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Abstract

Cellular functions are based on the complex interplay of proteins, therefore the structure and dynamics of these protein-
protein interaction (PPI) networks are the key to the functional understanding of cells. In the last years, large-scale PPI
networks of several model organisms were investigated. A number of theoretical models have been developed to explain
both the network formation and the current structure. Favored are models based on duplication and divergence of genes,
as they most closely represent the biological foundation of network evolution. However, studies are often based on
simulated instead of empirical data or they cover only single organisms. Methodological improvements now allow the
analysis of PPI networks of multiple organisms simultaneously as well as the direct modeling of ancestral networks. This
provides the opportunity to challenge existing assumptions on network evolution. We utilized present-day PPI networks
from integrated datasets of seven model organisms and developed a theoretical and bioinformatic framework for studying
the evolutionary dynamics of PPI networks. A novel filtering approach using percolation analysis was developed to remove
low confidence interactions based on topological constraints. We then reconstructed the ancient PPI networks of different
ancestors, for which the ancestral proteomes, as well as the ancestral interactions, were inferred. Ancestral proteins were
reconstructed using orthologous groups on different evolutionary levels. A stochastic approach, using the duplication-
divergence model, was developed for estimating the probabilities of ancient interactions from today’s PPI networks. The
growth rates for nodes, edges, sizes and modularities of the networks indicate multiplicative growth and are consistent with
the results from independent static analysis. Our results support the duplication-divergence model of evolution and indicate
fractality and multiplicative growth as general properties of the PPI network structure and dynamics.
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Introduction

A living cell relies on a wide network of protein-protein

interactions (PPIs) of structural and functional relevance, therefore

the understanding of cell function is intrinsically tied to the

understanding of this network. Technical advances in molecular

and cellular biology and bioinformatics enabled extensive studies

on protein-protein interaction networks (PIN) during the last

decade. While a significant amount of data was collected during

this time, theoretical analyses were focused on PINs from very few

model organisms. Little is known about the comparability of

results from different organisms as well as their transferability

[1,2]. General theoretical models explaining the formation,

function and emerging properties of biological networks however

often lack the connection to empirical data, making it difficult to

validate the models [3]. Here we improve network theory for

studying the evolutionary dynamics of PIN in multiple organisms.

Experimental determination of protein-protein
interaction networks

Multiple experimental methods for measuring PPI networks

have been developed, like the yeast two-hybrid screen (Y2H) [4–

6], the tandem affinity purification/mass spectrometry (TAP-MS)

[7–9] and the protein-fragment complementation assay [10]. Each

method has specific characteristics and limitations and therefore

can provide only an incomplete view of the biological reality. For

example, while TAP-MS detects stable complexes, weak and

transient interactions are more readily detected by Y2H [11]. The

precise determination of the error rates is difficult. For example,

for Y2H experiments, estimates range from 10% to over 50% for

the false positive rate and from 30% to 90% for the false negative

rate [12,13]. Furthermore, a bias is introduced by variations in the

details of the Y2H protocol, such as the vectors used and the

nature of the re-constituted transcription factor [14,15]. For these

reasons, the overlap between different studies is often small

[6,11,12]. Possible approaches that can be applied for the selection

of reliable interactions are reproducability, promiscuity, indirect
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support, conservation and topology [6,16], whereas the best suited

approach depends on the specific dataset.

Due to the volume of work and the methodological difficulties,

genome-wide interactome studies were so far performed for only a

limited number of organisms, among others S. cerevisiae [11], H.

sapiens [17] and A. thaliana [18]. The results of these large-scale

experiments and many other studies are collected in a number of

databases like Mint [19], DIP [20], BioGrid [21] and IntAct [22].

These resources are partially redundant and use different database

schemes, scores and identifiers. Integrating data from these sources

for comprehensive analysis is therefore non-trivial. This problem is

tackled e.g. by the STRING database, which incorporates

different evidence sources for both physical and functional PPIs

[23].

Structure and topology of protein-protein interaction
networks

For the characterization of the network structure, measures

from network theory, like node degree, clustering coefficient or

shortest path are used [24]. Based on these measures, observed

networks can be assigned to different topological categories like

random[25], small-world[26], hierarchical[27], fractal[28], and

scale-free [24,29].

PPI networks often show the small-world property, namely a

short path length between any two nodes. The additional shortcuts

in small-world networks affect the modularity, as well as the path

length between proteins, and might for example influence signal

transduction [26]. For small-world networks the scaling of the

number of nodes and the average distance is exponential. It has

also been shown that many complex networks show a scale-free

topology, with the degree distribution following a power-law with

the degree exponent c [30,31]. A scale-free topology results in a

high robustness of the network against perturbations [29].

PPI networks have also been shown to exhibit a highly modular

structure, that is they contain substructures which are highly

interconnected but have only few connections to nodes outside the

module[24,32]. The modular organization represents the higher-

order correlations of the network structure beyond average

properties, and has attracted great attention because it is closely

related to the network functionality and robustness. For example,

it has been shown that the modularity increases the overall

robustness of the network by limiting the effect of local

perturbations [24,33,34]. Along with the modular organization,

the fractal and self-similar feature is empirically observed in many

biological networks, such as the protein PPI networks[28], the

biochemical reactions in metabolism [28], and the human cell

differentiation networks [35]. The fractal network is characterized

by a power-law scaling between the average distance and the

number of nodes, as well as an organization of hubs which are

preferentially connected to small degree nodes (disassortativity)

rather than other hubs [33,36].

Dynamics and evolution of protein-protein interaction
networks

The primary source of node evolution is assumed to be the

duplication of single genes, groups of genes or whole genomes

followed by divergence of duplicated genes [37–41], whereas link

evolution has been modeled by different mechanisms such as

random rewiring [42] and preferential attachment [31]. Network

rewiring can for example be studied by tracking the evolution of

network motifs after a whole-genome duplication event with

subsequent divergence [37]. The change in protein-protein

interactions between related species was shown to be substantially

lower than the rate of protein sequence evolution [43]. These

general considerations of network evolution indicated that

frequently observed topological features like scale-free degree

distribution (and preferential node attachment) are explained by

mechanisms of network growth rather than by natural selection

[42]. Later studies demonstrated that the evolutionary conserva-

tion and the topology of networks are readily explained by

exponential duplication/divergence dynamics (DDD) [44,45].

Mathematical models based on these mechanisms [45–49] often

well reproduce the observed degree distribution P(k) from

numerical simulations of random graphs or analytical solutions

of the asymptotic behaviors. However, two networks with the same

P(k) can have a totally different modular structure which is

determined by higher-order correlations, and not captured by the

simple degree distribution P(k). Furthermore, the simulated

graphs generally do not correspond to the history of real networks,

and the comparisons with experimental data are usually ambig-

uous as the parameters used in the models are difficult to measure

directly.

Later studies utilize multiple approaches based on extant

interaction networks for the explicit reconstruction of ancient

networks which are then used to construct evolutionary argu-

ments. Parsimony methods are motivated by the idea that network

evolution is best explained by the least evolutionary changes

[50,51], whereas probabilistic methods reconstruct ancient

networks of maximum likelihood [52,53]. Integrating also

phylogenetic information of the proteins represents their evolution

more closely and therefore can further improve the accuracy of the

reconstructed networks [54–56]. One of the most recent methods

allows parsimonious reconstruction of multiple evolutionary events

and at the same time it makes fewer assumptions compared to

previous studies[51]. Dutkowski et al [56] suggested to use clusters

of orthologous groups (COGs) to reconstruct ancestral proteins

and ancestral interactions. Here we prefer the concept of COGs

for reconstructing ancestral PPI network nodes, as it has been

shown to be very robust and applicable even to evolutionarily

distant genomes. COGs are therefore well established in

comparative genomics (reviewed in [57]).

Most hitherto existing studies on network evolution were

conducted on PPI networks of single organisms - mostly yeast,

due to the rich amount of data - or on PPI networks of a small

number of organisms. Integration of further organisms into

evolutionary investigations allows for more general and more

reliable statements on evolutionary principles. Facilitating the

phylogenetic history of present-day proteins along with ortholo-

gous relationships between proteins offers a powerful possibility for

the reconstruction of ancient proteins [58]. However, no similar

concept exists for the inference of ancient interactions based on

extant ones, therefore an underlying evolutionary model is

necessary for their reconstruction.

