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Abstract

Dengue is the most important mosquito-borne viral disease. No specific treatment or vaccine is currently available;
traditional vector control methods can rarely achieve adequate control. Recently, the RIDL (Release of Insect carrying
Dominant Lethality) approach has been developed, based on the sterile insect technique, in which genetically engineered
‘sterile’ homozygous RIDL male insects are released to mate wild females; the offspring inherit a copy of the RIDL construct
and die. A RIDL strain of the dengue mosquito, Aedes aegypti, OX513A, expresses a fluorescent marker gene for
identification (DsRed2) and a protein (tTAV) that causes the offspring to die. We examined whether these proteins could
adversely affect predators that may feed on the insect. Aedes aegypti is a peri-domestic mosquito that typically breeds in
small, rain-water-filled containers and has no specific predators. Toxorhynchites larvae feed on small aquatic organisms and
are easily reared in the laboratory where they can be fed exclusively on mosquito larvae. To evaluate the effect of a predator
feeding on a diet of RIDL insects, OX513A Ae. aegypti larvae were fed to two different species of Toxorhynchites (Tx.
splendens and Tx. amboinensis) and effects on life table parameters of all life stages were compared to being fed on wild
type larvae. No significant negative effect was observed on any life table parameter studied; this outcome and the benign
nature of the expressed proteins (tTAV and DsRed2) indicate that Ae. aegypti OX513A RIDL strain is unlikely to have any
adverse effects on predators in the environment.
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Introduction

Epidemic dengue fever and dengue haemorrhagic fever (DHF)

have emerged as major global public health problems in recent

decades. According to the World Health Organization (WHO)

dengue epidemiology is rapidly worsening [1] with increased

frequency of outbreaks and expansion into new geographical

areas. This expansion has partly been driven by the rapid increase

of the global range of Aedes aegypti in the last few decades. Ae. aegypti

was eliminated from many areas of the world 40–50 years ago

through the use of DDT but is now distributed more widely than it

was before control began, and is now present in large urban areas

where a greater number of people than in the past are at risk [2].

Failure to control the spread of Ae. aegypti has led to the re-

emergence of the disease in many areas across the globe.

As for malaria there is no licensed vaccine for dengue, though

several candidates are in various stages of trials. Unlike malaria,

for dengue there are no specific therapeutic or prophylactic drugs.

Control has therefore focused on the mosquito; however bed nets,

widely used against malaria, are relatively ineffective for dengue as

Ae. aegypti bites primarily in the day time [3]. Current control

methods are therefore based primarily on breeding site elimination

with larvicides or other methods, and some use of adulticides.

These methods have not proven adequate to prevent epidemic

dengue in any but the most favourable of circumstances [4,5,6].

More and better options for controlling Ae. aegypti are urgently

required. The sterile insect technique (SIT) has been used for

decades to control several insect pest species [7]. The technique

mainly uses irradiation to sterilise the insects, however this appears

to cause significant fitness effects on mosquitoes that prevent its
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widespread use for vector control [8,9]. The release of insects with

dominant lethality (RIDL) is a new method to control insects that

replaces irradiation with the insertion of a conditional lethal gene

[10,11,12]. The expression of the RIDL system is dependent on

the absence of a suppressor (tetracycline) in the insects’ diet. In the

presence of tetracycline, expression is suppressed and the insects

survive. The mechanism of sterility is the transmission to the

progeny of a lethal transgene; equivalent to the transmission of

radiation-induced dominant lethal mutations in classical SIT.

A line of Ae. aegypti (OX513A) has been developed that causes

death of the mosquitoes at L4/pupae stage in the absence of

tetracycline [13]. The protein tTAV is a codon optimised version

of tTA for more efficient expression in insects [14] and is part of

the positive feedback system in RIDL, developed from the well-

known tet-off gene expression system [15,16]. This system has

been widely used in gene expression studies in mice [17,18,19],

rats [20] and many different mammalian cell lines [21]. Only high

level intra-cellular expression of tTA causes cell death, presumably

via transcriptional squelching [15,20,22] and the levels that may be

ingested by a predator eating mosquitoes would be predicted to

have no potential adverse effects. The Ae. aegypti line also expresses

a fluorescent marker protein DsRed2, for identification. DsRed2 is

a member of the GFP superfamily of fluorescent proteins [23,24].

