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Abstract

While experimental and observational studies suggest that sugar intake is associated with the development of type 2
diabetes, independent of its role in obesity, it is unclear whether alterations in sugar intake can account for differences in
diabetes prevalence among overall populations. Using econometric models of repeated cross-sectional data on diabetes
and nutritional components of food from 175 countries, we found that every 150 kcal/person/day increase in sugar
availability (about one can of soda/day) was associated with increased diabetes prevalence by 1.1% (p ,0.001) after testing
for potential selection biases and controlling for other food types (including fibers, meats, fruits, oils, cereals), total calories,
overweight and obesity, period-effects, and several socioeconomic variables such as aging, urbanization and income. No
other food types yielded significant individual associations with diabetes prevalence after controlling for obesity and other
confounders. The impact of sugar on diabetes was independent of sedentary behavior and alcohol use, and the effect was
modified but not confounded by obesity or overweight. Duration and degree of sugar exposure correlated significantly with
diabetes prevalence in a dose-dependent manner, while declines in sugar exposure correlated with significant subsequent
declines in diabetes rates independently of other socioeconomic, dietary and obesity prevalence changes. Differences in
sugar availability statistically explain variations in diabetes prevalence rates at a population level that are not explained by
physical activity, overweight or obesity.
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Introduction

Global diabetes prevalence has more than doubled over the last

three decades, with prevalence rates far exceeding modeled

projections, even after allowing for improved surveillance. Nearly

1 in 10 adults worldwide are now affected by diabetes [1]. This

striking statistic has led to investigation into the population drivers

of diabetes prevalence. Most of the worldwide rise is thought to be

type 2 diabetes linked to the ‘‘metabolic syndrome’’ – the cluster of

metabolic perturbations that includes dyslipidemia, hypertension,

and insulin resistance. Obesity associated with economic develop-

ment — particularly from lack of exercise and increased

consumption of calories — is thought to be the strongest risk

factor for metabolic syndrome and type 2 diabetes [2–5].

At a population level, however, obesity does not fully explain

variations and trends in diabetes prevalence rates observed in

many countries. As shown in Figure 1, several countries with high

diabetes prevalence rates have low obesity rates, and vice versa.

High diabetes yet low obesity prevalence are observed in countries

with different ethnic compositions, such as the Philippines,

Romania, France, Bangladesh and Georgia, although there are

likely surveillance quality differences between nations [6,7].

Trends in diabetes and obesity are also dyssynchronous within

some nations; while Sri Lanka’s diabetes prevalence rate rose from

3% in the year 2000 to 11% in 2010, its obesity rate remained at

0.1% during that time period. Conversely, diabetes prevalence in

New Zealand declined from 8% in 2000 to 5% in 2010 while

obesity rates in the country rose from 23% to 34% during that

decade. Similar trends of declining diabetes rates despite rising

obesity rates were observed in Pakistan and Iceland. There are not

obvious ethnic or socio-demographic commonalities between these

countries to explain these observations. This population-level

puzzle is accompanied by individual-level data. About 20% of

obese individuals appear to have normal insulin regulation and

normal metabolic indices (no indication of diabetes) and normal

longevity [8], while up to 40% of normal weight people in some

populations manifest aspects of the ‘‘metabolic syndrome’’ [9–12].

These findings direct attention to determining additional risk

factors for development of diabetes. One controversial hypothesis

is that excessive sugar intake may be a primary and independent

driver of rising diabetes rates [13]. Sugars added to processed food,

in particular the monosaccharide fructose, can contribute to

obesity [14], but also appear to have properties that increase

diabetes risk independently from obesity [15]. For example, liver

fructose metabolism in the fed state generates lipogenic substrates
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in an unregulated fashion, which drives hepatic de novo lipogenesis

and reduced fatty acid oxidation, forming excessive liver fat and

inflammation that inactivates the insulin signaling pathway,

leading to hepatic insulin resistance [16,17]. Sugary foods have

been significantly associated with the development of insulin

resistance in laboratory-based studies [18,19]. Reactive oxygen

species are produced by the Maillard reaction [20,21], damaging

pancreatic beta cells, and leading to a subcellular stress response

(the ‘‘unfolded protein response’’ in the endoplasmic reticulum)

that drives insulin inadequacy [22,23]. In concert, insulin

resistance and reduced insulin secretion lead to overt diabetes.

