 0.9435 0.9681 0.9908

doi:10.1371/journal.pone.0059377.t001

Low-Rank Representation on Gene Clustering
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min
Z,E

Zk k�zl Ek k2,1, s:t: DT~DTZzE ð5Þ

Then Eq.(5) can be written as

min
Z,E

Zk k�zl Ek k2,1, s:t: X~XZzE ð6Þ

where X~½x1,x2,:::,xp� (each column is a gene), Z~½z1,z2,:::,zp�
is the coefficient matrix with each zi being the representation of xi.

Ek k2,1~
Pp
j~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i~1

E2
ij

� �s
is l2,1-norm, and the parameter lw0 is

used to balance the effects of the two parts, which could be chosen

according to properties of the two norms, or tuned empirically.

Since l2,1-norm encourages the columns of E to be zero, the

underlying assumption here is that some data vectors are

corrupted and the others are clean.

The optimization problem (6) is convex and can be solved by

various methods [31]. For efficiency, we adopt in this paper the

Augmented Lagrange Multiplier(ALM) method [31–33]. We first

convert Eq.(6) to the following equivalent problem:

min
Z,E,J

Jk k�zl Ek k2,1, s:t:X~XZzE,Z~J ð7Þ

This problem can be solved by the ALM method, which

minimizes the following augmented Lagrange function:

Table 2. The most enriched GO categories of modular enrichment in each gene clusters uncovered by LRR from yeast dataset.

Cluster
No. of genes with in
functional category Major GO categories Corrected P-value

C1(121genes) 10 Starch and sucrose metabolism 2.99342E-11

C2(86genes) 4 structural constituent of cytoskeleton 4.7389E-2

C3(30genes) 14 response to stress 6.33965E-30

C4(663genes) 151 integral to membrane 3.67556E-2

C5(45genes) 27 oxidation-reduction process 1.04843E-25

C6(38genes) 3 DNA repair 4.92582E-5

C7(69genes) 10 ion transport 6.84207E-13

C8(71genes) 16 Glycolysis/Gluconeogenesis 3.15299E-19

C9(181genes) 92 ribosome biogenesis 9.62533E-119

C10(87genes) 5 prospore membrane 2.30387E-5

C11(34genes) 10 helicase activity 9.29836E-11

C12(414genes) 10 hydrolase activity 2.44361E-5

C13(551genes) 11 regulation of transcription, DNA-dependent 2.0876E-3

C14(114genes) 37 cellular amino acid biosynthetic process 2.33136E-41

C15(393genes) 3 mitotic recombination 1.67731E-4

C16(25genes) 20 transposition, RNA-mediated 3.23626E-35

C17(130genes) 116 structural constituent of ribosome 3.58803E-202

C18(454genes) 77 Biosynthesis of secondary metabolites 1.57577E-32

C19(83genes) 3 sporulation resulting in formation of a cellular spore 2.12806E-2

C20(511genes) 3 oxidation-reduction process 4.34938E-4

C21(75genes) 3 transferase activity, transferring phosphorus-containing groups 9.06387E-3

C22(27genes) 3 metal ion binding 1.04585E-5

C23(675genes) 5 transport 5.76795E-3

C24(183genes) 92 ribisome biogenesis 3.82873E-112

C25(553genes) 73 transcription, DNA-dependent 2.91171E-7

C26(287genes) 35 extracellular region 2.62718E-24

C27(50genes) 31 mitochondrion 2.79651E-53

C28(801genes) 38 vesicle-mediated transport 1.40759E-8

C29(347genes) 5 guanyl-nucleotide exchage factor activity 1.6044E-4

C30(258genes) 30 fungal-type cell wall 1.30198E-22

The columns of the table summarize the total sizes of the module (numbers in parentheses), the number of genes annotated in the cluster, the GO categories
associated with the cluster, and the P-value after FDR correction.
doi:10.1371/journal.pone.0059377.t002
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min
Z,E,J,Y1,Y2

Jk k�zl Ek k2,1ztr½Yt
1(X{XZ{E)�

ztr½Yt
2(Z{J)�zm

2
( X{XZ{Ek k2Fz Z{Jk k2F )

ð8Þ

The above problem is unconstrained. So it can be minimized

with respect to J, Z and E, respectively, by fixing the other

variables, and then updating the Lagrange multipliers Y1 and Y2,

where mw0 is a penalty parameter. The inexact ALM method,

also called the alternating direction method, is outlined in

Algorithm 1. Its convergence properties could be proven similarly

as those in [32].

