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Abstract

The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is a public resource that curates interactions between
environmental chemicals and gene products, and their relationships to diseases, as a means of understanding the effects of
environmental chemicals on human health. CTD provides a triad of core information in the form of chemical-gene,
chemical-disease, and gene-disease interactions that are manually curated from scientific articles. To increase the efficiency,
productivity, and data coverage of manual curation, we have leveraged text mining to help rank and prioritize the triaged
literature. Here, we describe our text-mining process that computes and assigns each article a document relevancy score
(DRS), wherein a high DRS suggests that an article is more likely to be relevant for curation at CTD. We evaluated our process
by first text mining a corpus of 14,904 articles triaged for seven heavy metals (cadmium, cobalt, copper, lead, manganese,
mercury, and nickel). Based upon initial analysis, a representative subset corpus of 3,583 articles was then selected from the
14,094 articles and sent to five CTD biocurators for review. The resulting curation of these 3,583 articles was analyzed for
a variety of parameters, including article relevancy, novel data content, interaction yield rate, mean average precision, and
biological and toxicological interpretability. We show that for all measured parameters, the DRS is an effective indicator for
scoring and improving the ranking of literature for the curation of chemical-gene-disease information at CTD. Here, we
demonstrate how fully incorporating text mining-based DRS scoring into our curation pipeline enhances manual curation
by prioritizing more relevant articles, thereby increasing data content, productivity, and efficiency.
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Introduction

The Comparative Toxicogenomics Database (CTD; http://

ctdbase.org) is a public resource that provides information about

the interaction of environmental chemicals with gene products,

and their effect on human disease [1–5]. This information is

garnered from peer-reviewed scientific literature by biocurators

who manually curate a triad of core interactions describing

chemical-gene, chemical-disease, and gene-disease relationships

[6].

While manual curation by professional biocurators is recognized

as a gold standard of data acquisition for biological knowledge and

discovery, it is nonetheless a time-consuming process, and with the

encroaching data deluge, it is becoming more challenging to keep

up with the growth of published information [7–12]. To make

manual curation as efficient and productive as possible, CTD has

developed a number of strategies, including the use of a versatile

paradigm that multiplexes vocabularies to maximize curation

possibilities and minimize data entry requirements [6], the

development of an efficient web-based Curation Tool accessible

by remote biocurators [6], the creation and adoption of practical

controlled vocabularies to allow data import and integration [13],
and the initiation of targeted journal curation as an efficient means

to increase data currency [14]. Finally, we have studied the

potential benefits of using text mining to help rank articles and

identify curation actors [15].

Text mining is becoming an integral step in the curation

pipeline for the retrieval and extraction of biological information

at curated databases [16–18]. Most notably, WormBase [19] has
effectively leveraged machine-learning methods to categorize the

literature [20]; biocurators at WormBase have also successfully

used the text-mining application ‘Textpresso’ [21] to find and

extract a subset of Gene Ontology terms from the full text,

increasing curation efficiency by 8- to 15-fold [22].

With limited resources and wide-ranging requirements, data-

base groups often develop unique ways to prioritize their literature

for manual curation [23]. Articles slated for curatorial review at
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CTD are first triaged from PubMed [24] using queries for

a particular chemical-of-interest from our priority list [6]. These
articles are retrieved based upon descending PubMed identifica-

tion number (PMID), which typically reflects the date of

publication; thus, newly published articles generally are at the

top of the list awaiting curatorial review, while older papers trend

more towards the bottom. This workflow is adequate for chemicals

with limited publications, since small corpora can be entirely

reviewed and processed by biocurators. For well-studied chemi-

cals, however, the number of potentially relevant articles is often

too large for a biocurator to review completely. For example,

exposure to heavy metals may influence human health [25], and
heavy metals toxicity is an important and active area of toxicology

research, as evidenced by the more than 33,000 articles with

publication dates going as far back as 1926 (http://www.ncbi.nlm.

nih.gov/pubmed?term=heavy%20metals%20toxicity). With lim-

ited resources, however, CTD simply cannot review such large

corpora. Instead, we explored the possibility of using text mining

to help make curatorial decisions.

Initially, CTD performed a Phase 1 feasibility study of using text

mining by leveraging third party open-source recognition tools (for

chemical, gene, and disease entities), associated in-house recogni-

tion tools, and ranking algorithms [15]. These tools were

collectively integrated into a single use application designed solely

to assess the potential benefits of using text mining to help rank

articles, identify curation actors, and to compare the relative

effectiveness of individual tools and configurations. Testing metrics

included two standard information-retrieval statistics: mean

average precision (MAP), which gauged document ranking

effectiveness [26], and recall rates, which measured the fraction

of relevant instances that were retrieved for gene, chemical, and

disease terms. The study involved a test corpus of 1,600 manually

curated documents, with results showing that our rules-based

algorithm significantly outperformed our previous baseline order-

ing (73% vs. 63% MAP, respectively), and overall the tools

identified 80% of curated actors [15].

As a result of the successful Phase 1 feasibility study, we decided

to design, develop, and implement the most successful elements

from the study in a fully rationalized text-mining pipeline, and

integrate it into CTD’s regular curation workflow. We refer to this

integration effort herein as Phase 2. In conjunction with

implementation of Phase 2, large scale, multithreaded batch-

oriented processes were developed to address all aspects of text

mining at CTD, including to automatically download abstracts

from PubMed, text mine and score the abstracts, provide

production process status reporting to software engineers, and to

provide pre- and post-curation reporting to biocurators. None of

the software that was written in conjunction with the Phase 1

feasibility study was used in Phase 2; it was completely redesigned

and rewritten for processing efficiency and robustness. Moreover,

many of the steps that were manual performed during the Phase 1

feasibility study were fully automated in Phase 2 as part of the

move to production.

Here we report our results for Phase 2 wherein we test the

effectiveness of this integration effort against a significantly larger

dataset (in comparison to the Phase 1 dataset) by extending and

employing our text-mining application to process, calculate, and

assign a document relevancy score (DRS) to 14,904 articles triaged

for seven heavy metals; of the 14,904 articles, 3,582 were then sent

to biocurators for review. We demonstrate that for all measured

parameters, the DRS is an effective indicator for predicting the

relevance and ‘curatability’ of an article for CTD. This scoring

helps us prioritize the literature, resulting in improved efficiency

and productivity in the manual curation of chemical-gene-disease

interactions.