Fructose is often consumed as high-fructose corn syrup (HFCS;

42% or 55% fructose) in the U.S., Canada, Japan, and some parts

of Europe, while the rest of the world primarily consumes sucrose

(50% fructose). Globally, countries have experienced a rise in

sugar supply from an average of 218 kilocalories/person/day in

1960 to over 280 kilocalories/person/day today, with an acceler-

ation in the rate of supply over the past decade. Assuming a 30%

food wastage rate [24], these sugar calories exceed the recom-

mended daily upper limit of 150 kilocalories per man and

100 kilocalories per woman suggested by the American Heart

Association [25].

The issue of whether added sugars may be a population-level

driver of the diabetes pandemic is of importance to global health

policy. If obesity is a primary driver of diabetes, then measures to

reduce calorie consumption and increase physical activity should

be prioritized. However, if added sugar consumption is a primary

driver, then public health policies to reduce sugar consumption

warrant investigation as diabetes prevention proposals—especially

for developing countries where diabetes rates are rising dramat-

ically, irrespective of obesity.

In this study, we conducted a statistical assessment of panel data

(repeated multi-variate data from multiple countries over a time

period) to empirically evaluate whether changes in sugar

availability, irrespective of changes in other foodstuffs, can in part

account for the divergence in diabetes prevalence rates worldwide.

Methods

We used United Nations Food and Agricultural Organization

food supply data [26] to capture market availability of different

food items (sugars, fibers, fruits, meats, cereals, oils, and total food)

in kilocalories per person per day in each country for each year of

the analysis. The dependent variables in the analysis were

International Diabetes Federation estimates of diabetes prevalence

among persons aged 20 to 79 years old from 2000 through 2010

[6]. We controlled for gross domestic product per capita (GDP

expressed in purchasing power parity in 2005 US dollars for

comparability among countries), percent of population living in

urban areas, and percent of population above the age of 65 for

each country in each year of the analysis from the World Bank

World Development Indicators Database 2011 [27], and the

prevalence overweight and obesity (percent of the population aged

15 to 100 years old with body mass index greater than or equal to

25 kg/m2 and 30 kg/m2, respectively) from the World Health

Organization Global Infobase 2012 edition [7]. Data sources and

summary statistics are further described in the Supporting

Information (Text S1 and Table S1).

Data monitoring and quality was assessed through several

approaches. First, a Hausman test [28] was performed to test

whether factors that differ across countries such as the differing

strength of diabetes surveillance systems would systematically

affect our results, ensuring the available data were suitable to

answer our research questions. This assesses for how reports of

diabetes rates and food consumption may systematically differ

between countries, so that such differences can be incorporated as

controls in the statistical models. Selection bias may be an

Figure 1. Relationship between obesity and diabetes prevalence rates worldwide. Obesity prevalence is defined as the percentage of the
population aged 15 to 100 years old with body mass index greater than or equal to 30 kg/meters squared, from the World Health Organization
Global Infobase 2012 edition. Diabetes prevalence is defined as the percentage of the population aged 20 to 79 years old with diabetes, from the
International Diabetes Federation Diabetes Atlas 2011 edition. Three-letter codes are ISO standard codes for country names.
doi:10.1371/journal.pone.0057873.g001
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additional issue for assessing the effect of sugar on diabetes

prevalence rates. Having greater sugar available in a country, for

example, may be an artifact of overall economic development and

increased general food importation, which could temporally

overlap with rising diabetes prevalence irrespective of higher

sugar intake (e.g., due to increased sedentary living or higher

calorie intake leading to obesity). We controlled for this possibility

using a lag of the change in log GDP per capita in our models. We

also modeled the hazard of having high sugar availability rates in

each country, and used this constructed hazard variable to

explicitly control for potential unobserved selection bias (a

‘‘Heckman selection model’’, see Text S1) [29]. We also used a

set of period effects to control for secular trends in the diabetes and

sugar data that may have occurred as a result of changes in

countries’ diabetes detection capacity or sugar importation

policies.