After solving problem (6), as in [25], we utilize the lowest-rank

representation (denoted by Z�) to define the affinity matrix of an

undirected graph. We treat gene clustering problem as a graph

partitioning problem. The gene vectors correspond to the vertices

and the affinity between xi and xj is computed by D½Z��ij DzD½Z��ji D.
In clustering, we seek to partition the set of vertices into disjoint

sets where by some measure the similarity among the vertices in

a set is high and across different sets is low. So we could use the

spectral clustering algorithms such as Normalized Cuts [34] to

produce the final clustering results, since Normalized Cuts is an

unbiased measure which can minimize the disassociation between

the clusters of a graph and maximize the association within the

clusters simultaneously. The final clusters are gene clusters that we

discover from the gene expression data. Integrating LRR with

spectral clustering has the following advantages. First, since LRR

may fail to obtain a block-diagonal representation in complex

applications, the spectral clustering could ensure the robustness of

the clustering. Second, it is convenient to integrate the lowest-rank

representation with other information by defining such an

undirected graph For example, in some specific applications such

as subspace segmentation, ones may want to enforce that only the

neighbor samples can be connected by edges. Therefore, the

proposed clustering method based LRR can be capable of

extracting useful information from a huge amount of background

noise and it also can well capture the intrinsic patterns of genes

with similar functions. Algorithm 2 summarizes the whole

clustering algorithm of LRR for gene expression data.

Algorithm 1 Solving Problem (6) by Inexact ALM

Input: data matrix X, parameter l
Initialized: Z~J~0, E~0, Y1~0, Y2~0, m~10{6,

umax~1010, r~1:1, e~10{8.

while not converged do

1) fix the others and update J by

J~ argmin
1

m
Jk k�z

1

2
J{(ZzY2=m)k k2F

2) fix the others and update Z by

Z~(IzXtX ){1(XtX{XtEzJz(XtY1{Y2)=m)

3) fix the others and update E by

E~ arg min l
m Ek k2,1z 1

2
E{(X{XZzY1=m)k k2F

4) update the multipliers

Y1~Y1zm(X{XZ{E)

Y2~Y2zm(Z{J)

5) update the parameter m by m~min (rm,umax)

6) check the convergence conditions

X{XZ{Ek k?ve and Z{Jk k?ve

end while

Algorithm 2 Subspace Clustering by LRR

Input: data matrix X , number of subspaces k

1) Obtain the lowest-rank representation by solving problem(6)

2) Construct an undirected graph by using the lowest-rank

representation to define the affinity matrix of the graph

3) Use Normalized Cuts to cluster the vertices of the graph into

k clusters

Gene Expression Data
In this paper, three published gene expression datasets are used

to analyze the performance of our methods: the yeast dataset [35],

the yeast_Spellman dataset [36] and nomal human tissue dataset

[37].

The yeast dataset contains 173 samples collected under several

different conditions, which include temperature shocks, hyper-and

hypoosmotic shocks, exposure to various agents such as peroxide,

Table 3. Results of genes analysis in gene clusters uncovered by LRR from yeast dataset.