Materials and Methods

CTD text mining and curation pipeline
The CTD text-mining pipeline is divided into several steps

(Figure 1). First, PubMed (http://www.ncbi.nlm.nih.gov/

pubmed/) is queried using CTD-specific strings to triage and

retrieve a subset of the literature associated with a target chemical

from CTD’s ‘Chemical Priority Matrix’ [6]. Here, seven in-

dependent CTD-specific queries, not involving synonyms, are

made for the seven heavy metals cadmium, cobalt, copper, lead,

manganese, mercury, and nickel to retrieve 14,904 preliminary

articles. The retrieved PMIDs for the articles and the target

chemical term are used as input for the text-mining pipeline to

produce a ranked list of PMIDs (sorted by DRS) for each text-

mined target chemical. Next, the corpus is assigned to biocurators,

who use the PMID to access CTD’s Curation Tool and initiate

curation [6]. Finally, post-curation text mining effectiveness-

related reports are generated. The reports calculate mean average

precision (MAP) [26] at the target chemical level, as well as gene,

chemical, disease, and action term recall at both the reference and

target chemical levels. In addition, details are provided at the

reference level, which list text-mined terms, curated terms, and an

explanation of how each hit was determined.

CTD text-mining technical environment and document
ranking algorithm
The process for assigning a DRS is accomplished by first

extracting each of the PubMed abstracts in XML format (storing

the title, abstract text, journal name, and PubMed chemical list).

The text of each title and abstract is then mined to identify cited

genes/proteins, chemicals, diseases, and action terms. Ultimately,

each abstract is scored based upon the CTD rules-based algorithm

(Table 1). ABNER [27] and MetaMap [28] are used for gene/

protein recognition; in addition, a gene nomenclature normaliza-

tion process was developed by CTD to normalize gene symbols.

Oscar3 [29–30] and MetaMap, as well as each article’s PubMed

chemical list (if available), are used for chemical recognition.

MetaMap is also used for disease recognition. An in-house CTD

action term named entity recognition (NER) identifier is also

integrated into the text-mining pipeline; the NER identifier stems

specific members of CTD’s action term vocabulary [6] and

searches text for instances of their use. The CTD rules-based

algorithm, designed and optimized during the aforementioned

feasibility study [15], assigns points to an abstract based upon

specific rules (Table 1). The algorithm was developed largely

based upon recommendations by biocurators, who conducted an

internal analysis of how scientific articles are determined to be

curatable during the triage process, and of how highly relevant

documents tend to be structured. Internal tools were also

developed to identify high throughput-associated abstracts based

upon analysis by CTD biocurators. Once the base algorithm was

defined, CTD software engineers weighted and optimized the

algorithm using multivariate analysis against a test dataset.

From a software engineering perspective, the pipeline is

comprised of multiple asynchronous batch processes that retrieve,

score, and report on the PubMed-based abstracts. The key

portions of the pipeline are written primarily using Plain Old Java

Object (POJOs); each object written in-house, as well as the third

party recognition objects described above, are essentially in-

tegrated as POJOs, and wrappers were written around the third

party objects to standardize input and output. The pipeline runs
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from within shell-based jobstreams under Linux 6.2; the database

management system is Postgres 9.1.3. All text mining is abstract-

based; full text is not used. Processing is very fast, typically ranging

between 1–2 seconds per abstract and averaged 1.3 seconds per

abstract for the heavy metal articles reported in this study.

Figure 1. CTD text mining technical overview. (1) A triaged corpus is retrieved for a target chemical-of-interest by querying PubMed. (2) Using
the PMID, an article’s title and abstract are mined for gene, chemical, disease, and action term recognition in CTD’s integrated text-mining pipeline
(red box). (3) Each text-mined term is first validated against CTD’s controlled vocabularies and ignored if a match is not secured. The CTD text-mining
pipeline process is run on a Red Hat Enterprise Linux 6.2 operating system using primarily Java 1.6 within the context of asynchronous batch
processes. (4) PMIDs are then assigned a document relevancy score (DRS) by the text-mining tool and (5) sent to biocurators. (6) All interactions are
composed and entered in CTD’s web-based Curation Tool with the client running HTML 5, CSS3, JavaScript 1.85, and Ajax; a server processes the
interactions and stores them in the Curation Database using Tomcat 6.0, Java 1.6, Servlet 2.5, JSP/JSTL, and Spring 3.0 framework.
doi:10.1371/journal.pone.0058201.g001

Table 1. CTD rules-based document ranking algorithm.

Rule Description Points

Full text boost Abstract alludes to additional relevant information in full text, as determined
by in-house recognition tools

50

Target chemical in title Target chemical appears in title; per occurrence 10

Action term co-occurrence Abstract includes co-occurrence of CTD action terms with genes and chemicals,
or genes and diseases, or chemicals and diseases, within a single sentence; per occurrence

8

Target chemical in chemical list Target chemical appears in MeSH index list 5

Target chemical in first sentence Target chemical appears in first sentence of abstract; per occurrence 5

Action term occurrence (part 1) CTD action term appears in abstract, if abstract also contains both genes
and chemicals; per occurrence

4

Target chemical in second sentence Target chemical appears in second sentence of abstract; per occurrence 3

Target chemical in second-to-last sentence Target chemical appears in second-to-last sentence of abstract; per occurrence 3

Target chemical in last sentence Target chemical appears in last sentence of abstract; per occurrence 3

Chemical, gene, disease occurrence (part 1) Chemicals, genes, and diseases appear in abstract, if abstract
also contains both genes and chemicals; per occurrence

2

Action term occurrence (part 2) CTD action term appears in abstract, but abstract does not
contain both genes and chemicals; per occurrence

1

Chemical, gene, disease occurrence (part 2) Chemicals, genes, and diseases appear in abstract, but abstract
does not contain both genes and chemicals; per occurrence

1

Priority journal Journal is Nature, Science, Environment Health Perspectives, Toxicological Sciences, Cell,
or The Journal of Biological Chemistry

1

doi:10.1371/journal.pone.0058201.t001
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Curation of the heavy metal corpus
The subset corpus of 3,583 articles was divided into separate

files and assigned to five professional biocurators who have been

working with CTD for more than a year and a half. The files

contained the PMID, the target metal for which the article had

been triaged, and the article title, publication year, and journal

name. Biocurators were not provided with the DRS of articles, and

PMIDs were listed in descending numerical order to keep

biocurators blind to any ranking of the articles. During review,

biocurators were asked to perform seven tasks: (1) time themselves

using a stopwatch as to how long it took to resolve each assigned

article, (2) record if the article should be curated or rejected for

CTD, (3) if rejected, provide a short reason why, (4) if curatable,

then curate the article for chemical-gene, chemical-disease, and

gene-disease interactions, (5) indicate if a curated interaction was

garnered from the abstract or full text of the article, (6) record if

each curated interaction was studied in vitro or in vivo, and (7)

indicate if each curated interaction was from a high-throughput

assay (e.g., microarray). Biocurators constructed interactions

following CTD’s standard curation paradigm using controlled

vocabularies, and all data were directly entered in CTD’s online

Curation Tool [6]. The curatorial review of the entire corpus was

completed in eight weeks.