The availability of large-scale PPI data for different species

renders it now possible to study the dynamics of PPI networks of

multiple species comprehensively by a novel approach combining

advanced network theory and bioinformatics. Relying on the rich

body of previous theoretical work as discussed above, we have

established a theoretical framework by which we explicitly

reconstruct and analyze ancestral PPI networks. The framework

is based on clusters of orthologous groups for the genome-wide

representation of ancestral proteomes on different taxonomic

levels and a new stochastic model describing the duplication-

divergence processes. The assumption of fractal topology of PPI

networks, well justified by previous research, allows to properly

handle the noisy and erroneous input data and to reduce the

parameter space for the modeling of ancestral PPIs. The analysis

Evolution of Protein-Protein Interaction Networks
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of the degree distribution P(k) separates different species into two

groups, characterized by a power-law (scale-free) distribution (M.

musculus, C. elegans, D. melanogaster and E. coli), and an exponential

distribution (S. cerevisiae, H. sapiens and A. thaliana). Irrespective of

this, we find that their network topologies can be unified under the

framework of scaling theory and characterized by a set of unique

scaling exponents. The evolution of PPIs based on DDD can be

modeled using two parameters, describing the probability for

retaining an interaction after a duplication and the probability of a

de novo creation of an interaction respectively. These iterative

duplication events due to DDD imply a multiplicative growth of

nodes, interactions and average path length that can be described

by dynamic growth rates. The growth rates were obtained directly

from the reconstructed networks. We observed that they are in

agreement with the mechanisms of multiplicative growth, which

was previously suggested in a theoretical study [33]. They are also

in good agreement with the static measurements of the present-day

networks.

Results

A uniform database allows for the comprehensive
analysis of present-day interactomes

To elucidate the broad principles governing the structure and

the evolution of PPI networks, the most comprehensive and

reliable data for as many species as possible are necessary. This is

why the integrative database STRING [23] was chosen as the

uniform source for physical protein-protein interactions. Besides

functional interactions, which are not considered in this study,

STRING provides physical PPIs for many species. For this study

we selected seven species having the highest number of physical

interactions in STRING and representing different lineages in

eukaryotes and bacteria (Table 1). To construct high-quality

physical PPI networks from these data, a number of filtering steps

was performed. First, interactions without direct experimental

evidence for the respective organism were removed from the

analysis. This guaranteed that neither functional nor predicted

physical interactions (interologs) were included in network

construction. Second, proteins that are not contained in

orthologous groups on all evolutionary levels defined by the

eggNOG database [59] for the respective organism were excluded.

This step removes all lineage specific proteins and provides

consistent sets of nodes for the subsequent modeling of ancient PPI

network (see below). Third, a threshold for confidence scores was

introduced to separate high-confidence from low-confidence

interactions, which were excluded from further analysis. The

confidence scores are very differently distributed in the seven

organisms of our study (Figure S1). Application of a uniform

threshold score (e.g. 700) as generally suggested by STRING [23]

would select very different fractions of the interaction data. As all

further results of this study rely on the quality and unbiased

selection of the interactions from STRING, we evaluated the effect

of different score thresholds on the structure of the resulting

networks. It is known that PPI networks are invariant or self-

similar under a length-scale transformation [28]. This basic

assumption about the structure of the resulting networks was

therefore utilized to determine the optimal cutoff scores for each

organism by three independent methods (see Materials and

Methods, and Figure S2): percolation analysis, the Maximum

Excluded Mass Burning (MEMB)[60] and the renormalization

group approach [61]. The percolation analysis allowed to identify

a point of percolation transition, at which a giant connected

component first appears. This point of percolation transition was

determined individually for each organism. At the point of

percolation transition, the structure of the resulting networks

changes from small-world to self-similar. The box-covering

algorithm MEMB and the renormalization group approach served

to validate the percolation analysis by confirming the self-similar

structure of the resulting networks. Score thresholds between 400

(A. thaliana) and 980 (S. cerevisiae) were obtained for the different

organisms (Figure S1 and Table 1). The filtering always removed

the majority of proteins and interactions (Figure 1 and Table S1).

For the topological characterization of the seven PPI networks

we selected the largest connected component of every network.

The application of the MEMB algorithm revealed a power-law

relationship between the minimum number of boxes NB and the

box diameter ‘B (Equation 1), which is typical for self-similar

networks as shown in [60]. In this algorithm, dB is the fractal

dimension which characterizes the self-similarity between different

topological scales of the network. It is known that the fractal

dimension dB~2 for random Erdös-Rényi (ER) network at

percolation [62]. Our results suggest that the PPI networks have

modular structures with correlated rather than random connec-

tions, since their values of dB (Table 2) are different from the one

predicted by the random percolation theory. Since the degree of

modularity depends on the scale ‘B, the modularity exponent dM

was calculated which can be used to compare the strength of

modularity between dissimilar networks (Equation 7 and Figure

S3). The degree of modularity of the networks ranges from low

(dM~1:3(4)) for E. coli and S. cerevisiae to high for A. thaliana

Table 1. Organism overview.

Organism name Abbreviation NCBI Taxonomy ID s�c Nodes at s�c Interactions at s�c

Escherichia coli K-12 eco 83333 440 873 2321

Saccharomyces cerevisiae sce 4932 980 2144 6000

Arabidopsis thaliana ath 3702 400 727 905

Caenorhabditis elegans cel 6239 560 485 438

Drosophila melanogaster dme 7227 700 461 598

Mus musculus mmu 10090 700 718 658

Homo sapiens hsa 9606 700 1891 2840

Overview of the organisms for which networks were reconstructed. For each organisms the scientific name, three-letter-abreviaton used in tables and figures, NCBI
Taxonomy ID [71], filtering threshold s�c , node count after filtering at s�c and interaction count after filtering at s�c are shown.
doi:10.1371/journal.pone.0058134.t001

Evolution of Protein-Protein Interaction Networks

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e58134



(dM~2:1(2)), M. musculus and H. sapiens (both dM~2:0(1))
(Table 2). Since the trivial case of a regular lattice in d dimensions

gives dM~1, modularity exponents larger than one indicate a

larger degree of modularity. Besides the fractality, another

important topological measure is the distribution of degrees

P(k). For many complex networks, P(k) has a power law

distribution with degree exponent c (Equation 2), which is

characteristic of scale-free networks [31,63]. On the other hand,

if the equation describing the degree distribution becomes

exponential (Equation 3), the network is said to have an

exponential degree distribution (such as the ER graph [25]),

indicating the existence of some typical scales for degrees [64].

Our results show that the PPI networks of different species are

grouped into two categories with scale-free (M. musculus, C. elegans,

D. melanogaster and E. coli) or exponential (S. cerevisiae, H. sapiens and

A. thaliana) degree distributions (Table 2). The above two

properties, the scale-invariant property and the degree distribu-

tion, can be related through scaling theory in a renormalization

procedure [28]. At scale ‘B, the degree of a hub k changes to the

degree of its box k’ (Equation 4). A new exponent dk relates the

fractal dimension dB and the scale-free exponent c, which states

the fact that P(k) remains invariant under renormalization

(Equation 5). The corresponding values obtained were consistent

with our theoretical predictions, confirming the validity of our

approach (Tabel 4).

The duplication-divergence model of network evolution
enables the reconstruction of ancient interactomes

According to the duplication divergence model, present-day PPI

networks evolved from ancestor PPI networks through protein

duplication and loss events followed by diversification of function

and interactions. As the evolution of proteins can be well

reconstructed using the concepts of orthology and paralogy, the

Clusters of Orthologous Groups/ Nonsupervised Orthologous

Groups (COG/NOG) [65] assignments of all proteins were

retrieved from the eggNOG 2.0 database [59]. Recent proteins

were assigned to the NOGs of the most recent level according to

the lineage of the organism and the taxonomic resolution of

eggNOG 2.0. If multiple proteins were assigned to the same

NOGs, duplication events have been reconstructed. This process

was repeated between the NOG levels until the COG/NOG level,

representing the last universal common ancestor (LUCA), has

been reached. The NOGs on the different (evolutionary) levels

represent the ancestral proteins at this evolutionary timepoint.