DsRed2 has been used in a wide variety of transgenic organisms,

including plants, insects and mice and is not expected to be

harmful by ingestion [25,26,27,28,29].

As both tTA and DsRed2 are introduced proteins expressed in

OX513A Ae. aegypti larvae, we asked the question if they could

adversely affect potential predators that ingested the insect. Choice

of a representative from the guild of potential predators in the

invertebrate ecosystem is important as not all predator species can

be tested in the laboratory [30,31], consequently surrogate test

species have to be used that are representative of potential non-

target organisms in the field. An ideal surrogate test species would

be amenable to testing under laboratory conditions, available,

ecologically relevant, and sensitive to the substance under test, and

in the case of oral exposure studies be capable of consuming

significant quantities of test substance without gastric imbalance.

Toxorhynchites is a predatory mosquito whose larvae feed on other

aquatic invertebrates including mosquito larvae and has been used

in attempts to control mosquitoes [32,33,34,35]. Ae. aegypti tends to

breed in small pools of water in and around human habitation as

the females almost exclusively feed on humans [36]. These

breeding sites are predominantly man made, plastic containers,

water storage containers, discarded rubbish etc. fed from rain

water, or human-filled [37,38,39]. These types of breeding sites do

not contain many predators and to our knowledge there is no

predator that exclusively feeds on Ae. aegypti larvae [40,41].

However Toxorhynchites can be fed exclusively on Ae. aegypti larvae,

is easily maintained in the laboratory, is a natural predator of Aedes

species and therefore represented a credible test species from the

guild of predators.

To test if Toxorhynchites was affected by feeding on OX513A

larvae two different species, Tx. splendens and Tx. amboinensis, were

fed on each of several types of Ae. aegypti larvae: wild type (WT),

OX513A reared off tetracycline and OX513A reared on

tetracycline. OX513A when reared off tetracycline expresses the

tTAV protein at a higher level than when reared in the presence of

tetracycline (on-tet); these two treatments therefore provide

different doses of tTAV. Toxorhynchites life table parameters of

larval development, survival, fecundity and size were compared

between the different treatments.

Results

There was no significant difference between larval or pupal

development time for any of the treatments or the two different

species of Toxorhynchites (Figure 1 and Table S1). There was a

significantly longer development time of L4 male and female

larvae (identified from individuals that survived to adults) in the

control fed group of Tx. amboinensis compared to Tx. splendens.

However there was a trend for longer development of L4 larvae in

Tx. amboinensis throughout the treatments suggesting that this

species has a slightly longer development time for this stage.

Larvae that did not survive to adulthood could not readily be

identified as male or female. The survival of each life stage in the

unclassified group was more variable due to some larvae

remaining at a particular developmental stage for longer than

normal before death. The reason for this delayed development is

unknown but the proportion surviving to adults was not

significantly different between treatment groups for Tx. splendens

(x2 = 4.0, d.f. = 2, p = 0.13). However for Tx. amboinensis the

control treatment did have significantly less overall survival to

adults than the OX513A on-tet or OX513A off-tet treatments

(x2 = 6.4, d.f. = 1, p,0.05, data not shown). This was due to one of

the repeats of the control treatment having significantly lower

survival than the other two repeats. The cause of this low survival

is unknown and was not reflected in other treatments set up at the

same time. Excluding the results of this repeat removed the

significant difference in survival so we conclude that this result was

due to one aberrant control treatment.