Results

Project workflow
The document flow for this project is outlined in Figure 2.

Independent CTD-specific queries were made at PubMed to

triage and retrieve 14,904 preliminary articles for the seven heavy

metals. These articles were then processed by CTD’s text-mining

algorithm and assigned a DRS, which ranged from 2 to 398 (with

higher numbers indicative of presumed increased relevancy). From

this preliminary corpus, 1,020 of the articles were discovered to

have been previously reviewed by CTD biocurators at an earlier

time for different projects. These previously reviewed documents

provided a test set to help validate the assigned DRS. We

compared the DRS for the 1,020 articles against whether or not

the article had been flagged as ‘‘curated’’ or ‘‘rejected’’ in CTD’s

Curation Tool by previous biocurators (Figure 3). Of the 1,020

articles, 86% with a DRS $100 were found to be curatable for

CTD relevant interactions, while only 10% of articles with a DRS

#20 could be curated. There is a notably progressive decrease in

the percentage of curated articles with a DRS between 21–99,

indicating that articles with a DRS $100 are likely to be more

relevant for curation in CTD while documents with a DRS #20

are more likely to be irrelevant. Subsequently, we arbitrarily refer

to articles as being in one of three categories based upon their

assigned DRS: high ($100), medium (21–99), or low (1–20).

To test the effectiveness of DRS assignment, we next

constructed a subset corpus representative of the 14,904 articles

that could be feasibly reviewed by CTD biocurators. From this

preliminary corpus, we selected all virgin articles (i.e., articles that

had never been examined by CTD biocurators) with a high DRS

$100 and all virgin articles with a low DRS #20 (Figure 2, step
4), representing the two ends of the spectrum to allow for the best

comparison. To this, we also added all the articles from the

mercury subset with a DRS between 21–99 to give a good

representation of the medium range; the mercury subset was

chosen because it contained a reasonable number of articles that

helped to balance the bins in the final assigned corpus. In total, this

representative text-mined heavy metal corpus assigned to CTD

biocurators for review contained 3,583 articles representing all

three DRS categories: 1,981 with a DRS $100 (55% corpus), 879

with a DRS between 21–99 (25% corpus), and 723 with a DRS

#20 (20% corpus). The distribution of articles representing

different metals (and their DRS ranges) for this corpus were

28% mercury (DRS: 4–266), 27% copper (DRS: 2–360), 14%

manganese (DRS: 4–318), 13% cadmium (DRS: 5–324), 8%

cobalt (DRS: 4–284), 6% nickel (DRS: 3–282), and 3% lead (DRS:

8–310).

Curation metrics
In eight weeks, five CTD biocurators reviewed 3,583 text-mined

articles. During review, biocurators (blind to the DRS) decided if

an article contained information relevant to CTD, defined as data

that describes a chemical-gene, chemical-disease, or gene-disease

interaction according to our established paradigm [6]. If the

document contained relevant information, it was curated following

standard CTD procedures into our web-based Curation Tool [6].
If the article did not contain any chemical-gene-disease interac-

tions relevant to CTD, it was rejected and flagged as ‘‘not

curatable’’ in the Curation Tool. CTD biocurators read and

curated the significant points emphasized by the authors in the title

and abstract. However, it was sometimes necessary for the

biocurator to refer to the full text in order to resolve ambiguities

found in the abstract, such as the correct species or gene identity.

Once in the full text, the biocurator captured additional essential

data not found in the abstract, including relevant information from

supplementary tables (e.g., microarray tables). Biocurators cap-

tured all relevant data for all referenced and resolvable chemicals,

genes, and diseases; thus, curation was not restricted solely to the

chemical for which the corpus was originally triaged; hence, in this

project, interactions were curated for chemicals beyond the seven

heavy metals. While entering interactions in the Curation Tool,

biocurators designated the source of the interaction as either being

derived from the ‘‘abstract’’ or the ‘‘full text’’.

Of the 3,583 examined articles, 2,202 (61%) were curated and

1,381 (39%) were rejected (Table 2). We compared the DRS for

these articles against their relevancy (i.e., ‘‘curated’’ or ‘‘rejected’’)

(Figure 4). Similar to the test set of 1,020 documents (Figure 3),
there was also a dramatic progressive decrease in the percentage of

curated articles with a DRS between 21–99 for these 3,583 articles

(Figure 4). Of the 1,981 articles with a high DRS, 1,685 of them

(85%) were curated and only 15% rejected (Table 2). Alterna-
tively, of the 723 articles with a low DRS, only 111 of them (15%)

were curated and the other 85% rejected, an exact inverse of the

high DRS articles. Of the 879 articles that have a medium DRS,

406 (46%) were curated and 473 (54%) were rejected. These

metrics reflect the same pattern seen in the test corpus of 1,020

articles (Figure 3), and they validate the DRS as a good indicator

of an article’s relevance for curation at CTD.

Rejected articles consumed only 6% of the biocurators’ time

(2,277 minutes out of 38,619 total minutes) and averaged

1.6 minutes per rejected article (Table 2). The bulk of

a biocurator’s time (94%) was spent curating articles, with an

average curation rate of 16.5 minutes per curated article

(Table 2). The curation rates correlated with the assigned DRS.

Low and medium level DRS papers averaged 7.0–7.1 minutes per

article, but documents with a high DRS averaged 19.4 minutes

per article (Table 2). This progressive rate increase reflects the

amount of data extracted from articles. In total, 41,208

interactions were manually curated from this corpus. Of those,

39,128 (95%) were curated exclusively from high DRS articles,

and only 4% and a mere 0.8% were extracted from medium and

low DRS articles, respectively (Table 2).