We conducted explicit model selection procedures using

Generalized Estimating Equations (see results in Text S1) to

ensure the model was an optimal choice for the given data [30].

The following regression model was specified, incorporating the

leading factors believed to be related to diabetes prevalence, in

addition to the sugar exposure variable:

DiabetesPrevalenceit~azb1GDPitzb2GDPcit{1z

b3SUGARitzb4FIBERitzb5FRUITitzb6MEATitz

b7CEREALSitzb8OILitzb9TOTALitzb10URBANitz

b11ELDERitzb12OBESEitzntzeit

ð1Þ

In Equation 1, i is country and t is year; GDP is logged per

capita gross domestic product; GDPc is the lag of GDP change;

SUGAR is the number of kilocalories per person per day of sugar

availability (the sum of sugar, sugar crops, and sweeteners); FIBER

is the number of kilocalories per person per day of fiber

(constituting pulses, vegetables, nuts, roots and tubers); FRUIT,

CEREALS, MEAT and OIL are the kilocalories per day per

capita availability for each of these food categories; TOTAL is the

total number of kilocalories per person per day of overall food

availability; URBAN is the percentage of the country’s population

living in urban settings; ELDER is the percentage of the

population that is age 65 or above; OBESE is the obesity

prevalence rate; and g is the set of dummy variables which controls

for period-effects, as described above; and epsilon is the error

variable.

We subsequently added additional variables to test the

associations of the percentage of total calories derived from sugar

or other food components with diabetes prevalence, the duration

of exposure to high calorie availability from sugar, and the effect of

reduced sugar availability. We further tested the impact of

introducing a measure of sedentary behavior, the estimated

percentage of the population aged 15 years and older that is

physically inactive from the International Physical Activity

Questionnaire [31](defined as not meeting any of three criteria:

(a) 5630 minutes of moderate-intensity activity per week; (b)

3620 minutes of vigorous-intensity activity per week; (c) an

equivalent combination achieving 600 metabolic equivalent-

minutes per week). Further control variables were the percent of

persons above age 15 years who currently smoke tobacco, from

the WHO Global Infobase [32], and the percent who engage

heavy episodic alcohol drinking (at least 60 grams or more of pure

alcohol on at least one occasion weekly), from the WHO Global

Information System on Alcohol and Health [33].

We also performed Granger-causality tests, which use the

temporal nature of the data to test whether high sugar availability

preceded an increase in diabetes (‘‘precedence’’) or whether high

diabetes prevalence preceded high sugar availability [34] (see Text

S1). Data were analyzed in STATA v10.1. In all analyses, food

availability data were age-adjusted, regressions were population

weighted, and robust standard errors were computed to ensure

stability of the results in the face of heteroskedasticity and

intragroup correlations.

Results

Correlates of diabetes prevalence
Table 1 presents the results of the cross-national model from

2000 to 2010. Each 150 kilocalorie/person/day increase in total

calorie availability related to a 0.1% rise in diabetes prevalence

(not significant), whereas a 150 kilocalories/person/day rise in

sugar availability (one 12 oz. can of soft drink) was associated with

a 1.1% rise in diabetes prevalence (95% CI: 0.48–1.7%; p,0.001)

after all control variables were incorporated into the model. These

controls included current income, changes in income, urbaniza-

tion, aging, obesity, and the consumption of other foods as well as

period effects (secular correlations that may have occurred simply

due to surveillance changes or economic development). Diabetes

prevalence rates rose 27% on average from 2000 to 2010, with just

over one-fourth of the increase explained by a rise in sugar

availability in this model. In countries like the Philippines,

Romania, Sri Lanka, Georgia and Bangladesh, where high and

rising diabetes rates were observed in the context of low obesity

rates, sugar availability rose by over 20% during the study period.