In both Toxorhynchites species there were significantly more

larvae consumed in the off tetracycline treatments; Tx. amboinensis

(t = 9.2, p,0.001) and Tx. splendens (t = 8.3, p,0.001). However

OX513A larvae when reared off tetracycline die at L4/pupal

stage, to compensate more third instar (L3) larvae were used to

provide the equivalent mass of fourth instar (L4) larvae that would

have been used. This is reflected in the number of larvae

consumed by L4 Toxorhynchites, on average L3 Ae. aegypti larvae are

about one-third the weight of L4 larvae (in a parallel experiment,

L3 larvae averaged 0.830 mg (+/20.017ug) wet weight and L4

larvae 2.995 mg (+/20.024)) and the number of L4 larvae

consumed in the off-tet experiment was approximately 3–4 times

on-tet and control experiments (data not shown). Therefore we

attribute the variance in number of larvae consumed to the

different feeding regimes used between the treatments.

Tx. amboinensis females reared on WT larvae consumed

significantly more larvae than females fed on OX513A larvae

reared on-tetracycline (t = 23.3, p,0.002). We don’t know why

this treatment consumed more larvae but there was no significant

difference in any other parameters.

Adult survival is summarised in Figure 2. There was no

significant difference in the survival of male (Tx. splendens x2 = 1.0,

d.f. = 2, p = 0.60 and Tx. amboinensis x2 = 0.5, d.f. = 2, p = 0.76 )

and female (Tx. splendens x2 = 2.6, d.f. = 2, p = 0.28 and Tx.

amboinensis x2 = 2.5 d.f. = 2, p = 0.29) adults across treatment

groups for both species of Toxorhynchites.

The number of eggs laid per female for both Toxorhynchites

species across all treatment groups did not significantly differ (see

Table S1). However because of the large variation in egg

production between individual females only relatively strong

effects would likely have been detected by this assay.

The size of the Toxorhynchites adults was determined from wing

length measurements (Figure 3) and the only significantly different

result was females from Tx. amboinensis control treatment were

smaller than females from the off-tet treatment group (t = 23.1,

p = 0.012). We are unsure why this group was significantly smaller
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but the difference is small and this is the same control group where

one repeat had low survival. The females from this low survival

group were smaller than usual however removing them from the

analysis does not change the overall result; t = 2.06, p = 0.048.

We also examined Toxorhynchites fed on RIDL larvae for

presence of the RIDL transgene by testing the adults by PCR.

This test looked for unexpected persistence of the transgene, which

might have indicated horizontal gene transfer (HGT), among

other possibilities. A total of 121 adults gave DNA of sufficient

quality to test, as judged by amplification of a control DNA

fragment; none were positive for the transgene. On average each

Toxorhynchites larvae consumed 431 RIDL larvae, thus there were

over 52,000 events that had the potential for horizontal gene

transfer; however none were detected in the adults tested.

Comparative genomics and other considerations imply that

HGT rates are expected to be extremely low, many orders of

magnitude below the limits of sensitivity of this experiment

[42,43]. That we detected no such events is therefore not

surprising but it does suggest that no unrecognised high-efficiency

mechanism for DNA persistence or transfer exists in this case.

Discussion

In a control programme, RIDL male mosquitoes are released

into the environment and subsequently mate with wild females.

Those wild females that have mated a RIDL male may then lay

eggs and the resulting larvae die before adulthood due to the lack

of tetracycline in the environment. Predators that feed on these

larvae or pupae are then exposed to the transgene and its products,

e.g. encoded protein(s), raising the question of whether this

exposure might have any potential adverse effects on such

predators.

The positive feedback RIDL system is repressed by tetracycline,

however off tetracycline there is increased expression of mRNA,

up to 672 fold increase in homozygotes [14] and in OX513A

death occurs in L4 larvae and pupae [13]. The aim of feeding

Toxorhynchites on OX513A larvae was to investigate any effects of

the transgene and/or the marker (DsRed2) on development. A

significant advantage of using this predator was the ability to feed

it exclusively on mosquito larvae (100% of diet) without expecting

this restricted diet itself to have a negative effect on development

or other parameters measured.

In separate experiments, OX513A larvae reared on-tet or off-tet

were used, with equivalent wild type controls. This allows us to

identify potential effects of high level expression of tTAV –

produced in OX513A under off-tet conditions only – from other

potential effects of the transgene, the only other obvious difference

between the two treatments being the presence of tetracycline. In

fact no negative effects were detected from feeding larvae reared

either on or off-tet.