The number of interactions extracted per curated article also

trends with the DRS, demonstrating that documents with a higher
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DRS have a greater density of curatable information as opposed to

articles with a lower DRS (Figure 5). Along these same lines, it is

interesting to note that it took biocurators almost twice as long to

reject a high DRS article compared to a low DRS article, as seen

in the rejection rates of 2.7 vs. 1.5 minutes per rejected article,

respectively (Table 2). We hypothesize that this ,2-fold

difference may be possibly due to the increased density of

chemical, gene, and disease actors found in the high DRS

documents, requiring a biocurator additional time to sift through

Figure 2. Document workflow. (1) Independent CTD-specific queries were made of PubMed to retrieve 14,904 articles for the seven heavy metals
cadmium, cobalt, copper, lead, manganese, mercury, and nickel. (2) These articles were text mined and assigned a document relevancy score (DRS).
(3) Of this preliminary corpus, 1,020 articles were found to have been previously reviewed in CTD and were used as a test set to evaluate the DRS and
determine suitable cut-offs. (4) Articles with DRS $100 (high), DRS #20 (low), and a subset with DRS between 21–99 (medium) were combined to
provide a final corpus of 3,583 documents which was then (5) sent to five CTD biocurators (who were kept blind to the DRS of each article) for review.
(6) Biocurators timed themselves while reviewing all articles and ultimately rejected 1,381 (as non-curatable for CTD) and curated 2,202 of them (7)
from whence 41,208 chemical-gene-disease interactions were extracted.
doi:10.1371/journal.pone.0058201.g002

Figure 3. Test set of previously reviewed articles validates assigned DRS. A total of 1,020 articles are distributed by their text-mining
assigned DRS (binned in 20-unit increments, x-axis) and are indicated as to whether they were found to have been either curated (green) or rejected
(gray) by a CTD biocurator (as percent of articles in bin) at a previous time. The number of articles in each DRS bin (n) appears at the top of each
column. There were no articles for the bins 280–299, 340–359, or 360–379.
doi:10.1371/journal.pone.0058201.g003
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all the information before deciding that the article should be

rejected.

Of the 2,202 curated articles, CTD biocurators composed

interactions for the relevant information from just the abstracts for

1,381 (63%), from both the abstract and full-text for 670 (30%),

and from solely the full text for 151 (7%) articles.

DRS is a better indicator than PMID for ranking the
literature
Previous to text mining, PubMed abstracts slated for curatorial

review at CTD were ranked solely by descending PMID, which

generally reflects the publication date from newest to oldest paper.

While this process works fine for small corpora (wherein all the

articles will eventually be reviewed by a biocurator), it has major

disadvantages for large corpora, since all the articles cannot

possibly be reviewed due to limited time and resources;

consequently, relevant papers may be missed simply because they

have a lower numerical PMID published at an earlier time. Here,

with the corpus of 3,583 articles completely vetted by biocurators,

we can now retroactively compare the metrics and data content

when viewed by either the DRS or PMID ranking methods for

a variety of parameters, including (1) article relevance, (2) novel

data content, (3) interaction yield rate, and (4) mean average

precision (MAP).

Figure 4. Curation of heavy metal corpus validates assigned DRS. Of the original 14,904 articles (boxes in top row, N), a representative set of
3,583 documents (second row, n) were assigned to CTD biocurators for curatorial review, including all articles (1,981) with a high DRS $100, all
articles (723) with a low DRS #20, and the complete subset of the articles (879) with a medium DRS 21–99 for the heavy metal mercury. (The 1,020
previously reviewed articles were not included in the assigned set.) The articles are distributed by their text-mining assigned DRS (binned in 20-unit
increments, x-axis) and are indicated as to whether they were either curated (green) or rejected (gray) by a CTD biocurator (as percent of articles in
bin). There is a progressive decrease in the percentage of curated articles with DRS ,100. In total, 1,685 of the 1,981 articles (85%) with a high DRS
$100 were curatable, while only 111 of the 723 articles (15%) with a low DRS #20 could be curated.
doi:10.1371/journal.pone.0058201.g004

Table 2. CTD manual curation metrics.

Metric Total DRSa $100 DRS =21–99 DRS =1–20

No. articles reviewed 3,583 1,981 879 723

No. articles curated (% of bin) 2,202 (61%) 1,685 (85%) 406 (46%) 111 (15%)

No. articles rejected (% of bin) 1,381 (39%) 296 (15%) 473 (54%) 612 (85%)

Minutes spent reviewing all articles 38,619 33,471 3,469 1,679

Minutes spent on curated articles (% of bin) 36,342 (94%) 32,660 (98%) 2,900 (84%) 782 (47%)

Minutes spent on rejected articles (% of bin) 2,277 (6%) 811 (2%) 569 (16%) 897 (53%)

Curation rate (6 SD)b 16.5 (634.7) 19.4 (639.0) 7.1 (67.0) 7.0 (69.0)

Rejection rate (6 SD)c 1.6 (62.0) 2.7 (63.2) 1.2 (61.1) 1.5 (61.5)

No. interactions extracted (% of total) 41,208 (100%) 39,128 (95%) 1,764 (4%) 316 (0.8%)

aDRS = document relevancy score bins: high ($100), medium (21–99), low (1–20).
bCuration rate = minutes spent per curated article only. SD = standard deviation.
cRejection rate = minutes spent per rejected article only.
doi:10.1371/journal.pone.0058201.t002
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For analysis and presentation, the 3,583 articles were first

grouped into progressive quartiles (Q1–Q4), each containing 896

documents (except for Q4 which contained 895 articles), based

upon either their descending PMID or their descending DRS.

Thus, for PMID ranking, articles in Q1 have the highest

numerical value (and generally represent the most recently

published papers) while articles in Q4 have the lowest numerical

PMID value. Similarly, for DRS ranking, documents in Q1 have

the highest DRS, which in turn progressively decreases into Q4.

(1) Article relevance. Of the 3,583 articles reviewed, 2,202

(61%) were curated and 1,381 (39%) rejected (Table 2). When an

article’s relevance (i.e., ‘‘curated’’ vs. ‘‘rejected’’) is viewed by both

DRS and PMID ranking, the text-mining tool more effectively

scored and ranked the relevant papers via DRS into Q1–Q2,

compared to the less informed criteria of PMID, which instead

distributed the papers equally across all quartiles (Figure 6).
(2) Novel data content. Of the 41,208 total interactions

manually curated in this project, 38,118 of them (93%) were novel

interactions not yet represented in CTD. The remaining 3,090

interactions (7%) repeated information and provided additional

supporting evidence for data that had already been captured from

other articles. Biocurators extract three types of information:

chemical-gene, chemical-disease, and gene-disease interactions.