Cluster
Major GO
categories Genes

C3 (14/30) response to stress YBL075C,YBR082C,YBR169C,YDR171W,YDR214W,YDR258C,YER103W,YFL016C,YJL034W,
YJR045C,YLL024C,YLL026W, YLR259C,YMR186W

C16 (20/25) transposition,
RNA-mediated

YAR009C,YBL005W-A,YBR012W-A,YBR012WB, YCL019W,YCL020W,YER138C,
YER160C,YHR214CB, YJR026W,YJR027W,YJR028W,YJR029W,YML039W,YML040W,YML045W,YMR045C,
YMR046C,YMR050C,YMR051C

Only selected two enriched functional categories and the corresponding annotated genes are presented. The columns of the table summarize the number of annotated
genes in the module versus the total size of the cluster (numbers in the parentheses), the GO categories associated with the cluster, and a set of annotated genes.
doi:10.1371/journal.pone.0059377.t003

Low-Rank Representation on Gene Clustering
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menadione, diamide, dithiothreitol, amino acid starvation, nitro-

gen source depletion and progression into stationary phase, etc.

This dataset contains 6152 genes in each sample.

The yeast_Spellman data contains 6178 genes in 73 samples

under several different conditions. There are different carbon

sources, temperature, yeast strain background, etc.

Table 4. Singular enrichment of GO (or KEGG) categories in gene clusters uncovered by LRR from yeast dataset.

Cluster NG Corrected P-value Annotations

C3 17 1.22794E-23 protein folding (BP)

15 2.25951E-20 unfolded protein binding (MF)

3 2.89824E-5 TRC complex (CC)

11 5.73217E-14 Protein processing in endoplasmic reticulum (KEGG)

C5 25 3.27373E-25 oxidation-reduction process (BP)

27 1.23536E-25 oxidoreductase activity (MF)

4 2.51171E-3 mitochondrial intermembrane space (CC)

5 1.79973E-8 Linoleic acid metabolism (KEGG)

C9 92 5.76648E-107 ribosome biogenesis (BP)

13 1.13044E-15 snoRNA binding (MF)

113 3.1653E-108 nucleolus (CC)

26 7.46338E-20 ribosome biogenesis in eukaryotes (KEGG)

C14 37 6.24985E-41 cellular amino acid biosynthetic process (BP)

30 2.12287E-10 catalytic activity (MF)

2 4.07894E-3 sulfite reductase complex (NADPH) (CC)

32 3.31541E-20 Biosynthesis of secondary metabolites (KEGG)

C16 20 9.50421E-34 transposition,RNA-mediated (BP)

12 5.27074E-20 ribonuclease H activity (MF)

20 1.38697E-34 retrotransposon nucleocapsid (CC)

C17 113 3.08315E-199 cytoplasmic translation (BP)

116 2.51791E-169 structural constituent of ribosome (MF)

67 5.19679E-102 cytosolic large ribosomal subunit (CC)

116 1.16868E-198 Ribosome (KEGG)

C18 54 8.94213E-11 oxidation-reduction process (BP)

69 2.07793E-11 catalytic activity (MF)

215 7.75913E-15 plasma membrane enriched fraction (CC)

77 6.06951E-34 Biosynthesis of secondary metabolites (KEGG)

C24 92 3.82873E-112 ribisome biogenesis (BP)

13 1.33056E-15 snoRNA binding (MF)

113 2.07758E-107 nucleolus (CC)

26 9.9672E-20 Ribosome biogenesis in eukaryotes (KEGG)

C26 31 7.8069E-19 cellular cell wall organization (BP)

11 8.43025E-8 cyclin-dependent protein kinase regulator activity (MF)

35 4.84777E-25 fungal-type cell wall (CC)

26 1.1831E-10 Cell cycle-yeast (KEGG)

C27 10 1.40896E-16 ATP synthesis coupled proton transport (BP)

10 8.57624E-14 proton-transporting ATPase activity, rotational mechanism (MF)

31 1.69019E-34 mitochondrial inner membrane (CC)

31 1.42892E-50 Oxidative phosphorylation (KEGG)

C30 50 4.52988E-17 cell cycle (BP)

10 5.70948E-7 cyclin-dependent protein kinase regulator activity (MF)

30 2.94031E-22 fungal-type cell wall (CC)

26 9.06875E-12 Cell cycle-yeast (KEGG)

Only significantly enriched functional categories (corrected P-value,10220) are presented. The columns of the table summarize the total sizes of the cluster (numbers in
parentheses), the number of annotated genes in the cluster, the P-value after FDR correction, and the GO categories associated with the cluster.
doi:10.1371/journal.pone.0059377.t004
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Figure 3. Enriched combinations of significant annotations of Biological Process of Cluster C17: (A) pie graph, (B) bar graph.
doi:10.1371/journal.pone.0059377.g003

Figure 4. Enriched combinations of significant annotations of Molecular Function of Cluster C17: (A) pie graph, (B) bar graph.
doi:10.1371/journal.pone.0059377.g004
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The normal human tissue data consists of Affymetrix oligonu-

cletide array measurements of 7070 genes in 59 samples of 19

kinds of tissues.