Figure 2A shows an example of the reconstruction process for a

subset of the ancestral networks of S. cerevisiae. The fuNOGs in

Figure 2A (F1-F7) represent proteins in the ancestral fungi,

KOGs/euNOGs (K1-K3) represent proteins in the ancestral

eukaryotes and the COGs/NOGs (C1–C2) represent proteins in

the LUCA. The two yeast proteins P1 and P2 which are assigned

to F1 indicate a duplication of F1 in S. cerevisiae.

While the ancestral nodes are obtained from the eggNOG

database, the reconstruction of ancestral interactions is much more

difficult. Although protein interactions are likely to be conserved

between pairs of orthologs (̀
`
interologs"), the limited knowledge

about recent interactions in many species and the link dynamics

after duplications make it impossible to use this principle for the

reconstruction of the links in ancient PPI networks. Thus, the most

promising approach is to transfer interactions measured in today’s

PPI networks back in time, based on a model of link evolution.

Here we applied the duplication divergence model (see Materials

and Methods) to estimate the probability of the ancient

interactions based on today’s PPI networks. A probability is

assigned to the interaction between each pair of COGs/NOGs

(representing ancient proteins) based on the number of possible

Figure 1. Input data overview. The numbers of proteins (nodes) and
interactions extracted from STRING at each filter step before
construction of the protein-protein interaction networks. Numbers are
show on log-scale. (A) Number of nodes. (B) Number of interactions.
Violet: STRING experimental score w0, green: conserved on all
evolutionary levels, red: after filtering at s�c , orange bars: after filtering
at s�c considering only largest (connected) component (LC); the largest
component is necessary for the topological analysis.
doi:10.1371/journal.pone.0058134.g001

Table 2. Scaling exponents (c, dB, dM ) for the different
species.

Species c dB dM Scale-free Exponential Fractal

eco 1.9(1) 3.6(3) 1.3(4) Yes No Yes

sce ? 3.0(2) 1.5(1) No Yes Yes

ath ? 1.5(1) 2.1(2) No Yes Yes

cel 2.6(1) 1.6(1) 1.8(2) Yes No Yes

dme 3.0(1) 1.6(1) 1.3(2) Yes No Yes

mmu 2.9(1) 1.7(1) 2.0(1) Yes No Yes

hsa ? 2.9(2) 2.0(1) No Yes Yes

According to the values of the scaling exponents, the seven species listed are
grouped into two categories: scale-free fractal networks and exponential (non-
scale-free) fractal networks. The scale-free networks have a power-law degree
distribution with exponent c, and the non-scale-free fractal networks have an
exponential degree distribution with c*?. Notice that none of the networks
are small-world. Instead, they are characterized by fractal/modular structures.
doi:10.1371/journal.pone.0058134.t002
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interactions between proteins in both COGs/NOGs and the

number of actually observed interactions in the present-day

networks (Figure 2B). The parameters required for the model are

derived by a fitting approach, so that the properties of the resulting

ancient networks resemble those of today’s PPI networks. We

assume that general properties of PPI networks are constant

during evolution (Figure 2C). The reconstruction is additionally

constrained by the underlying reconstruction of the ancient

proteins. The parameters defining which interactions are trans-

ferred back in time are the fraction of interacting pairs in the

ancestral network at time t, a(t), the probability px that an

interaction is retained after a duplication and the probability py

that a new interaction is created de novo. An overview of the fitted

parameters for all organisms is shown in Table 3. We observed

that px values range between 0.5 and 0.7, but py values are

multiple orders of magnitude smaller. These parameters indicate

that link evolution after duplication is the rule and de-novo

creation is the exception. The values are in good agreement with

results from an earlier study on S. cerevisiae [32]. A schematic

representation of the reconstruction of the ancestral networks is

given in Figure 3, which shows the networks at the evolutionary

levels that were reconstructed for S. cerevisiae.

The consistency of the ancient PPI network was investigated by

calculating their pair-wise overlaps. Therefore, the numbers of

overlapping nodes and interactions between the organisms on all

evolutionary levels were obtained (Figure S4). S. cerevisiae has a

relatively large overlap with all other species due to its network

size, which is the largest of all organisms considered in the study.

Whereas H. sapiens shows relatively large overlaps with all other

organisms, the highest overlap is, as expected, with M. musculus,

which is evolutionary most closely related to H. sapiens. E. coli,

which has the third largest network of the organisms, exhibits

small overlaps to all other organisms, except for S. cerevisiae, which

is the only other unicellular organism among the organisms of this

study.

The change of interactome structures over time is
explained by multiplicative growth mechanisms

The reconstructed ancestral PPI network represent a series of

snapshots in the evolution of the present-day networks of the

Figure 2. An example of the reconstruction process of the S. cerevisiae ancestral networks. (A) Illustration of the network reconstruction
process. A subset of the empirical PPI network of S. cerevisiae is shown. The phylogenetic trees demonstrate how the proteins are grouped into COGs
at different evolutionary levels. This information is used to identify the ancestral nodes. Note C2(COG0515) comprises other proteins which are not
shown here. (B) The interaction between each pair of COGs is assigned a probability qm(n) based on the duplication-divergence model. (C) The fractal
dimension dB versus the cutoff qc for the ancestral prokaryote network of yeast. By increasing qc , dB approaches to the value of the present-day
network (dashed line). We choose cutoff q�c~5|10{5 so that the ancestral network has the some fractal dimension as the present-day network. For
qcwq�c , dB remains (approximately) as a constant.
doi:10.1371/journal.pone.0058134.g002
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respective species. By measuring the structural features of the

networks at these different time points, the growth principles of the

PPI network can be studied. Our results suggest a multiplicative

growth mechanism (see Materials and Methods) as proposed in

Ref. [33].

We first studied the PPI networks S. cerevisiae, which is the largest

network in our analysis. Figure 4A shows that the time-dependent

generator n(Dt), as well as the number of nodes N(t) (see

Equations 13 and 14), follows an exponential form with the nodes

growth rate rN~0:23(3)/Gyr. The linear scaling between ‘(t0)
(the distance between two present-day proteins) and ‘(ta) (the

distance between two corresponding COGs/NOGs at time ta) on

all evolutionary levels is shown in Figure 4B. The growth rate of

the distances is found to be rl~0:07(1)/Gyr for the S. cerevisiae

network (Figure 4C). The two growth rates satisfy the condition

rN=rl~dB (Figure 4D and Table 4). The result relates the dynamic

growth rates rN and rl , to the static exponents dB. This means that

the nodes and distances do not grow independently but they grow

at rates with a fixed ratio which is equal to the fractal dimension

dB and therefore conserve the fractal structure rather than

becoming small-world. The linear scaling between k(t0) (the

degree in the present-day network) and k(ta) (the degree of the

corresponding COG/NOG at time ta) is shown in Figure 4E. The

growth rate for the interactions rk*0 was found for S. cerevisiae,

which suggests c~? according to Equation (19). This implies that

the S. cerevisiae network has an exponential degree distribution,

which is consistent with the direct observation of the static network

structures (Table 4 and Figure S5). While the multiplicative

growth was originally proposed as a growth mechanism of nodes,

distances and degrees [33], simple generalization of the same

mechanism could be used to predict the growth rate of modularity

(Equation 21 and 22). For example, it was found that dM~1:5(1)
and rl~0:07(1)/Gyr, Equation (22) predicts rM~0:11(2)/Gyr.

This assumes that the exponent dM is invariant, although the

modules might involve with time.

For studying the growth mechanisms in the PPI network of

other species, we selected the two further larger networks (E. coli

and H. sapiens) and one PPI network representing the smaller

networks (M. musculus). We observed multiplicative growth

mechanisms also for these three PPI networks (Table 4 and

Figures S6, S7 and S8), indicating that these growth principles are

species-independent and thus universal. Furthermore, the degree

Table 3. Fitting parameters in the duplication-divergence model for all organisms.