Since we are interested in discovering new information to be

included in CTD, we compared the distribution of the novel

content for each type of interaction by both DRS and PMID

ranking (Figure 7). For all three types of interactions, the DRS

more effectively identified and ranked the articles from whence

novel interactions were ultimately curated for chemicals, genes,

and diseases. Of the 35,385 novel chemical-gene interactions,

23,411 of them (66%) were ranked into Q1 by the DRS method,

compared to only 10,617 (30%) by PMID (Figure 7a). For

chemical-disease interactions, of the 1,549 novel interactions in

total, the DRS ranked 1,007 (65%) into Q1 while PMID ranked

only 349 (23%) of them (Figure 7b). Finally, of the 1,184 novel

gene-disease interactions, DRS ranked 31% into Q1 while PMID

ranked 22% of them (Figure 7c). The somewhat less pronounced

differences between quartiles Q1, Q2, and Q3 for novel gene-

disease interactions may be due to the more chemical-centric

nature of the CTD ranking algorithm itself (Table 1). In sum, if

curation had been restricted (due to limited resources) to only the

first 896 documents (i.e., Q1), then ranking the corpus by DRS

would have resulted in the collection of 24,780 novel interactions

(65% of the possible 38,118 found in the complete corpus), while

ranking by PMID would have only generated 11,232 (29%),

demonstrating that simply ranking the corpus via text mining

resulted in more than a 2-fold increase (65% vs. 29%) in novel

data content for this project.

(3) Interaction yield rate. To help evaluate productivity at

CTD, we calculate the interaction yield rate, defined as the number of

interactions curated per unit of time [14]. The number of all

interactions (i.e., novel plus repeated interactions; Figure 8a) is
divided by the total time spent extracting them (Figure 8b) to
calculate the average interaction yield rate (Figure 8c) for each
quartile. Productivity for the first 896 documents in Q1 averaged

1.4 interactions per minute (when ranked by DRS) vs. 1.1

interactions per minute (when ranked by PMID), demonstrating

that simply ranking articles by DRS over PMID boosts pro-

ductivity by 27% for Q1, resulting in more interactions being

curated per unit of time.

(4) Mean average precision (MAP). The MAP quantifies

the ability of a ranking system to rank relevant documents more

highly than non-relevant documents [26]. For this study, the MAP

for articles ranked by PMID was 62%, but increased to 85% when

articles were instead ranked by the DRS method.

Other information-retrieval metrics were also calculated for this

study. Gene/protein recall was 71%, chemical recall was 79%,

and disease recall was 44% using macro-averaging. Recall scores

were calculated by dividing the number of distinct curated gene,

chemical, and disease actors identified by the text-mining tools

Figure 5. DRS reflects the number of interactions per curated article. Biocurators extracted 41,208 interactions from 2,202 curated articles
(top row, c). The average number of interactions per curated article (log-scale, y-axis) is distributed by the assigned DRS (binned in 20-unit
increments, x-axis), with the number of curated articles (c) in each bin indicated at the top. The average number of interactions per curated article
increases with the DRS. The aberrant spike in bin 240–259 is due to a single article (amongst a total of nine curated documents in the bin) from
whence 5,977 interactions were curated from a microarray experiment.
doi:10.1371/journal.pone.0058201.g005
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(either by a synonym to the term or by the term itself) by the total

number of distinct curated actors. It is important to note that

precision (another standard information-retrieval metric) is not

appropriate for calculation here. CTD is comprised of curated

(rather than cited) genes/proteins, diseases, and chemicals within

each abstract. There are many instances where valid, cited actors

are not actually involved in curatable interactions, and other

instances where curated actors reside only in the full text of the

article. Consequently, the complete universe of valid, cited actors

specifically resident within each abstract is unknown, preventing

the calculation of an accurate precision metric.

Biological and toxicological interpretability of curated
corpus
Although the performance of CTD’s text-mining pipeline

against the heavy metal corpus is the primary focus of analysis,

interpretation of the biological and toxicological aspects of the

resulting curation is worthy of note as well. The number of genes

(and species from whence they were curated) for each heavy metal

was vast, including 3,707 genes from 48 organisms for cadmium,

3,251 genes from 14 organisms for cobalt, 8,004 genes from 47

organisms for copper, 1,078 genes from 16 organisms for lead, 261

genes from 10 organisms for manganese, 462 genes from 45

organisms for mercury, and 1,171 genes from 9 organisms for

nickel. The most common species for all seven heavy metals were

Homo sapiens, Rattus norvegicus, and Mus musculus, but also prevalent

for certain metals were Danio rerio (copper), Macaca fascicularis

(manganese), and Daphnia magna (nickel), indicating that a wide

range of taxons are used to study heavy metal toxicity and this

breadth of research was captured in our pipeline.

CTD biocurators composed 441 unique types of chemical-gene

interaction statements, the most prevalent (63%) describing how

a heavy metal influenced the mRNA or protein expression of an

interacting gene. The remaining 37% chemical-gene statements

described heavy metal-gene/protein interactions involving meth-

ylation, binding, phosphorylation, activity, localization, secretion,

splicing, stability, folding, import, export, cleavage, ubiquitination,

chemical sensitivity/resistance, and numerous types of metabolic

processing, amongst others. In total, 33 of the possible 55 action

terms available in CTD’s curation paradigm [6] were used to

compose interactions for the seven heavy metals, evincing a broad

coverage of possible mechanisms of toxicity from the literature.

We next reviewed the gene sets associated with each heavy

metal to gauge the biology and putative toxicity derived from this

corpus. Gene lists for each metal were compared using CTD’s

‘‘MyVenn’’ tool (http://ctdbase.org/tools/myVenn.go) to look for

shared and unique genes [2]. Sixteen genes were common to all

Figure 6. DRS effectively ranks articles for relevance. The 3,583
text-mined articles were ranked via (A) each article’s PubMed
identification number (PMID) in descending order and via (B) the
text-mining assigned DRS, with articles grouped into progressive
quartiles (Q1–Q4), each containing 896 documents. The articles were
reviewed by CTD biocurators who determined that 2,202 of the articles
contained relevant data (curated, green bars) while 1,381 of them did
not (rejected, gray bars). The percent of total curated papers vs. rejected
papers for each unique quartile are shown.
doi:10.1371/journal.pone.0058201.g006

Figure 7. DRS effectively ranks articles for data content. A total
of 38,118 novel interactions are distributed into progressive quartiles
(Q1–Q4) based upon either DRS ranking (blue) or PMID ranking (orange)
for three different types of interactions: (A) 35,385 novel chemical-gene
(C–G) interactions, (B) 1,549 novel chemical-disease (C–D) interactions,
and (C) 1,184 novel gene-disease (G–D) interactions.
doi:10.1371/journal.pone.0058201.g007
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seven heavy metals: CASP3, CAT, GAPDH, HMOX1, IFNG,

IGF1, JUN, MAPK1, MAPK3, MT1A, NFE2L2, NFKBIA,

NOS2, PTGS2, TGFB1, and TNF. These genes were analyzed

using CTD’s ‘‘Gene Set Enricher’’ tool (http://ctdbase.org/tools/

enricher.go) to find enriched Gene Ontology (GO) biological

processes [2]. The most statistically significant enriched biological

process was cellular response to chemical stimulus (GO:0070887),

supporting the toxicological relevance of this curated corpus.