The transcriptional activator tTA has been used in several

mammalian species and does not have any adverse effects unless

expressed in large amounts and in various tissues [20]. Numerous

experimental uses of tTA show that the effect of expression is cell-

Figure 1. Box plot summary of development time (days) of different life stages. Minimum and maximum development time are shown by
vertical lines, the upper and lower quartiles are shown by the bottom and top of box respectively, the median is represented by horizontal line inside
box; where the median value is the same as the upper and lower quartile the top of the gray or the bottom of the white box represents the median.
Individuals for which sex could not be determined due to death prior to adult emergence were excluded from this analysis, these unclassified
individuals represented at most 43% of each type and averaged 26.6% (see Table S1 for complete dataset. There was a significant difference in L4
larval development time between Tx. amboinensis and Tx. splendens.
doi:10.1371/journal.pone.0058805.g001
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autonomous, i.e. only affects those cells in which the tTA protein is

expressed. Dietary tTAV is not expected to have an effect due to

considerations of the amount of biologically active protein

potentially available and the lack of a mechanism for intact

uptake of this protein to a relevant subcellular compartment.

DsRed2 belongs to family of fluorescent proteins which are part of

a group of proteins from the Anthozoa species. The protein family

has been widely used in a variety of species, including plants,

insects and mammals without adverse effects as well as subject to

an evaluation by the FDA for food safety [29]. These factors lead

to a lack of potential hazard from the ingestion by predators eating

mosquito larvae or adults.

Furthermore, mosquitoes in aggregate are not a major diet

component for vertebrates [40,41], and Ae. aegypti is a relatively

low-density species even in areas where it is epidemiologically

important because of its anthropophagic nature. Each of these

factors further indicates very low maximum exposure for predators

Figure 2. Box plot of adult survival (days). Minimum and maximum survival are shown by vertical lines, the upper and lower quartiles are shown
by the bottom and top of box respectively, the median is represented by horizontal line inside the box. No significant difference was observed for
adult survival between treatments or species.
doi:10.1371/journal.pone.0058805.g002
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and scavengers in the field relative to the 100% diet used in the

experiments reported here.

Conclusion

Both Tx. splendens and Tx. amboinensis showed no adverse effects

of being fed OX513A larvae either reared on tetracycline or off

tetracycline compared to being fed non-transformed Ae. aegypti

larvae. Although some significant variation was observed, partly

due to species, no evidence was found that indicated the OX513A

larvae had adverse effects on the development, fecundity and

longevity of two species of Toxorhynchites larvae. No transfer of

transgene DNA between the species was observed. These results

show that Ae. aegypti OX513A RIDL strain is unlikely to have any

adverse effects on predators in the environment.

Materials and Methods

Two different strains of Toxorhynchites were used, Tx. splendens

originally isolated from Thailand and Tx. amboinensis originally

isolated from Hawaii. Both of these species have been maintained

at the Institute for Medical Research (IMR), Kuala Lumpar for

811 generations and 834 generations for Tx. splendens and Tx.

amboinensis respectively. Both species were maintained at 25uC (+/

21uC) with 80% (+/210%) humidity and fed on Ae. aegypti WT

larvae. The Aedes aegypti transgenic strain used in this experiment

was OX513A [13], produced in 2002 and subsequently made

homozygous for the transgene. OX513A had been reared in the

lab for more than 60 generations and maintained at 27oC (+/

21uC) and 80% (+/210%) relative humidity. The wild type Ae.

aegypti strain was isolated from Jinjang, Selangor, Malaysia in

1960. The OX513A insertion was originally in a Rockefeller strain

background [13]. Prior to this study, that OX513A had been

backcrossed into this Malaysian wild type strain background for 5

generation and then made homozygous for OX513A; ,97% of its

genome is expected to derive from the Malaysian wild type strain

[44,45].