Species px py a(t)

prNOG roNOG maNOG veNOG inNOG meNOG fuNOG KOG/euNOG COG/NOG

eco 0.7 0.0008 0.007

sce 0.7 0.0002 0.0008 0.0007 0.001

ath 0.7 0.0001 0.003 0.008

cel 0.5 0.0004 0.002 0.001 0.005

dme 0.5 0.0004 0.003 0.004 0.004 0.004

mmu 0.7 0.0002 0.001 0.001 0.001 0.001 0.001 0.003

hsa 0.7 0.0002 0.0002 0.0004 0.0005 0.0005 0.0003 0.0004

px and py are time-independent and describe the probability that an interaction is retained after a duplication and the probability that an interaction is created de novo,

respectively. The fraction of interacting pairs in the ancestral network at time t is represented by a(t). There are in total nine ancestral time levels for the organisms
investigated: the ancestral primates (prNOG), the ancestral rodents (roNOG), the ancestral mammals (maNOG), the ancestral vertebrates (veNOG), the ancestral insects
(inNOG), the ancestral animals (meNOG), the ancestral fungi (fuNOG), the ancestral eukaryotes (KOG/euNOG), and the LUCA (COG/NOG). Existing time levels are specific
for every species depending on its lineage.
doi:10.1371/journal.pone.0058134.t003

Figure 3. Ancestral networks that were reconstructed for the S. cerevisiae PPI network. Following the phylogenetic tree, PPI networks on
different evolutionary levels were (re-)constructed: the present-day yeast (present-day protein), the ancestral fungi (fuNOG, last common ancestor of
fungi), the ancestral eukaryote (KOG/euNOG, last common ancestor of animals, plants and fungi), and the Last Universal Common Ancestor (COG/
NOG, last common ancestor of archaea, bacteria, and eukaryotes). The colors of nodes represent the different functional categories extracted from
the eggNOG database [59].
doi:10.1371/journal.pone.0058134.g003
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exponents, fractal dimensions and the modularities obtained from

this dynamic analysis were found in very good agreement with

those from the static analysis described above (Table 4). Our

results confirm the proposed relationship between the static scaling

exponents and the dynamic growth rates (Figure 5). The core of

the results are the exponential growth of the system quantities (N,

‘, k, Q), the relations between the static exponents (dB, dk, dM , c)

and the dynamic rates (rN , rl , rk, rM ) (see Materials and Methods

for a detailed explanation).

Discussion

The evolution of protein interaction networks is much less

studied compared to e.g. the evolution of DNA and aminoacid

sequences. This is not only a consequence of our sparse data on

PPI networks, as experimental approaches have intrinsic limita-

tions and genome-wide screens are very costly. Complete PPI

networks, considering then entire networks of protein-protein

interactions across all possible environmental conditions and

developmental stages, are far from being characterized even for

unicellular model organisms such as E. coli or S. cerevisiae. There are

also a number of conceptual questions how to study the evolution

of networks. On which levels are biological functions relevant for

the evolution of a PPI network (e.g. on the levels of binary

interactions, protein complexes, functional modules or entire

networks)? How are the emergent features of a PPI network

selected in evolution (e.g. robustness and stability)? How is the

evolution of PPI networks connected with other types of molecular

networks? Most of these questions could hardly be answered until

now. Here we focus on one of the most basic problems in PPI

network evolution: what are the universal dynamic principles by

which PPI networks grow and change over time? The increasing

amount of PPI data for different organisms as well as orthology

reconstruction on different taxonomic levels allowed us to

investigate the network topology and growth of multiple present-

day and presumed ancient organisms in this study.

The structure of present-day PPI networks from multiple
species

Ideally, complete PPI networks from multiple species would

have been used for this study. Due to the limitations in the

experimental determination of PPI, no such data are so far

available. Therefore we had to compile a representative set of

input PPI networks from the heterogeneous, incomplete and

erroneous PPI data available. Although the integrative STRING

database very much simplified this task by providing the PPI data

from multiple organisms in a unified database scheme, the

Figure 4. Multiplicative growth mechanism of the S. cerevisiae
PPI network. (A) Semi-log plot of n(Dt) vs. Dt. The growth rate
rN~0:23(3) is obtained from a linear fitting. The unit of time is Gyr. (B)
Scaling between ‘(t0) and ‘(ta). Each point is an average over many
pairs of nodes in the network with the same ‘(ta). The slope of the
linear fitting gives a(Dt), where Dt~t0{ta is the time difference
between two evolutionary levels. (C) Semi-log plot of a(Dt) vs. Dt. The
growth rate rl~0:07(1) is obtained from a linear fitting. (D) Log-log plot
of n(Dt) vs. a(Dt). The scaling shows that the ratio between two growth
rates (rN=rl~3:3(8)), is close to the static measure of the fractal
dimension dB~3:0(2). This confirms the relationship Equation (16). (E)
Scaling between k(t0) and k(ta). Each point is an average over many
nodes with the same k(ta). Large degrees (kw27) are not included in
this plot since there is not enough number of samples to make
meaningful statistics. The slope of the linear fitting gives s(Dt)*1:0,
which is consistent with an exponential degree distribution.
doi:10.1371/journal.pone.0058134.g004

Table 4. Scaling exponents, growth rates and their relationships.

static exponents dynamic growth rates

Species dB c dk 1zdB=dk(~c) rN rl rk rN=rl (~dB) 1zrN=rk(~c) rk=rl (~dk)

eco 3.6(3) 1.9(1) 3.3(4) 2.1(1) 0.06 0.02 0.07 3 1.9 3.5

sce 3.0(2) ? 0.0(1) ? 0.23(3) 0.07(1) 0.0(1) 3.3(8) ? 0

mmus 1.7(1) 2.9(1) 0.8(1) 3.1(4) 0.22(3) 0.15(1) 0.14(2) 1.5(3) 2.6(4) 0.9(2)

hsa 2.9(2) ? 0.0(2) ? 0.23(2) 0.08(1) 0.0(1) 2.9(5) ? 0

Scaling exponents (dB , c, dk), growth rates (rN , rl , rk) and their relationships derived from the dynamic analysis (The growth rates of E. coli do not have uncertainties
because there are only two time levels). Here we selected the three largest networks (E. coli, S. cerevisiae, and H. sapiens) and one sample (M. musculus) representing the
smaller networks.
doi:10.1371/journal.pone.0058134.t004
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distribution of experimental interaction scores was very different

among the selected species. This might result from different

experimental strategies, but makes the filtering by a static score

threshold questionable. For our study we expected the present-day

PPI networks to represent interactions of comparable strength and

confidence. A novel filtering approach based on the assumption of

self-similar topology was therefore implemented for the filtering of

the initial PPI data from the STRING database. We solved the

problem by applying a percolation analysis, which is based on the

idea of strength of links inspired from sociology, and has been

recently used to define functional brain networks from fMRI

signals [66]. The percolation theory unambiguously defines the

critical threshold for the ranked scores in the STRING database,

which separates the small-world from the large-world of self-

similar structures: above or at the critical connectivity, strong links

form a highly modular, large-world fractal backbone, and below

the critical connectivity, weak ties establish shortcuts between

modules converting it to a small-world network [66,67]. The

resulting score thresholds varied significantly between the species.

Considering the scoring scheme of the STRING database, this

might be explained by varying proportions of individual vs. high-

throughput experiments in the database. However, in all networks

a major fraction of the interactions was removed through the

filtering. The remaining PPI are expected to form representative

(as defined by network topology) interaction networks on a species-

specific confidence level. Remarkably, a significant fraction of

nodes was removed as they were not represented on all taxonomic

levels of clusters of orthologous groups in the eggNOG database.

This phenomenon is not only present in the version 2.0 of this

database, but to a different extent also in the new version 3.0.

Besides technical reasons it might also be caused by complex

evolutionary histories (e.g. due to horizontal gene transfer) in

protein families. The filtered PPI networks in our study therefore

contain only proteins with a clearly traceable, mainly vertical

evolution. The success of the filtering operations can not be

directly assessed, as no additional gold-standard PPI data are

available. However we observed that structural and topological

properties of the filtered PPI networks were comparable also

beyond the initial assumption of self-similarity, indicating that

these data are a reasonable basis for further analysis in this study.