However, these 16 genes were also enriched for a wide array of

other important biological processes, including gene expression

(GO:0010467; 14 genes), apoptotic process (GO:0006915; 13 genes),

regulation of immune system process (GO:0002682; 11 genes), cell cycle

(GO:0007049; 9 genes), neurological system process (GO:0050877; 8

genes), response to oxidative stress (GO:0006979; 6 genes), and the cell

signaling pathways MAPK cascade (GO:0000165; 6 genes), Toll-like

receptor signaling (GO:0034130; 4 genes), and JAK-STAT cascade

(GO:0007259; 4 genes). This diversity suggests there are myriad

ways for putative mechanisms of toxicity to be induced by heavy

metals.

We also identified genes unique to each of the seven heavy

metals curated in this corpus to look for putative metal-specific

gene signatures. Of the 3,707 total genes associated with cadmium,

1,708 of them were unique to cadmium when compared against

the gene sets for the other six heavy metals for this corpus. The

unique gene sets for the other metals were 861 genes (out of 3,251)

for cobalt, 4,512 genes (out of 8,004) for copper, 330 genes (out of

1,078) for lead, 30 genes (out of 261) for manganese, 99 genes (out

of 462) for mercury, and 240 genes (out of 1,171) for nickel. Many

of these refined unique lists were still too large or diverse to deduce

any granular metal-specific GO biological processes, though the

mercury gene set showed enrichment for cholinergic synaptic

transmission (GO:0007271; 4 genes), while nickel indicated enrich-

ment for cytokine-mediated signaling pathways (GO:0019221; 14 genes),

suggesting putative mechanisms of neurotoxicity for the former

and immunotoxicity for the latter.

Lastly, the disorders associated with each of the seven heavy

metals included 41 diseases for cadmium, 19 diseases for cobalt, 70

diseases for copper, 28 diseases for lead, 24 diseases for

manganese, 72 diseases for mercury, and 25 diseases for nickel.

There were no specific diseases common to all seven heavy metals.

However, to better visualize this landscape, and to look for shared

types of diseases, we mapped these specific diseases to 21 generic

disease categories using CTD’s MEDIC-Slim disease vocabulary

[2] to look for common and unique disease classes amongst the

metals (Figure 9). Copper, lead, manganese, mercury, and

cadmium showed a penchant for nervous system diseases,

implying a shared toxicity end-point for many heavy metals.

Other prevalent disease classes included digestive system disorders

(cadmium, cobalt, and copper), urogenital disorders (cadmium,

cobalt, and mercury), cardiovascular diseases (cobalt, copper, and

manganese), and cancer (nickel, copper, cadmium, and cobalt).

Nickel showed the most distinct distribution from the other six

metals, with tendencies towards respiratory tract diseases and

immune system disorders.

Discussion

CTD has initiated several processes to improve the efficiency

and productivity of manual curation, including the use of a well-

defined curation paradigm that leverages multiple vocabularies to

maximize curation possibilities and minimize data entry require-

ments [6,13], the use of a sophisticated online Curation Tool [6],
and the introduction of targeted journal curation as an efficient

means to increase data currency [14]. To this, we have also

initiated a text-mining program composed of three phases.

Phase 1: feasibility study
Phase 1 studied the feasibility of using text mining at CTD by

leveraging third party open-source recognition tools, associated in-

house recognition tools, and ranking algorithms [15]. These tools

were collectively integrated into an application specifically

designed to assess the benefits of using text mining to help rank

articles and identify curation actors (chemicals, genes, and disease

terms). The results of this feasibility study using 1,600 manually

curated documents demonstrated that text mining could improve

article ranking from 63%MAP (baseline) to 73%MAP (algorithm-

ranked), and that the tools identified 80% of curated actors,

including 74% recall for gene, 94% recall for chemical, and 51%

recall for disease [15]. The success of the Phase 1 feasibility study

encouraged us to proceed with designing, developing, and

implementing the most successful elements from the study in

a fully automated text-mining pipeline.

Phase 2: full integration into CTD pipeline
Here, we report our results for Phase 2, wherein we fully

implemented a DRS-based text-mining pipeline at CTD to

prioritize the literature. With our rules-based algorithm now fully

incorporated into the curation workflow, we have tested the

effectiveness of this step (post-implementation) against a much

Figure 8. DRS effectively ranks articles for productivity. (A) The
number of total interactions (both novel and repeated) for each quartile
is divided by (B) the time spent on curating them to produce (C) an
averaged interaction yield rate (interactions per minute) for each
quartile.
doi:10.1371/journal.pone.0058201.g008
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larger corpus of 14,904 articles triaged for seven heavy metals.

Based upon analysis of a test set, we produced a representative

corpus of 3,583 articles spanning three DRS ranges and assayed

the validity of the assigned DRS by sending the documents to five

CTD biocurators for review. Biocurators performed a series of

tasks, ultimately deciding if an article should be ‘‘rejected’’ (and

why) or ‘‘curated’’ (and did so). For all metrics, the three DRS bins

(i.e., high, medium, and low) accurately reflected the article’s

relevance, the curation rate necessary to review the article, and the

density of curatable information contained within the document.

Similarly, a head-to-head comparison of DRS vs. PMID ranking

showed that DRS is a better indicator of an article’s potential

‘curatability’, as evidenced by the first quartile always showing the

better results for all parameters when ranked by DRS, with

a subsequent and progressive decrease in values for the remaining

quartiles. Leveraging DRS resulted in a 37% improvement in

ranking over PMID (85% vs. 62% MAP, respectively).

Interestingly, both the test set of 1,020 previously reviewed

articles (Figure 3) and the assigned corpus of 3,583 articles

(Figure 4) showed similar patterns of ‘curatability’ reflected by an

article’s DRS. In the test set, the curatability index was 86% for

high DRS, 60% for medium DRS, and 10% for low DRS. Similar

metrics were seen for the assigned 3,583 articles, with 85%

curatability for high DRS, 46% for medium DRS, and 15% for

low DRS. More importantly, however, there was a progressive and

consistent decline in curatability in the DRS range from 99 to 21

for both the test set and the assigned corpus, evincing a direct

relationship between the DRS and an article’s curatability. This

linear decline is essential to curation of well-researched target

chemicals; if the biocurator is unable to curate an entire target

chemical corpus because of its size, it is vital to know that there is

a steady and predicable decline in curatability as the biocurator

proceeds through the DRS-ranked list of references to avoid

spending excessive time on the portion of the corpus that may not

be of significant relevance.