GeneCodis Analysis
GeneCodis is a web-based tool for finding sets of biological

annotations that frequently appear together and are significant

in a set of genes. It allows the integrated analysis of annotations

from different sources and generates statistical rank scores for

signal annotations and their combinations. GeneCodis is an

important extension of existing tools for the functional analysis

of genes lists [38–40], and it is publicly available at http://

genecodis.cnb.csic.es.

The application of GeneCodis is simple. It takes a list of genes

which are in a cluster as input and determines biological

annotations or combinations of annotations that are over-

represented with respect to a reference list. Meanwhile, selecting

one or more categories that you want include in the analysis is

necessary. In addition, the organism selected is Saccharomyces

cerevisiae for yeast dataset and yeast_Spellman data, while the

organism selected is Homo sapiens for normal human tissue

dataset. When the genes are submitted, the modular enrichment

analysis and singular enrichment analysis can be obtained. For

a detailed description of this method, see the online help for the

program.

In the GeneCodis method, P-values obtained through Hyper-

geometric analysis corrected by false discovery rate (FDR) method

[41,42]. Briefly, a gene list of the same size of the input list is

generated by randomly selecting genes from the set of genes

defined as the reference distribution. The process of extracting

frequent sets of annotations is repeated and P-values for the

annotations and combinations of annotations generated from this

random list are calculated using the same statistical test. This

process is repeated 100 times and the corrected P-values for each

set of K-annotations are calculated as the fraction of permutations

Table 5. The most enriched categories of modular enrichment in each gene clusters uncovered by K-means clustering from yeast
dataset.

Cluster
No. of genes with in
functional category Major GO categories Corrected P-value

C1(133genes) 39 regulation of cyclin-dependent protein 1.4052E-11

C2(259genes) 54 regulation of transcription, DNA-dependent 2.05448E-10

C3(259genes) 57 DNA binding 2.72567E-13

C4(327genes) 11 Peroxisome 4.10943E-6

C5(219genes) 11 protein targeting to ER 3.96874E-5

C6(131genes) 33 regulation of transcription, DNA-dependent 2.1956E-8

C7(216genes) 17 nucleotide binding 4.16395E-4

C8(152genes) 22 protein folding 1.68904E-15

C9(193genes) 5 ATP binding 2.8324E-4

C10(203genes) 18 hydrolase activity 1.07105E-13

C11(396genes) 131 translation 7.02517E-134

C12(171genes) 3 nucleic acid binding 3.46107E-3

C13(152genes) 3 nucleosome assembly 1.48603E-2

C14(126genes) 30 mitochondrial translation 3.81352E-44

C15(191genes) 12 mRNA processing 9.64789E-6

C16(261genes) 71 membrane 2.59589E-20

C17(131genes) 21 response to stress 2.73901E-9

C18(96genes) 13 cellular amino acid biosynthetic process 5.76184E-16

C19(321genes) 14 cytoplasm 8.42409E-13

C20(130genes) 13 nucleotide binding 2.13419E-8

C21(227genes) 3 membrane 3.85374E-2

C22(154genes) 79 integral to membrane 4.31568E-11

C23(207genes) 51 transcription 2.17224E-13

C24(435genes) 133 Ribosome biogenesis 1.04031E-103

C25(127genes) 59 integral to membrane 2.25528E-4

C26(180genes) 66 integral to membrane 4.56057E-4

C27(277genes) 17 sporulation resulting in formation of a cellular spore 4.20206E-2

C28(165genes) 4 ubiquitin-dependent protein catabolic process 2.09826E-4

C29(123genes) 24 mitochondrion 6.43371E-33

C30(223genes) 12 oxidation-reduction process 6.82702E-4

The columns of the table summarize the total sizes of the cluster (numbers in parentheses), the number of genes annotated in the cluster, the GO categories associated
with the cluster, and the P-value after FDR correction.
doi:10.1371/journal.pone.0059377.t005
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having any annotation of the same value of K with a P-value as

good or better than the observed P-value.