Reconstructing ancient PPI networks based on the
duplication-divergence model

The duplication-divergence mechanism has been proposed by

numerous previous studies for the dynamic growth of PPI

networks. Phenomena like preferential attachment and correlation

of evolutionary rate vs. degree in PPI networks might be

consequences of this growth rules. To challenge this theory we

developed an algorithm for the reconstruction of ancient PPI

networks based on present-day data. Although the parameters of

the duplication-divergence model might be variable in evolution-

ary time, the limited data available make only a general estimation

possible. The duplication-divergence model comprises two funda-

mental components: gene duplications and link dynamics. The

evolution of genes has been directly reconstructed from clusters of

orthologous groups. As these clusters are widely used in

bioinformatics e.g. for prediction of gene function, the node

structure of the ancient networks can be considered to be very

authentic. However, it embodies only a fraction of the ancient

proteomes. Proteins without present-day interactions and proteins

removed during the initial filtering are missing, as well as proteins

that have been lost in the evolution of the species selected for this

study. The ancient nodes therefore specifically represent the

ancestors of the nodes in the present-day PPI networks.

Because the link dynamics are so far inaccessible by any

orthology-driven approach, we developed an algorithm to

reconstruct the most probable ancestral interactions based on

the stochastic duplication-divergence model. The fitting parame-

ters in this model were determined from the COG data, which are

independent of the network topology. As sequences of genes,

interactions are mainly created through gene duplication. How-

ever, previous studies did not agree whether it is more likely to

retain or to lose an interaction after gene duplication [32,37,68].

In contrast to the evolution of sequences, de novo gain of

interactions are expected to occur much more frequent than the

de novo formation of genes. This complicates the reconstruction of

ancestral interactions significantly. Here we have developed a

solution of this problem based on a novel stochastic model of

duplication/divergence constrained by the node structure (COG/

NOG based) and the assumption of self-similar topology for the

determination of the interaction probability cutoffs. As expected,

Table 3 suggests for all species that the probability to retain an old

interaction is equal or higher (0.5–0.7) than that to lose an

interaction, and is several orders higher than that to gain a new

interaction (0.0001–0.0008). That is, pxw1{px&py. This means

that the majority of present-day interactions are inherited from

ancestral interactions, while the generation of new interactions is

much less frequent. A comparison of our results to values from

earlier studies on S. cerevisiae [32,37,68] indicates very similar size

ranges for the probability for retaining an interaction after a

duplication and the probability for creating a new interaction de

novo. The good agreement between our results and results from

earlier studies, conducted on different datasets using different

approaches, further supports the duplication divergence model of

network evolution.

While it is known that the duplication-divergence model results

in an exponential growth of the network size [45], there is no

simple analytical way to predict the dynamics of distance and

modularity based on the model. However, it is important to note

the connections between the network dynamics and the param-

eters in the duplication-divergence model. For example, if

px~1:0, the distances between proteins remain the same (Figure

Figure 5. Summary of the evolutionary mechanism. Conservative
and multiplicative laws determine the static scaling exponents (dB, dk ,
dM , c) in terms of growth rates (rN , rl , rk , rM ). The three theoretical
predictions (dB~rN=rl , c~1zrN=rk , and dk~rk=rl ) have been
corroborated by empirical calculations, while the remaining relation
dM~rM=rl is a prediction open for test.
doi:10.1371/journal.pone.0058134.g005
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S9C) after duplications, while the number of proteins grows

exponentially. This results in a network of small-world structure

and exponential dynamics, which shows that the duplication-

divergence process does not necessary imply the fractality and the

multiplicative growth. When pxv1:0 as observed in Table 3, there

is a probability that an old interaction is deleted, and the new

protein is connected to the old protein through a longer path

(Figure S9C). This increases the distances between proteins. In

fact, based on direct measurements of the reconstructed networks,

we found multiplicative (exponential) growth of distances. The

multiplicative growth of both, nodes and distances, conserves the

fractal/modular structure rather than becoming small-world.

A direct evaluation of the results is impossible as independent

data on ancient PPI networks is unavailable. However, the

consideration of different species in this study enables an indirect

assessment of our modeling results. Ideally, if the initial present-

day PPI networks would be complete and free of errors, they

should result in equivalent networks on the ancient taxonomic

levels. E.g, the present-day H. sapiens and M. musculus networks

should predict the same ancient networks for the ancestral

mammal, the ancestral vertebrate etc. Assessing the pairwise

similarities between the ancient PPI networks, we observed partial

overlaps corresponding to the size of the present day networks

(representing completeness) and also according to the lifestyle and

evolutionary distance of the organism. These results support the

validity of the reconstruction algorithm based on the duplication-

divergence model, but they also indicate the substantial limitations

of the present-day PPI data.

Despite the strong evidence for the duplication-divergence

model, the possibility of a model-dependent bias may still remain.

The model favors a multiplicative growth rather than a linear

growth over a relatively wide range of parameters. Further studies

are required to test whether this preference is a biological

consequence, or induced by the choice of the model. On the

other hand, there exist other models [69] consistent with a

multiplicative growth. However, these models generally have no

relevance to biological evolution, and therefore are not used in the

study of PPI network evolution.

Universal dynamic principles determine the growth of
PPI networks

The explicit reconstruction of ancestral PPI networks for 7

selected species provides the unique opportunity to study their

growth dynamics. Although the filtering of initial PPI data and the

reconstruction algorithm utilize assumptions of fractal topology,

they do not necessarily result from multiplicative growth. This

means, whereas multiplicative growth implies fractal topology,

other growth mechanisms might produce fractal networks as well,

such as for instance a pure percolation process on the network

[70]. Therefore we analyzed the growth of number of nodes,

number of edges, size and modularity of the networks over time for

the three larger networks and one selected smaller network. In all

networks we found a very good agreement between the

multiplicative growth principle and the observations in the

present-day and ancient PPI networks. Furthermore we found

an excellent matching between the results from static and dynamic

analysis, which are independent approaches. These results support

both the duplication-divergence model and multiplicative growth

as fundamental mechanisms in the long-term dynamics of PPI

networks.

Our approach allowed to determine the network topologies of

multiple present-day and presumed ancient organisms based on

two widely used databases - STRING, providing information

about functional and physical protein interactions, and eggNOG,

providing information about the evolutionary relationships of

proteins. To our knowledge, such an extensive characterization of

multiple extant and ancient networks has not been performed until

now, as it is important for formulating and verifying mathematical

models describing the evolution of protein networks. The network

properties determined from topological network analysis corre-

spond well to the properties determined from dynamic analysis

based on the duplication-divergence evolutionary model. This

provides strong evidence for the correctness and the universality of

the proposed mathematical model of network dynamics and

evolution.

Materials and Methods

Databases
A database dump of the STRING database (release 8.3) was

downloaded from ftp://string-db.org/ and a local database copy

was set up. Binary protein interactions for the studied organisms

[71] (Table 1) with experimental scores above zero were extracted

to obtain experimentally confirmed physical interactions. The

eggNOG database (release 2.0, ftp://eggnog.embl.de/eggNOG/

2.0/) was used to obtain the assignment of proteins to clusters of

orthologous groups (COGs/NOGs) on different taxonomic levels.

These levels are species-specific and defined in the eggNOG

database. There are in total nine ancestral time levels for the

organisms investigated: the ancestral primates (prNOG), the

ancestral rodents (roNOG), the ancestral mammals (maNOG),

the ancestral vertebrates (veNOG), the ancestral insects (inNOG),

the ancestral animals (meNOG), the ancestral fungi (fuNOG), the

ancestral eukaryotes (KOG/euNOG), and the LUCA (COG/

NOG). Figure 3 exemplifies the ancestral time levels for S. cerevisiae.

In the initial filtering only proteins that were conserved on all

evolutionary levels defined for the respective species were

considered, thus every protein had an assignment to all its

evolutionary levels. Our reconstruction algorithm and reconstruct-

ed networks are available at http://fileshare.csb.univie.ac.at/

ppi_evolution_pone2013.