With respect to curation metrics, in Phase 2, CTD biocurators

spent only 6% of their time rejecting 1,381 articles (39% corpus)

and 94% of their time curating 2,202 articles (61% corpus),

metrics that parallel our results from the Phase 1 feasibility study

[15]. However, the overall average curation rate in Phase 2 was

16.5 minutes per curated article, compared to our Phase 1

baseline curation rate of 20.7 minutes per article [15]. The reason
for this 20% improvement in the curation rate may be due to

a variety of factors, including a different corpus size for the timed

metrics (3,583 articles in Phase 2 vs. 112 articles in Phase 1) and

a different set of biocurators (five biocurators in Phase 2 vs. three

in Phase 1). However, we also speculate that a very significant

factor is that in Phase 2 we used our online Curation Tool. The

original baseline curation rate in 2009 was measured at a time

when CTD biocurators exclusively used Excel spreadsheets to

compose and store all of their interactions, which was a signifi-

cantly more manually intensive process. In 2011, however, CTD

released a web-based Curation Tool application that obviated the

need of spreadsheets and provided numerous time-saving

advantages, including built-in quality control measures, real-time

validation of entered terms, and a ‘cloning’ feature which allows

biocurators to rapidly duplicate interactions and then edit one

term to result in a new interaction [6].

With respect to text-mining recall metrics, in Phase 2, the tools

overall identified 68% of curated actors, including 71% recall for

genes, 79% for chemicals, and 44% for diseases, compared to

74%, 94%, and 51% recalls in the Phase 1 feasibility study,

respectively [15]. Although actor recall was not the primary focus

of this study, we believe that these somewhat divergent recall

scores are due to significant differences in the corpora. The gross

number of gene, chemical, and disease actors curated for the

Phase 1 study was 6,664; for Phase 2, the number was much

larger: 35,357. Although on the surface it would seem that the

larger sample size would yield a more accurate recall measure-

ment, more careful analysis indicates that this may not be the case

in this instance. The difficulty in accurately calculating recall at

Figure 9. Disease category distribution for the seven heavy metals. The number of diseases curated for each metal is indicated for cadmium
(Cd), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), and nickel (Ni). These specific disorders were then mapped and distributed
across 21 generic disease categories (legend at top) using CTD’s MEDIC-Slim disease mappings [2] to look for overrepresented disease classes for
each individual heavy metal. For example, of the 70 specific diseases associated with copper (Cu), 23 of them (33%) are nervous system disorders and
12 of them (17%) are cardiovascular disorders.
doi:10.1371/journal.pone.0058201.g009
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CTD lies in the fact that although text mining is limited exclusively

to abstracts, the biocurator often refers to the full text for curation.

Moreover, in the case of high-throughput studies (e.g., microarray

experiments), the vast majority of the curatable data lies in the full

text rather than the abstract. In Phase 2, abstract-only curation

accounted for 63% of all the curated articles, but only produced

35% of all the curated interactions. Although these statistics are

unfortunately not available for Phase 1, we attempted to compare

the data that was available for each phase as it potentially relates to

recall. Large numbers of interactions in individual papers are

typically indicative of high-throughput studies or, at a minimum,

instances where the preponderance of data is found in the full text

rather than the abstract. For Phase 1, there were no articles with

more than 1,000 interactions, and six articles with more than 100

interactions; these six high-density references accounted for 21%

of all curated interactions. For Phase 2, however, there were six

articles with more than 1,000 interactions, and 34 articles with

between 100–1,000 interactions; these combined 40 high-density

references accounted for 53% of all curated interactions. The

overall average number of interactions per curatable article was

8.4 (SD 631.1) for Phase 1; for Phase 2, the overall average

number of interactions per curatable article was 18.7 (SD6152.2).

Clearly there were significant differences in the corpora. The best

case scenario for measuring actual recall is abstract-only (rather

than full text) curation, since CTD text mining is limited to

abstracts. Although macro-averaging was used in both phases to

minimize the distorting effects of full text-based curation on recall

calculation, the available statistics associated with the Phase 1

corpus would seem to suggest a greater preponderance of abstract-

only curation as a result of its seemingly comparative dearth of full

text-based references, and lower average interaction density per

curatable article. Consequently, the Phase 1 articles would appear

to be somewhat more suitable for recall calculation than the Phase

2 articles. Irrespective of whether this is indeed the case, it is

important to stress that recall was extremely effective for purposes

of informing the DRS-based ranking algorithm for Phase 2. More

time will be spent on this issue during Phase 3 (below), because

recall will be of even greater significance when these tools are used

to highlight text in abstracts for direct curation by CTD

biocurators.

With respect to DRS ranking, the improvement in MAP score

from 73% (Phase 1) to 85% (Phase 2) is also probably largely

attributable to the difference in the corpora and sample size from

the two phases. Nevertheless, a perfect text-mining application

would rank every relevant article to the top of the list. Here, even

with our successful DRS ranking, we still found relevant articles

distributed to the last quartile, as well as articles without curatable

data in the first quartile. Upon examination of these outliers, we

identified several common reasons for rejection of articles in the

first quartile, as well as reasons for curation of articles in the last

quartile. The main reason for rejection (representing more than

a third of the rejected articles) recorded by the biocurator was due

to the lack of an interaction between a chemical and gene,

chemical and disease, or gene and disease. In many cases, these

articles received a high DRS due to the presence of multiple

chemicals or genes in the abstract, but no direct interaction was

described. Additional reasons for rejection included descriptions of

interactions in species that CTD does not curate (e.g., plant,

fungus, and bacteria), negative data, and data from review articles.

Articles with a low DRS that contained curatable information

revealed several elements that were more readily recognized by

a biocurator than by the algorithm, including abbreviations,

acronyms, and descriptions of gene complexes or general chemical

classes. In many cases, the biocurator could resolve these terms

directly, or knew to access the full text for more detailed

information on the interactions. Modification of the algorithm to

reject or lower the scores of papers containing certain species,

modification of point values to highlight interactions, and

expansion of the library of terms used to reject certain data while

recognizing curatable data are all possible strategies that will be

examined to improve alignment of DRS with curatability of the

articles going forward.