(It is possible that weight gain, rather than overt obesity, might

account for some of the changes in diabetes, hence our models

were repeated with overweight prevalence rather than obesity in

Table S3, and with measures of physical inactivity rather than

BMI in Table S4, but the results did not change).

Several of the main control variables in the model had

important effects. The coefficient of log Gross Domestic Product

(GDP) per capita was 1.07, which means that a 1% increase in

GDP levels corresponded to a 1.07% rise in diabetes prevalence

(p,0.05), consistent with the notion that economic development is

a powerful correlate to diabetes prevalence [35,36]. Similarly,

variables capturing urbanization and aging populations were

associated with diabetes prevalence; however these variables fell

from significance as total food availability and obesity were

incorporated into the model (Table 1), suggesting that calorie

consumption and obesity are among the pathways by which these

other factors may contribute to diabetes, consistent with cross-

sectional studies [37].

A potential criticism of the basic finding is that, given the effect

of obesity on the risk of diabetes and the high prevalence of both

obesity and sugar availability in developed countries, our results

are not due to sugar per se but rather confounded by rising obesity

rates. In Table 1, we see that sugar availability remained a

significant correlate to diabetes prevalence independent of obesity

and total calorie consumption. When obesity was removed from

the model, the effect size of sugar was not significantly amplified

(beta = 0.0081, p,0.001), suggesting that obesity does not appear

to account for the major part of the impact of sugar on diabetes.

We additionally tested whether sugar availability alone was a

significant predictor of obesity rates independent of the other

control variables (total consumption, urbanization, aging, income,

other foods and period effects), and found the expected

relationship between total calories and obesity, but not individually

Sugar and Diabetes
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between sugar and obesity when total calories was accounted for—

consistent with the hypothesis being tested (see Table S5).

None of the other food categories — including fiber-containing

foods (pulses, nuts, vegetables, roots, tubers), fruits, meats, cereals,

and oils — had a significant association with diabetes prevalence

rates. We tested the hypothesis that low-carbohydrate fibers (nuts

and vegetables) might be protective against diabetes by individ-

ually including them in the regression (as opposed to all fiber-

containing foods) but they had no significant effect, and did not

change the impact of sugar on diabetes prevalence. We initially

separated fruit from other vegetables/fibers given the potential

glucose burden of fruit; when repeating the analysis combining

fruits with vegetables and other fibers, the results did not change.

Tests of sugar exposure
As opposed to absolute sugar availability in kilocalories, the

fraction of sugar in the available food market (the percent of total

available calories composed of by sugar) may also be a critical

factor in diabetes. As shown in Table 2, the fraction of total

calories arising from sugar was the only significant food fraction

correlated with diabetes, with a 1% rise in the fraction of total food

calories as sugar corresponding to a 0.167% rise in diabetes

prevalence.

We also tested whether the number of years a country was

exposed to ‘‘high sugar availability’’, which we defined as at least

300 kcal/person/day (twice the upper recommended daily limit

for men, [25]) had a relationship with diabetes prevalence, by

introducing a count variable for the number of years exposed to

high sugar. Under the hypothesis being tested, longer exposure to

sugar would correspond to greater effects on diabetes risk. We

found that each extra year of exposure to high sugar availability

was associated with an increase in diabetes prevalence of 0.053%

(p,0.05) after all other control variables were included (Table 3).

Table 1. Effect of sugar availability on diabetes prevalence rates worldwide.