Three treatments were used; Toxorhynchites fed on WT, OX513A

reared on tetracycline (BioBasic Inc, 64-75-5) and OX513A reared

without tetracycline. Tetracycline was added at a concentration of

30 mg/ml after hatching and not refreshed. Each treatment had

twenty repeats each containing a single Toxorhynchites larva in a

small circular plastic cup (7.5cm deep, 8.5cm diameter) half filled

with tap water. Each treatment set was prepared simultaneously

for both species of Toxorhynchites and three repeats were

independently performed.

Ae. aegypti larval preparation for feeding Toxorhynchites; the eggs

of Ae. aegypti for all treatments were hatched under vacuum and all

larvae were reared at 1 larvae per ml and with equal amounts of

food (TetraminH flake fish food). The Ae. aegypti larvae were

maintained at a level of 20 per Toxorhynchites larva by replenishing

those that had been eaten daily. The larvae that were replenished

were matched in developmental stage to the Toxorhynchites larvae.

In the case of OX513A larvae that were reared off-tetracycline

there were few L4 larvae available, many die at this stage and

Toxorhynchites does not feed on dead larvae, so an equivalent mass

of L3 larvae was added.

The duration of each developmental stage was recorded daily.

The Toxorhynchites larvae from each treatment that survived to

pupae were placed into separate cages (23cm X 23cm X 23cm).

Females were provided with a plastic container filled with tap

water for egg laying and 10% sucrose solution (including 1%

vitamin B complex). Females were provided with 5–8 males from

the stock colony. The number of eggs was recorded daily along

with survival. After death the wing length was recorded [46].

PCR for presence of transgene in adult Toxorhynchites: Genomic

DNA was extracted from single adult or late larval individuals

using the GeneJET genomic DNA purification kit from Fermen-

tas, according to the kit protocol. Genomic DNA was diluted 1 in

20 with water, and 1 ml of this dilution used in a 20 ml PCR

reaction using Dreamtaq polymerase and buffer (Fermentas).

Primers 38DrosF (ATGAGCAATTAGCATGAACGTT) and

48HspdiagR (GCAGATTGTTTAGCTTGTTCAGC) were used

to amplify a fragment of the OX513 transgene (1233bp product).

An OX513A RIDL Ae. aegypti control gDNA was included in each

PCR reaction along with water negative control. In addition, all

samples were amplified with primers 894AeMuAcF

(CAGGGTGTGATGGTCGGTATGGG) and 895AeMuAcR

(CCCAGGAAGGATGGCTGGAAGAG), which amplify endog-

enous muscle actin (660bp product), to check gDNA quality. For

both primer sets, PCR conditions were: 94uC for 2 min’s followed

by 10 cycles of 94uC for 15s, 55uC (decreasing by 0.5uC per cycle)

for 40s and 72uC for 1 min; followed by 25 cycles of 94uC for 15s,

50uC for 40s and 72uC for 1 min, with a final elongation step of

72uC for 7 min’s.

Results were statistically analysed using STATA (version 12,

College Station, TX, USA). All variables were assessed for

normality. Experimental repeats were examined to determine if

they could be combined for the final analysis. Differences in wing

length across treatment group were compared using ANOVA and

t-test. The non-parametric equivalents, Kruskal-Wallis and Mann-

Whitney tests, were used to compare egg-counts and longevity

across treatment groups. The proportion of individuals surviving

to become adults was examined using Chi-squared test.

Supporting Information

Table S1 Summary of results. The table shows the mean

and (in brackets) standard deviation for each of the parameters

measured, for Tx. spendens and Tx. amboinensis fed on WT (control),

OX513A reared off tetracycline (OX513A OFF TET) and

OX513A reared on tetracycline (OX513A ON TET). The results

for females (F), males (M) and those individuals that did not survive

to adults for identification of sex (U) are shown for each treatment.

Because of the large variation in results from larvae and pupae that

died (U) they have been excluded from statistical analysis; except

for overall larval survival. Significantly different results discussed in

the text are indicated by symbols; * and # for significantly

different results within species and ¥ for between species.
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