Results and Discussion

In this section, the proposed method is applied to identify the

subspace gene clusters in the form of functional links among genes.

The GeneCodis is executed to investigate the enrichment of

functional annotations of genes in each cluster. First, LRR based

methods and K-means, GPCA are carried on the synthetic data.

Then, these methods are used to find gene clusters from real gene

expression data. The MATLAB code is supplied in File S1 and

File S2.

Simulation on Synthetic Data
We first tested our method on synthetic data to assess its

performance for clustering. We synthesize a network that consists

of 2000 genes each with 200 samples and 20 transcription factors.

We construct 20 independent subspaces Sif g20i~15R200 whose

bases Uif g20i~1 are computed by Uiz1~TUi, 1ƒiƒ19, where T is

a random rotation and U1 is a random orthogonal matrix of

dimension 200|100. So, each subspace has a dimension of 100.

We sample 100 data vectors from each subspace by Xi~UiQi,

1ƒiƒ20 with Qi being a 100|100 noise matrix, Qi*N 0,1ð Þ.
Then the noise matrix is added to data matrix with different

Signal-to-Noise Ratios (SNR). The simulation scheme in [27] is

used to generate the synthetic data. The average receiver operator

characteristic (ROC) curves are shown in Figure 2 with four

different SNR (signal-to-noise ratio). The corresponding l in LRR

based method are set as 0.01, 0.1, 1 and 10, respectively.

From Figure 2, we can see that for different SNRs, our LRR

based method consistently outperforms the competitive methods.

When the noise level increases (i.e., SNR decreases), three methods

suffer from performance degradation by a corresponding decrease

in the AUCs (Table 1). However, the AUC range of LRR is from

0.9908 to 0.8928, while the AUC ranges of K-means and GPCA

are from 0.9233 and 0.9255 to 0.6643 and 0.6154, respectively.

Table 6. The most enriched categories of modular enrichment in each gene clusters uncovered by GPCA from yeast dataset.

Cluster
No. of genes with in
functional category Major GO categories Corrected P-value