Reconstruction of the filtered present-day protein
interaction networks

The STRING confidence scores were used to assess the

reliability of the protein-protein interactions. For the identification

of the score threshold for reliable interactions the finding of Song

et al [28] that PPI networks are scale-invariant and self-similar was

taken as a basis. A threshold score s�c above which interactions

were deemed reliable was determined and confirmed for each

organism by the following three independent methods:

a) Percolation analysis. s�c can be found as the threshold of a

percolation transition of the network. When networks are

reconstructed for all possible confidence scores, the percola-

tion threshold s�c represents the first jump in the size of the

largest cluster, while the size of the second largest cluster

peaks at this point (see Figure S2A). The percolated cluster,

also called giant connected component, is formed by links

whose confidence score is higher or equal to s�c . We observed

a series of jumps in the percolation process, which suggests a

multiplicity of percolation transitions [66,72]. This is different

from a random percolation (Figure S2A inset), where only

single transition point exists. Our results show that the

percolation process of PPI networks is more complicated than

a simple uncorrelated percolation process, due to the modular

organization and the strong correlations between protein

interactions.

Evolution of Protein-Protein Interaction Networks

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e58134



b) MEMB-algorithm. The box-covering algorithm MEMB [60]

(Figure S2B) was used to tile the network with the minimum

number of boxes NB of a given box diameter ‘B. ‘B was

defined such that the maximum distance in a box is smaller

than ‘B, and distance was measured as the number of links on

the shortest path between two proteins. A power-law scaling

of NB and ‘B at s�c confirms the fractality of the network at

the percolation threshold (Figure S2C).

c) Renormalization group analysis. The renormalization group

approach [61] was used for another confirmation of the s�c
threshold as the transition point between small-world and

fractal phases. The renormalized network is built by replacing

the boxes bỳ̀ supernodes" and two supernodes are connected

if there is at least one link between two nodes in their

respective boxes. The relationship between the average

degree of the renormalized network, zB, and the average

number of nodes in each box xB~N=NB~‘dB

B gives

information about whether the network is small-world

(positive slope), fractal (negative slope) or at the phase

transition s�c (slope of 0) (see Figure S2D).

The addition of links of scores below s�c (defined from

percolation analysis, Figure S2A) converts a fractal network

(above s�c ) into a small-world network. That is, the power-law

relation (Equation 1) transforms into an exponential decay

characteristic of small-world (MEMB-algorithm, Figure S2C),

and the slopes become positive in Figure S2D (renormalization

group analysis). Therefore, the three independent methods are

consistent with each other. From the resulting networks, the largest

connected component at sc* was used for topological analysis.

Topological properties of the networks
The fractal dimension dB was measured from the MEMB

algorithm, by fitting the relationship between the minimum

number of boxes NB and the box diameter ‘B to a power-law

function [28] (see Figure S2C for S. cerevisiae and M. musculus):

NB(‘B)*‘
{dB
B , ð1Þ

where dB is the fractal dimension which characterizes the self-

similarity between different topological scales of the network. The

values of dB for all species are summarized in Table 2.

The degree distribution P(k) was measured and the degree

exponents c [31] were determined. For some networks (M.

musculus, C. elegans, D. melanogaster and E. coli) it was shown to follow

a power law distribution with degree exponent c:

P(k)*(kzk0){c, ð2Þ

where k0 is a small cutoff degree. For others (S. cerevisiae, H. sapiens

and A. thaliana) the parameters became c??, k0?? with fixed

kc~k0=c and the equation had an exponential form:

P(k)*e{k=kc , ð3Þ

Figure S5 shows P(k) of two species, S. cerevisiae (exponential) and

M. musculus (scale-free), which are characteristic of the behaviors

found across all species. Table 2 summarizes the values of c for all

the species.

The above two properties, the scale-invariant property,

Equation (1), and the degree distribution, Equation (2), can be

related through scaling theory in a renormalization procedure[28].

At scale ‘B, the degree of a hub k changes to the degree of its box

k’, through the relation:

k’~k(‘B)k,with k(‘B)*‘
{dk
B , ð4Þ

A new exponent dk relates the fractal dimension dB and the scale-

free exponent c through

c~1zdB=dk, ð5Þ

which states the fact that P(k) remains invariant under

renormalization. For the S. cerevisiae PPI network, we found

c*?, dB~3:0(2), and dk*0, and for the M. musculus PPI

network, we found c~2:9(1), dB~1:7(1), and dk~0:8(1) (Figure

S10). The values of dk are summarized in Table 4. The results are

consistent with our theoretical prediction, Equation (5).

Modularity
The modular organization [35,66,73] of the network was

investigated by the analysis of the links inside and between

topological modules. Modules were defined by the boxes detected

by MEMB algorithm. To capture the degree of modularity of the

network, the modularity ratio Q(‘B) was defined as a function of

the size of the modules, ‘B:

Q(‘B)~
1

Nc

XNc

i~1

Li
in

Li
out

, ð6Þ

where Li
in is the number of links between nodes inside the module

i, Li
out is the number of links from module i connecting to other

modules and Nc is the number of modules needed to tile the

network for given size ‘B. Large values of Q correspond to a

structure where the modules are well separated and therefore to a

higher degree of modularity. The degree of modularity depends on

the scale as:

Q(‘B)*‘
dM
B ð7Þ

which defines the modularity exponent (see Figure S3).

Construction of the ancient protein interaction networks
The reconstruction of the ancient networks is based upon two

integral parts: the identification of the ancestral proteins due to

their evolutionary relationships and their assignment to COGs/

NOGs (described above) and a duplication-divergence model

describing the link dynamics during evolution. A fundamental

assumption for both parts is that the structural network features

are time-invariant.

The ancestral nodes were obtained from the assignment of

present-day proteins to COGs/NOGs provided by the eggNOG

database on different time levels.

The next crucial step was to decide when to transfer present-day

interactions to the presumptive ancient network. Each COG could

comprise several proteins, and the proteins in the same COG pair

may or may not interact. Rather than transferring every present-

day interaction, it is necessary to assess the probability that the

respective COGs interact. For example, if two COGs comprise 10

proteins each, but there is only one interaction (out of 100 total

possible interactions) between these proteins in the present-day

network, it is improbable that these COGs (or the ancient proteins

they represent) actually interacted.
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In order to estimate this probability, the relationship between

the number of total possible interactions and the number of actual

interactions between the proteins which participate in these COGs

is considered. As illustrated in Figure 2B, if two COGs A and B

comprise mA and mB proteins each, then there are m~mA|mB

total possible interactions between the proteins in the COGs. Out

of the m possible interactions, let n be the number of interactions

that are actually detected in the present-day experimental data.

One simple way is to assume the ancestral link probability between

COGs A an B is proportional to n=m. However, this assumption is

oversimplified, since this probability does not only depend on the

ratio n=m, but also on the value of m. For example, depending on

the data it is 10 times more probable to find n~1 actual

interaction out of m~2 total possible ones, than to find n~4
actual interactions out of m~8 possible ones, although they have

equal ratio n=m.

In the reconstruction method, a probability qm(n) (see below

how qm(n) is calculated) is assigned to the ancestral interaction

between the two COGs. The value of qm(n) is calculated from a

stochastic model described below. This way, a network of COG-

COG interactions with weighted edges given by qm(n) is

constructed, where the edges with large weights are regarded as

the most-likely interactions constituting the ancestral network.

The final step is to determine a proper cutoff of qm(n) since

COG pairs with low qm(n) would most probably not interact.

Only interactions with probability higher than qc (qm(n)wqc) are

included in the analysis. Changing this cutoff value allows to

switch the sensitivity or selectivity of the ancestral interactions. To

determine the cutoff, it is required that the reconstructed networks

at different time levels have invariant topological features. In

practice, the fractal dimension dB in each ancestral network is

measured explicitly as a function of the cutoff qc (Figure 2C), and a

critical value of q�c is determined when dB reaches to the same

value as the present network. For example, in the case of the S.

cerevisiae, we find q�c~5|10{5.

In order to estimate the probability of the ancestral interactions

qm(n), we developed a symmetric stochastic evolution model of the

protein interaction network based on duplication-divergence

processes [38–41]. The model takes into account the deletion of

duplication-derived interactions and de novo creation of interac-

tions. An analytical function of link probability is derived to

compare with experimental data and determine the parameters.