(1) (2) (3) (4) (5)

Diabetes prevalence
(%)

Diabetes prevalence
(%)

Diabetes prevalence
(%)

Diabetes prevalence
(%)

Diabetes prevalence
(%)

Log GDP per capita 0.94** 0.86* 0.95* 1.00* 1.07*

(0.33) (0.37) (0.37) (0.40) (0.48)

Change in log GDP 1.02 2.08 1.77 0.46 1.88

(0.97) (1.26) (2.39) (2.59) (2.54)

Urbanization 0.048** 0.022 0.0048 0.016

(0.015) (0.013) (0.011) (0.011)

Aging 0.17* 0.11 0.039 0.049

(0.067) (0.081) (0.075) (0.085)

Total kilocalories 0.0010 0.00031 0.00079 0.00075

(0.00056) (0.00052) (0.0012) (0.0011)

Obesity 0.10*** 0.094*** 0.081***

(0.024) (0.022) (0.021)

Sugar 0.0058** 0.0072***

(0.0019) (0.0020)

Fiber 0.00042 0.0011

(0.0015) (0.0014)

Fruit 0.00053 0.00011

(0.0023) (0.0024)

Meat 0.0032 0.0015

(0.0023) (0.0022)

Cereal 0.0014 0.0017

(0.0013) (0.0012)

Oils 0.00060 0.0018

(0.0016) (0.0018)

Countries 173 160 152 141 137

R2 0.27 0.31 0.44 0.54 0.55

Food components are expressed in kilocalories/person/day, such that each row displays the impact on diabetes prevalence of a 1 kilocalorie/person/day increase in the
availability of the given food category (e.g., a 1 kilocalorie/person/day rise in sugar relates to a 0.0072% rise in diabetes prevalence). Urbanization refers to the
percentage of the population living in urban areas. Aging is the percentage of the population 65 years of age and older. Obesity is the percentage of the population
with BMI at least 30 kg/m2.
Robust standard errors in parentheses.
*p , 0.05, ** p , 0.01, *** p , 0.001
doi:10.1371/journal.pone.0057873.t001
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Additional robustness checks
To further test whether influence runs from sugar availability to

higher diabetes prevalence, and not vice versa (that is, to confirm

that sugar availability did not increase as a result of whatever other

factors associated with economic development or other unob-

served variables may have raised diabetes prevalence), we tested

the effects of lowering sugar availability. We found that in the

periods after a country lowered its sugar availability (typically in

the context of changes in trade agreements, discussed at length

elsewhere, [38]), diabetes prevalence reduced by 0.074%

(p,0.05), after correcting for changes in all other controls

including the economic variables, socio-demographic variables,

and changes in consumption of other food products as well as total

calories and obesity prevalence (see Table S1).

We subsequently used Granger temporal causality tests (see

Text S1) to test the robustness of this finding. We identified a

significant relationship between high sugar availability and

subsequently higher diabetes prevalence rates, not vice versa.

Hence sugar availability did not violate criteria for temporal

causality.

We conducted a series of additional robustness checks and

regression diagnostics to test the sugar-diabetes relationship (see

Tables S3, S4). Figure 2 shows the plot of sugar availability and

diabetes rates among all countries in the sample after control

variables were introduced into the regression. First we removed

potential outlying countries from this regression, liberally defined

as countries having standardized residuals in the main model

greater than the absolute value of 2. The results were strength-

ened: a 150 kcal/person/day rise in sugar availability correspond-

ed to a 1.2% rise in diabetes prevalence (p,0.001) as opposed to a

1.1% rise when outliers were included. We also used other

estimation approaches, including a time-series model that accounts

for how earlier years in the regression may predict trends in later

years and thereby throw off common regression models (an

autoregressive time-series model using Stata’s xtregar module to

explicitly estimate serial correlation), and the results remained

significant: each 150 kcal/person/day rise in sugar availability

related to a 0.4% rise in diabetes prevalence (p,0.001). We also

re-ran these robustness checks with controls for country-specific

factors (fixed effects) and without period effects, as well as using

only direct diabetes survey data rather than some of the diabetes

data that were imputed estimates by the International Diabetes

Federation, and without the U.S. in the sample given a lower ratio

of food consumption to supply in the U.S. than in other nations

(higher food waste) [24]. In all cases, the sugar variable maintained

a similar association with diabetes prevalence.