C1(271genes) 4 oxidation-reduction process 3.05689E-2

C2(194genes) 3 metabolic process 2.5142E-2

C3(214genes) 5 ribosome biogenesis 1.92418E-3

C4(234genes) 17 regulation of transcription, DNA-dependent 4.2973E-4

C5(203genes) 17 transposition, RNA-mediated 1.61358E-7

C6(207genes) 6 proteolysis 5.36602E-6

C7(194genes) 3 metal ion binding 2.00179E-5

C8(228genes) 5 DNA replication 7.49636E-5

C9(200genes) 7 catalytic activity 5.24079E-5

C10(173genes) 20 cytoplasmic translation 6.84959E-11

C11(219genes) 3 ubiquitin-protein ligase activity 2.88482E-5

C12(205genes) 6 glycolysis 1.42749E-8

C13(210genes) 5 protein refolding 4.29455E-7

C14(183genes) 5 transport 1.77438E-5

C15(224genes) 5 purine base biosynthetic process 1.73835E-7

C16(235genes) 4 phosphorylation 1.65757E-5

C17(200genes) 7 ATP binding 5.24079E-5

C18(89genes) 3 DNA repair 1.89736E-6

C19(203genes) 7 structural constituent of ribosome 5.25787E-7

C20(189genes) 4 flavin adenine dinucleotide binding 1.10535E-3

C21(215genes) 3 mitotic spindle elongation 1.06714E-4

C22(185genes) 3 sequence-specific DNA binding 1.66864E-4

C23(197genes) 52 ribosome biogenesis 1.69208E-32

C24(202genes) 9 nucleosome assembly 5.30185E-13

C25(190genes) 17 rRNA processing 7.47168E-7

C26(168genes) 3 small GTPase mediated signal transduction 1.2521E-4

C27(219genes) 36 regulation of transcription, DNA-dependent 6.05907E-9

C28(216genes) 8 cellular aldehyde metabolic process 9.75059E-11

C29(221genes) 8 ergosterol biosynthetic process 8.66254E-10

C30(205genes) 28 structural constituent of ribosome 6.60734E-14

The columns of the table summarize the total sizes of the cluster(numbers in parentheses), the number of genes annotated in the cluster, the GO categories associated
with the cluster, and the P-value after FDR correction.
doi:10.1371/journal.pone.0059377.t006
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The decrease rates of K-means and GPCA are higher than that of

LRR. In other word, K-means and GPCA are sensitive to the

noise, while LRR is robust to the noise. Moreover, the proposed

method can extract useful information from a high level of

background noise.

From the experiments on synthetic data, a conclusion can be

drawn that LRR method outperforms other methods for

clustering.

Experimental Results on the Yeast Dataset
For yeast dataset, we first used KNNimpute [43] to fill in

missing values. When we apply our method to cluster the genes,

the parameters l and k need to be considered. Since the original

gene expression matrix obtained from a scanning process contains

noise, missing values, and systematic variations arising from the

experimental procedure. The gene expression data contains a huge

amount of noise. In our method, the parameter l is used to

balance the effects of noise. For the yeast dataset, we take l=0.1,

because when taking this value, the enrichment analysis based on

GO can achieve the most significant result. With regards to the

parameter k, more clusters are discovered with the increase of k. In

this experiment, according to the former work [44–46], we choose

k=30.

Figure 5. Two heatmaps of expression values of genes analyzed by the proposed algorithm from the yeast dataset: (A) a heatmap
of expression values of genes in Cluster C17, and the heatmap shows similar expression patterns of genes in different samples, (B)
a heatmap of expression values of genes in Cluster C14, and the heatmap shows different expression patterns of genes in different
samples (denoted as a and b).
doi:10.1371/journal.pone.0059377.g005

Table 7. Comparison of statistical significance of enriched functional categories in gene clusters uncovered by LRR and K-means
from yeast dataset.

Major GO categories LRR K-means

hydrolase activity 2.44361E-5 (10/414) 1.07105E-13 (18/203)

response to stress 6.33965E-30 (14/30) 2.73901E-9 (21/131)

cellular amino acid biosynthetic process 2.33136E-41 (37/114) 5.76184E-16 (13/96)

integral to membrane 3.67556E-2 (151/663) 4.56057E-4 (66/180)

sporulation resulting in formation of a cellular spore 2.12806E-2 (3/83) 4.20206E-2 (17/277)

mitochondrion 2.79651E-53 (31/50) 6.43371E-33 (24/123)

oxidation-reduction process 1.04843E-25 (27/45) 6.82702E-4 (12/223)

regulation of transcription, DNA-dependent 2.0876E-3 (11/551) 2.05448E-10 (54/259)

Only selected common significantly enriched functional categories are presented. The columns of the table summarize the GO categories associated with the cluster,
the P-values after FDR correction by each approach, and the number of genes in the cluster that are annotated with the corresponding GO category versus the total size
of the cluster(numbers in the parentheses).
doi:10.1371/journal.pone.0059377.t007
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Table 2 lists the most enriched GO categories of modular

enrichment analysis in each cluster uncovered from the yeast

dataset. In this table, the first two columns list total number of

genes in each cluster and the number of annotated genes in each

cluster respectively. It should be noted that among the 6152 genes,

only 6123 genes were annotated by GO and KEGG database.

The last column on the right are P-values obtained through

Hypergeometric analysis corrected by false discovery rate (FDR)

method. In Table 3, we analyzed the function of genes clustered in

two clusters. For example, there are 14 out of 30 genes clustered

sharing similar function ‘response to stress’, and Cluster C3 is

significantly associated with ‘response to stress’. Therefore, genes

share with similar function can be clustered in the same cluster.