Based on the mechanism of genomic duplication and diver-

gence two general modes are considered: (i) Mode I (Figure S9A):

protein A initially interacts with protein B, and protein A is

duplicated into two proteins A and A9. The duplicated proteins A

and A9 have equal probability px to copy the interaction link with

protein B. (ii) Mode II (Figure S9B): protein A and B do not

interact with each other initially. There is a probability py that the

duplicated proteins A or A9 gains a new interaction with protein B.

The evolution of the network is completely specified by the

parameters px, py and its initial condition. pi describes the

probability of an interaction between any pair of new proteins

after i total duplications (protein A and B duplicates iA and iB
times each, and i~iAziB). Two successive duplication steps can

be represented by the recursive relation of pi

pi~pi{1pxz(1{pi{1)py, ð8Þ

where the first term comes from the contribution of the existing

link at (i{1)th step, and the second term is from the non-existing

link. Equation (8) can be solved recursively, producing a formula

of pi which only depends on px, py and the initial condition:

pi(p0,px,py)~p0giz
1{gi

1{g
py, ð9Þ

where g:px{py. Here p0 describes the initial condition: p0~1 if

the pair of proteins initially interact with each other, otherwise,

p0~0.

After iA (iB) duplications, the initial protein A (B) evolves into a

cluster comprising mA~2iA (mB~2iB ) present-day proteins.

m~mA|mB is the total number of possible interactions, and

i~ log2 (m) is the total number of duplications (Figure S9B). Let

pi(1):pi(p0~1,px,py), and pi(0):pi(p0~0,px,py). For a pair of

clusters with m total possible interactions, the probability pm(n)
that n pairs of these proteins actually interact, given that each pair

have independent probability pi, is represented by a binomial

distribution. If the initial pair of ancestral proteins interact, then

pm(n)~
m

n

� �
pn

i (1)½1{pi(1)�m{n
; if they do not initially interact,

then pm(n)~
m

n

� �
pn

i (0)½1{pi(0)�m{n
. pm(n) of a network is a

combination of these two cases. Assume that a(t) is the fraction of

interacting pairs out of total possible pairs in the ancestral network

at time t. pm(n) can be calculated as:

pm(n)~a(t)
m

n

 !
pn

i (1)½1{pi(1)�m{n
z

½1{a(t)�
m

n

 !
pn

i (0)½1{pi(0)�m{n
,

ð10Þ

The first term describes the interacting pairs in the ancestral

network, and the second term is from the non-interacting pairs.

Note that pm(n) depends on time t since we assumed that a(t)
could be different at different time levels.

Equation (10) depends on three parameters px, py and a(t) for

each time t. It was assumed that px and py are constants at

different time levels, and a(t) is time-dependent. To determine

these parameters, pm(n) is fitted to the values derived from the

present-day networks and COG data. For each evolutionary level

t, we first found the number of possible COG pairs that contains m

total possible interactions, Nt,m. Out of Nt,m total pairs, we

counted the number of COG pairs that have n actual interactions,

Nt,m,n.

Statistically, the ratio Nt,m,n=Nt,m should represent the proba-

bility pm(n). In order to find the best fitting, we minimized the

objective function

F~
Xtmax

t~1

Xmmax

m~2

Xm

n~0

log pm(n)ð Þ{ log
Nt,m,n

Nt,m

� �� �2

, ð11Þ

where tmax is the maximum time level, and mmax is the maximum

m used in fitting. Our objective function is very similar to the

standard residual sum of squares (RSS). The logarithm values are

used here because pm(n) has an exponential behavior (Figure S11).

Minimization of Equation (11) is an unconstrained nonlinear

optimization problem on multiple parameters, which was handled

by the function fminsearch in MATLAB R2012a.

pm(n) was fitted to the measured values for all organisms. To

have meaningful sample sizes, m was restricted to be between 2

and 8. Figure S11 shows the results of three species: S. cerevisiae, M.

musculus, and H. sapiens. The fitted curves are in good agreement
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with empirical data. The fitted parameters for all species are

summarized in Table 3.

Since qm(n) is the probability to have an ancestral link for a

given m and n, it is proportional to a(t)
m

n

� �
pn

i (1{pi)
m{n, which

is the first term in Equation (10). With a proper normalization, we

obtained:

qm(n)~
a(t)

m

n

� �
pn

i (1)½1{pi(1)�m{n

a(t)
m

n

� �
pn

i (1)½1{pi(1)�m{n
z½1{a(t)�

m

n

� �
pn

i (0)½1{pi(0)�m{n

:ð12Þ

Equation (12) was used to reconstruct the ancestral networks (see

Figure 2B) with fitted parameters from Table 3.

Determination of the growth principles
To determine the dynamical processes governing the changes in

network structures over time, the growth rates of nodes, distances

and degrees were empirically determined. In detail, the following

values were determined directly from the networks at each

timepoint t: the number of nodes N, the number of links k, the

distance ‘ between two COGs. Our results support the multipli-

cative mechanism proposed in [33] to account for the fractal,

modular and scale-free nature of PPI network structures.

The determined growth rates were set in relation to the scaling

exponents of the networks, which were obtained from the static

topological network analysis. Estimations for the divergence times

between the organisms were derived from [74] and are listed in

Table S2, which provide the time ta representing the time levels of

COGs/NOGs.

The increase in the number of nodes over time is best

approximated by an exponential function:

N(t)*erN t, ð13Þ

with a growth rate of the number of nodes rN . This implies the

multiplicative growth form of N with a time-dependent generator

n(Dt):

N(t)~n(Dt)N(ta), with n(Dt)~erNDt, ð14Þ

where Dt~t{ta. Figure 4A and Figure S6A show this growth

mechanism for S. cerevisiae and H. sapiens. Table 4 summarizes

measured rN of all species.

Next, we consider the distance between two COGs in an

ancestral network, ‘(ta), and compare with the corresponding

distance ‘(t0) in the present network. ‘(t0) is measured as the

distance between the two hubs in each COG, where a hub is the

protein with maximum degree inside each COG. If two hubs have

the same degree, then the average value was taken. The evolution

of distance ‘ can be modeled by a similar form:

‘(t)~a(Dt)‘(ta), with a(Dt)~erlDt, ð15Þ

This suggests an exponential growth of distances instead of a linear

growth. The multiplicative growth of N and ‘ is consistent with the

fractal scaling law Equation (1). On the contrary, a combination of

exponential growth of nodes and linear growth of distances would

result in an exponential scaling between nodes and distances,

which represents a small-world network [33]. Figures 4B, S6B,

S7A, and S8A show the linear scalings between ‘(t0) (t0 is the

present time) and ‘(ta) for four representative species, S. cerevisiae,

H. sapiens, M. musculus, and E. coli. a(Dt) was obtained by liner

fittings and was used to calculate the growth rates rl (see Figure 4C

for S. cerevisiae and Figure S6C for H. sapiens). The values of rl of all

species are listed in Table 4.

The growth Equations (14) and (15) can be combined to obtain

a power-law relation between the distances and the number of

proteins with an exponent dB given by the ratio of the growth

rates,

dB~
ln n(Dt)

ln a(Dt)
~

rN

rl

, ð16Þ

Equation (16) shows the relation between the static exponent dB

and dynamic growth rates rN and rl . This theoretical prediction is

tested in Figures 4D, S6D, S7B, and S8B, which confirm a power-

law relation between n(Dt) and a(Dt). Table 4 shows that dB

measured from static network structure is in good agreement with

the value rN=rl predicted from dynamic growth rates.

The number of interactions k(ta) of each COG at time ta was

compared with the degree k(t0) in the present yeast network,

where k(t0) was the degree of the hub in each COG. Our results

(Figures 4E, S6E, S7C, and S8C) show that the number of

interactions k also follows a general form of multiplicative growth

with a time-independent generator s(Dt):

k(t)~s(Dt)k(ta),with s(Dt)~erkDt ð17Þ

s(Dt) was measured from linear fitting of this scaling between k(t0)
and k(ta). The growth rates rk were measured and listed in

Table 4. In particular, for networks of exponential degree

distributions (such as S. cerevisiae, H. sapiens and A. thaliana),

s(Dt)*1:0 and rk*0 (see Figure 4E for S. cerevisiae and Figure S6E

for H. sapiens), which suggests that the degrees are invariant.