Phase 3: integration into Curation Tool
Phase 3 will involve integrating text mining directly into CTD’s

automated Curation Tool [6]. Phases 2 and 3 were segregated into

individual activities because integrating text mining into our

Curation Tool will be a complex process, involving significant

modifications to the CTD data model and a complete re-

engineering of certain aspects of the Curation Tool. Implementa-

tion of a DRS-based pipeline as a standalone project (Phase 2)

accommodated a much quicker turnaround largely as a result of its

encapsulated nature, and allowed CTD to enjoy the most

important benefits of text mining (i.e., DRS-based document

ranking) sooner than if Phases 2 and 3 had been combined into

a single, significantly larger and more complex project.

In addition to ranking documents using DRS, the existing CTD

text-mining pipeline identifies gene, chemical, disease, and action

terms, and marks up the abstracts with HTML, hyperlinking the

genes, diseases, and chemicals back to CTD. Although the

recognition data is used as input to inform the DRS ranking

algorithm, currently neither the recognition data, nor the HTML

mark-up, is used for any other purpose. Phase 3 of the project will

integrate these elements into the Curation Tool.

Currently, CTD’s Curation Tool is PMID-centric. Biocurators

copy the PMIDs from the ranked article list, paste them into the

tool, and begin curation. Although this feature will always be

available to biocurators, in Phase 3 the tool will become more

chemical-centric. In this scenario, biocurators will begin the

process by selecting a target chemical-of-interest to curate. The

literature corpus for this target chemical will already have been

text mined using asynchronous batch processes. Once a target

chemical is selected, a list of DRS-ranked PMIDs will be displayed

for the biocurator to use. The biocurator will curate directly from

within the tool, which will display a marked-up abstract with

hyperlinked text-mined chemical, gene, disease, and action terms,

providing fully integrated, seamless functionality between the

scientific literature and CTD’s curation terms in the database.

This mark-up will inform, but will not replace, the manual

curation process.

Phase 3 will also involve additional analysis and modification of

the ranking algorithm with input coming from the outliers

described above.

Comparing CTD text-mining effectiveness with other
tools
CTD recently confirmed the relative effectiveness of its text-

mining pipeline in conjunction with its participation in organizing

BioCreative 2012 Track I [17]. CTD was chosen by the

BioCreative subcommittee as a source for Track I data because

CTD possesses a large and high quality set of curated information

of broad interest and relevance to the biomedical research

community, as well as significant staff experience with text mining

and curation. In September 2011, Track I issued an open

invitation to text-mining teams to develop a system to assist

biocurators in the selection and prioritization of relevant articles

for curation at CTD. Participants were asked, among other things,

to rank articles from a relatively small test dataset of 444 articles, as
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well as use recognition tools to identify cited genes, chemicals, and

diseases. Training materials and data sets were provided to the

participants so that they would have a complete understanding of

CTD curation. A web site providing comprehensive metrics was

developed and made available to participants to enable them to

test and refine their tools against CTD data in an iterative fashion

over a period of months. The participants formed their own teams,

sometimes across multiple institutions; a total of seven teams

participated, including groups from China, Switzerland, and the

United States. The results were impressive: MAP scores were in

excess of 70% for all teams, and exceeded 80% for one of the

participants [17]; top recall scores for gene, disease, and chemical

recall were 49%, 65%, and 82%, respectively. However, CTD’s

tools outperformed all the participating systems overall, and in

nearly every individual benchmarking metric, including MAP

score [17]. One of the participating teams had better disease recall

and another had a better action term recall, but CTD placed

second in both cases [17]. The relative effectiveness of CTD’s text-

mining pipeline in comparison with other tools is not altogether

unexpected when tested against CTD corpora; staff understanding

of the CTD domain is obviously extensive, as has been the

experimentation with text-mining tool integration (15), and these

represent real advantages to CTD. However, the fact that the

CTD pipeline fared well when compared to tools developed by

teams who, unlike CTD, specialize in text mining, who tailored

their applications specifically to CTD curation and corpora, and

who used a wide variety of text mining methods (e.g., support

vector machines-based, term frequency-inverse document fre-

quency-based, rules-based, etc), was constructive.

Evaluation of curated content
All of the curated interactions for this corpus have been fully

integrated with public CTD and are freely available for

researchers to explore. The magnitude and extent of the different

types of genes, organisms, interactions, and diseases curated for

each heavy metal indicates the broad and encompassing scope to

which our curatorial review has covered this knowledge space for

the seven heavy metals. Shared, as well as unique, biological

processes and toxicological end-points were identified. Important-

ly, our findings paralleled results from a recent review on metal-

induced toxicity [25], including the influence of heavy metals on

cellular oxidative stress pathways, which was also suggested by our

GO enrichment analysis. As well, specific metal-disease relation-

ships described in the review were also covered in our curation for

copper (cancer, neurological disorders, diabetes, and cardiovascu-

lar disease), cobalt (lung diseases), cadmium (testicular urogenital

disorders), and lead (hypertension, neurological disorders, and

cognitive impairment). Finally, internal analysis of our data helps

corroborate biology with toxicity. The mercury-specific gene set

(99 genes) was enriched for a neurological GO process (cholinergic

synaptic transmission; GO:0007271), which was independently

paralleled by this metal also showing a penchant for nervous

system diseases (Figure 9). Likewise, the nickel-specific gene set

(240 genes) was enriched for an immune-related GO process

(cytokine-mediated signaling pathways; GO:0019221) that was indepen-

dently supported by immune system disorders being an over-

represented disease class for this metal. Thus, in total, the findings

associated with this study support the biological relevance of heavy

metal toxicity data and suggest that DRS rankings can successfully

inform the process of identifying articles that contribute to an

extensive mechanistic understanding of toxicity pathways.

Summary
With limited resources and the encroachment of larger data

landscapes, manually curated databases need to leverage a variety

of techniques to maintain and enhance their products. Towards

that end, CTD is pioneering strategies to maximize our curatorial

resources to increase productivity and efficiency. Here, we have

shown how CTD has leveraged text mining to assign a DRS to

articles slated for curatorial review as a method of scoring and

ranking the triaged literature, with measured improvements in

article relevance, novel data content, and increased productivity. It

is important to emphasize that not only has CTD constructed an

effective DRS scoring-based text-mining program, but as well, we

have made DRS scoring fully operational and integrated as part of

our regular curation pipeline. This study validates that DRS is

effective at ranking the relevant literature for chemical-gene-

disease curation at CTD.
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