Table 4 lists a few functional categories in each significantly

enriched modules (corrected P-value ,10220). Figures 3 and 4

show the enriched combinations of significant annotations of

Biological Process (BP) of C17 and that of Molecular Function of

C17 respectively, using pie graphs and bar graphs.

We also adopted K-means clustering and GPCA as compared

methods applying on the yeast dataset, and the experimental

results are listed in Tables 5 and 6. These two tables show K-means

clustering and GPCA are efficient in clustering the genes.

However, our method can identify more significantly enriched

clusters, e.g. 11 clusters were discovered with corrected P-value

,10220, while only 4 and 1 clusters by K-means and GPCA,

respectively. The number of annotated genes in each cluster using

our algorithm is more than that of other two methods.

Moreover, the proposed approach is effective in clustering

together genes with similar expression profiles and similar function

categories. Cluster C17, for example, is strongly associated with

the ‘structural constituent of ribosome’ process (corrected P-value

,3.588036102202). The heatmap indicated similar expression

patterns of genes under different experimental conditions

(Figure 5(A)). More significantly, our algorithm can cluster genes

which show different expression profiles but similar functions.

Cluster C14, for example, is significantly enriched by ‘cellular

Table 8. The average values of negative logarithm of corrected P-value on three datasets.

a b c

Yeast Dataset Yeast_Spellman Dataset Normal Human Tissue Dataset

K-means 17.0343 10.7687 6.6664

GPCA 6.7035 5.3445 9.7273

LRR 27.0948 13.5402 20.1414

In the table, (a), (b) and (c) list the average values of negative logarithm of corrected P-value on Yeast Dataset, Yeast_Spellman dataset and Normal Human Tissue
Dataset using three methods, respectively.
doi:10.1371/journal.pone.0059377.t008

Figure 6. Two heatmaps of expression values of genes analyzed by the proposed algorithm from the yeast_Spellman dataset: (A)
a heatmap of expression values of genes in Cluster C27, and the heatmap shows similar expression patterns of genes in different
samples, (B) a heatmap of expression values of genes in Cluster C10, and the heatmap shows different expression patterns of
genes in different samples (denoted as a and b).
doi:10.1371/journal.pone.0059377.g006
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amino acid biosynthetic process’ (corrected P-value

,2.33136610241). The heatmap revealed as least two distinctive

expression patterns in this cluster (denoted as a and b, Figure 5(B)).

Which show the advantage of our subspace clustering method.

We also compared statistical significance of common enriched

functional categories in gene clusters uncovered by our algorithm

and K-means (Table 7). Among those common functional

categories detected significantly by these methods, there are five

out of eight functional categories that our method produced

significantly lower corrected P-value than K-means method did. In

addition, our method is robust to the noise, while other two

methods are not. We also found the performance of GPCA is not

better than that of K-means clustering for this dataset. To

investigate the performance of these methods explicitly, Table 8

lists the average values of negative logarithm of corrected P-value

on three datasets using K-means, GPCA and LRR, respectively.

From Table 8 (a), we also can see that LRR based method

outperforms other methods on yeast dataset.

Experimental Results on Yeast_Spellman Dataset
We also first used KNNimpute to fill in missing values. In this

experiment, we chose l=0.01 due to the dataset contains a huge

amount of noise. Table S1 (In File S1 and File S2) lists the most

enriched GO categories of modular enrichment analysis in each

gene cluster uncovered from the yeast_Spellman dataset. In this

dataset, there are 6074 genes of 6178 genes annotated by GO and

KEGG. Table S2 also lists a few functional categories in each

significantly enriched modules (corrected P-value ,10210).