This dynamic behavior of degrees is consistent with the static

measure of the degree distribution. Using the density conservation

law of degree distribution over evolution

N(ta)P(k(ta))dk(ta)~N(t)P(k(t))dk(t) ð18Þ

the degree distribution Equation (2), and the growth laws

Equations (14) and (17), the following relationship between the

static exponent c and the dynamic rates rN and rk was obtained:

c~1z
ln n(Dt)

ln s(Dt)
~1z

rN

rk

: ð19Þ

Equation (19) was tested in Figures S7D and S8D for scale-free

networks (such as M. musculus, C. elegans, D. melanogaster and E. coli).

For exponential networks (such as S. cerevisiae, H. sapiens and A.

thaliana), Equation (19) suggests c*? since rk*0 as measured in

Figure 4E and Figure S6E. The comparison between c and 1z
rN

rk

is shown in Table 4 with good agreements.

The relationship between N, ‘ and k is closed by the third

equation:
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dk~
ln s(Dt)

ln a(Dt)
~

rk

rl

: ð20Þ

This was tested in Figures S7E and S8E for scale-free networks.

For exponential networks, we found rk*0, and therefore dk*0,

which agrees with the static measurement (Table 4).

Equations (16), (19), and (20) relate the static exponents dB, c,

and dk to the dynamic growth rates rN , rl , and rk. Combining the

three equations together, the static relationship Equation (5) is

recovered, which is originally derived from scaling argument [28].

Similar to the growth laws of N, ‘ and k, an exponential growth

of Q is assumed:

Q(t)~erM t, ð21Þ

and a relationship is predicted as:

dM~
rM

rl

, ð22Þ

This assumes that the modularity exponent dM is invariant during

evolution. Direct test of this assumption would require detailed

analysis of network structure and protein functions, which was left

for future study.

The above results are summarized in Figure 5. At the core of

the results is the exponential growth of the system quantities (N, ‘,
k, M ), and the relations between the static exponents (dB, dk, dM ,

c) and dynamic rates (rN , rl , rk, rM ). Therefore, the multiplicative

growth provides a fundamental mechanism for the evolutionary

principle of PPI networks.

Supporting Information

Figure S1 Distribution of STRING experimental scores.
Box-and-whisker plots showing the distribution of STRING

experimental scores for the organisms investigated. The filter

threshold s�c for each species is indicated by a red line. The plots

were created using the boxplot function of R.

(TIF)

Figure S2 Determine the present-day PPI networks. (A)

Percolation analysis of the present-day S. cerevisiae and M. musculus

PPI networks from the STRING database. We plot the size of the

largest (black) and second largest (red, rescaled and shifted)

connected components (as measured by the fraction to the total

number of nodes) versus cutoff score sc. The first jump of the

largest connected component corresponds to the threshold s�c .

Inset shows schematically an uncorrelated percolation. (B)

Demonstration of the box-covering algorithm MEMB [28,60]

for a schematic network. The network is covered with boxes of size

‘B. (C) Plot of the number of boxes NB versus box size ‘B at

different sc. (D) zB versus xB under renormalization at different sc.

The dashed line indicates the small-world to fractal transition

point s�c .

(TIF)

Figure S3 Modularity of PPI networks. Log-log plot of the

modularity ratio Q(‘B) versus size of the modules ‘B. Each point is

an average over many modules with the same binned ‘B. The

error bars are the standard deviations.

(TIF)

Figure S4 Overlap of the different networks used for the
study. The overlaps between the networks of all organisms on all

evolutionary levels are shown, with the number of overlapping

nodes in (A) and the number of overlapping interactions in (B).

The color intensities represent the relative abundances in a heat

map-like manner, whith the lightest/darkest color referring to the

lowest/highest number in the whole table except the diagonal. For

example, while the interactome sizes are similar in M. musculus and

A. thaliana, the large overlap between the interactomes of H. sapiens

and M. musculus can be attributed to their closer evolutionary

relationship. In case of equal evolutionary distances, the size of the

interactome is decisive for the overlap; e.g. the overlap between E.

coli and S. cerevisiae is larger than the one between E. coli and C.

elegans. In many cases, the overlaps in the ancient networks get

smaller, which reflects the smaller network sizes.

(TIF)

Figure S5 Degree distribution P(k) of PPI networks. Left,

semi-log plot of P(k) shows that the degree distribution of the S.

cerevisiae PPI network is exponential. Right, log-log plot of P(k)
shows that the degree distribution of the M. musculus PPI network is

scale-free (power-law) with degree exponent c~2:9(1).

(TIF)

Figure S6 Multiplicative growth mechanism of the H.
sapiens PPI network. (A) n(Dt) vs. Dt. (B) Scaling between ‘(t0)
and ‘(ta). (C) a(Dt) vs. Dt. (D) n(Dt) vs. a(Dt). (E) Scaling between

k(t0) and k(ta). This figure is analogous to Figure 4 for S. cerevisiae.

(TIF)

Figure S7 Multiplicative growth mechanism of the M.
musculus PPI network. (A) Scaling between ‘(t0) and ‘(ta). (B)

n(Dt) vs. a(Dt). (C)Scaling between k(ta) and k(t0). (D) n(Dt) vs.

s(Dt). (E) s(Dt) vs. a(Dt). This figure is analogous to Figure 4 for S.

cerevisiae. Different from S. cerevisiae, which has an exponential

degree distribution, M. musculus has a power-law (scale-free) degree

distribution (see Figure S5).

(TIF)

Figure S8 Multiplicative growth mechanism of the E.
coli PPI network. (A) Scaling between ‘(t0) and ‘(ta). (B) n(Dt)
vs. a(Dt). (C) Scaling between k(t0) and k(ta). (D) n(Dt) vs. s(Dt).
(E) s(Dt) vs. a(Dt). This figure is analogous to Figure 4 for S.

cerevisiae.

(TIF)

Figure S9 Duplication-divergence model. (A) The two

basic modes for the model. Left, mode I: protein A and B interact

to each other before duplication, and protein A duplicates to A

and A9. After duplication, A and A9 have equal probability px to

keep the interaction with B. Right, mode II: protein A and B do

not interact before duplication. After duplication, A and A9 have

equal probability py to generate a new interaction with B. (B)

Protein A and B duplicate to two clusters of miA and miB proteins

respectively after iA and iB duplications. We have miA ~2iA ,

miB~2iB , the total number of duplications i~iAziB, and the total

number of possible links between cluster A and B

mi~miA|miB ~2i. pn(m) is the probability to have n interactions

out of the m total possible ones. (C) An example of distance growth

in the duplication-divergence model. Left, distance ‘ between two

proteins (red circles) does not change when px~1 (pure

duplication of green circles, without divergence). Right, ‘ increases

when pxv1 due to the loss of interactions. The red nodes are

connected through a long path of interactions between existing

proteins (blue circles).

(TIF)
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Figure S10 The scaling ofk(‘B) vs. ‘B . The renormalized

degree exponent dk is calculated according to Equation (4). As an

example, the inset shows the renormalization relation k’~k(‘B)k
for the case ‘B~3.

(TIF)

Figure S11 Fitting parameters and testing the duplica-
tion-divergence model. Fit of pm(n) to the empirical data of (A)

S. cerevisiae, (B) M. musculus, and (C) H. sapiens. The curves are the

fitted theoretical values, and the scatters are the empirical data.

The model and the data are in good agreement. Parameters px, py

and a(t) (one a(t) for each time level t) of each species are

determined from this fitting.

(TIF)

Table S1 Node and interaction counts at each filter
step. Numbers of proteins and interactions at each filter step

preceding the network construction and analysis. Four different

filters were applied: STRING experimental score w0, conserva-

tion on all evolutionary levels defined for the corresponding

organism in eggNOG, filtering at the percolation threshold s�c , and

filtering at the percolation threshold s�c and considering only the

largest connected component. The largest component (which is

also called giant component in the percolation literatures [62]) is

required for the topological analysis.

(PDF)

Table S2 Divergence times. Estimated divergence times for

the evolutionary levels in the eggNOG database. They represent

the time point when the last common ancestor of a certain

evolutionary level existed. Estimates are derived from the Time-

Tree database [74].

(PDF)
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