Figures 6(A) and Figure 6(B) demonstrate that the proposed

method can identify the clusters of genes with similar expression

profiles or different expression profiles, respectively. Cluster C27

significantly enriched by ‘ribosome biogenesis’ (corrected P-value

,2.478526102104), and Cluster C10 is significantly enriched by

‘structural constituent of ribosome’ (corrected P-value

,2.63854610238). Compared with experimental results of K-

means clustering and GPCA methods listed in Tables S3 and S4,

our approach can discover 11 significantly enriched clusters with

corrected P-value ,10210, while 8 and 3 clusters by K-means

clustering and GPCA, respectively. We also compared statistical

significance of common enriched functional categories in gene

clusters uncovered by our algorithm and K-means (Table S5).

Among those common functional categories detected significantly

by these methods, there are six out of eight functional categories

that our method produced significantly lower corrected P-value

than K-means method did. In the experiment we also found that

the result of GPCA is not robust to noise. In addition, for

yeast_Spellman dataset, the average value of negative logarithm of

corrected P-value using LRR based method listed in Table 8 (b) is

higher than the values listed in Table 8 (b) using K-means and

GPCA, respectively. Therefore, LRR based method can achieve

better result than other methods.

Experimental Results on Normal Human Tissue Dataset
In this experiment, we chose l=10 since the dataset contains

some noise but no missing values. Table S6 lists the most enriched

GO categories of modular enrichment analysis in each gene

clusters discovered from the human tissue dataset, and only 5991

genes were annotated by GO and KEGG among the 7070 genes.

Among 30 gene clusters, ten clusters were significantly enriched by

GO and KEGG (corrected P-value ,10220). Each cluster

appeared to be dominated by only a few functional categories

(Table S7). Similar to above two experiments, Figure 7(A) shows

the heatmap of Cluster C18, which is significantly enriched by

‘muscle filament sliding’ (corrected P-value ,1.29274610239). It

Figure 7. Two heatmaps of expression values of genes analyzed by the proposed algorithm from the normal human tissue dataset:
(A) a heatmap of expression values of genes in Cluster C18, and the heatmap shows similar expression patterns of genes in
different samples, (B) a heatmap of expression values of genes in Cluster C3, and the heatmap shows different expression patterns
of genes in different samples (denoted as a and b).
doi:10.1371/journal.pone.0059377.g007
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can be seen that the expression patterns of genes in this cluster are

similar and similar function categories. On the contrary, the

heatmap of Cluster C3, which is significantly enriched by

‘extracellular region’ (corrected P-value,4.79992610225), reveals

different expression profiles but similar functions (Figure 7(B)).

The experimental results of the K-means clustering and GPCA

methods are listed in Tables S8 and S9. Our method can discover

10 significantly enriched clusters with corrected P-value ,10220,

while K-means and GPCA can identify 1and 3 clusters, re-

spectively. Moreover, from Table 8 (c), we also can find that the

performance of LRR based method is better than that of other

methods. Similar to above two experiments, we compared

statistical significance of common enriched functional categories

in gene clusters uncovered by our algorithm and K-means (Table

S10). Among those common functional categories detected

significantly by these methods, there are five functional categories

that our method produced significantly all lower corrected P-value

than K-means method did. For this dataset, the performance of

GPCA is better than K-means clustering.

Conclusions
In this study, we present low-rank representation based method

for identifying subspace gene clusters from microarray data. The

new approach can cluster the genes via low-rank criterion. Our

goal is to find a block diagonal representation matrix from gene

expression data using low-rank representation. In this block

diagonal matrix each block corresponds to a cluster. Therefore,

the genes in each cluster have similar functions. Compared with

other clustering methods, the proposed method offers several

advantages. Firstly, it can identify genes of similar functions yet

without similar expression profiles. Secondly, the method can

assign one gene into different modules. Thirdly, our method is

capable of extracting useful information from a high level of

background noise. In a word, our method leads to a significant

improvement in identifying biologically relevant gene clusters. In

the experiment we also found that many categories discovered by

different methods are different. So in practice, different methods

can be used to find more reliable result.

Otherwise, subspace gene clusters identified using the proposed

method may represent co-regulated genes to some degree.

However, due to the limited information present in any dataset,

genes in the same cluster might be co-expressed but not necessarily

co-regulated [47–49]. Therefore, to design an effective algorithm

for finding co-regulated genes is our future work.
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