Table 2. Fractional food composition and diabetes prevalence.

(6) (7) (8)

Diabetes prevalence (%) Diabetes prevalence (%) Diabetes prevalence (%)

Fraction of total calories from sugar 18.1** 15.7** 16.7**

(5.53) (5.16) (5.41)

Fraction of total calories from fiber 3.97 1.00 1.70

(2.98) (3.24) (3.37)

Fraction of total calories from fruit –0.58 –1.98 –1.64

(5.22) (5.89) (5.84)

Fraction of total calories from meat 3.97 9.31 7.82

(7.01) (5.89) (5.89)

Fraction of total calories from cereal 0.96 2.27 2.73

(2.97) (2.99) (3.07)

Fraction of total calories from veg oils 1.93 2.80 4.85

(4.46) (4.44) (4.92)

Obesity 0.12*** 0.092*** 0.094***

(0.029) (0.021) (0.021)

Log GDP per capita 1.03* 1.19*

(0.44) (0.47)

Change in log GDP 2.03 1.85

(2.52) (2.58)

Aging 0.036 0.036

(0.086) (0.087)

Urbanization 0.015

(0.011)

Countries 147 137 137

R2 0.49 0.54 0.55

Urbanization refers to the percentage of the population living in urban areas. Aging is the percentage of the population 65 years of age and older. Obesity is the
percentage of the population with BMI at least 30 kg/m2.
Robust standard errors in parentheses.
*p , 0.05, ** p , 0.01, *** p , 0.001
doi:10.1371/journal.pone.0057873.t002
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Additional control variables
There are many additional epidemiological correlates to

diabetes prevalence, and any econometric study is subject to

limitations of data quality. We attempted to minimize any such

potential confounding by introducing additional data measures

and sources to test the robustness of our primary model. First, we

reassessed our models using overweight (BMI $ 25 kg/m2) instead

of obesity (BMI $ 30 kg/m2) in case obesity was a late-stage

predictor of diabetes. We also incorporated physical inactivity,

which has also been related to diabetes [39]. Lastly, a high

prevalence of smoking and heavy alcohol use have been associated

with diabetes [5]. Incorporation of these factors (see Table S4) did

not affect the sugar variable and did not themselves reach

statistical significance as independent correlates of diabetes when

the other control variables were included in the model.

Controlling for selection bias
These results may have been driven by another aspect of the

changing environment for which we have not controlled. We

addressed the issue of unobserved selection bias directly by

constructing, and conditioning upon, a variable of the risk a

country has of having high sugar availability (a first step bivariate

probit model known as a ‘‘Heckman-type’’ selection model, see

Text S1). Once we added controls for potential selection bias

associated with high sugar availability, the association of sugar

availability with diabetes prevalence magnified to 1.2% rise in

diabetes prevalence for each 150 kcal/person/day increase in

sugar availability (p,0.001). The coefficient on the variable for the

risk of high sugar availability was non-significant, suggesting that

selection bias was unlikely to impact our results.

Discussion

The worldwide secular trend of increased diabetes prevalence

likely has multiple etiologies, which may act through multiple

mechanisms. Our results show that sugar availability is a

significant statistical determinant of diabetes prevalence rates

worldwide. By statistically studying variation in diabetes rates, food

availability data and associated socioeconomic and demographic

variables across countries and time, we identified that sugar

availability appears to be uniquely correlated to diabetes

prevalence independent of overweight and obesity prevalence

rates, unlike other food types and total consumption, and

independent of other changes in economic and social change

such as urbanization, aging, changes to household income,

sedentary lifestyles and tobacco or alcohol use. We found that

obesity appeared to exacerbate, but not confound, the impact of

sugar availability on diabetes prevalence, strengthening the

argument for targeted public health approaches to excessive sugar

consumption. We also noted that longer exposure to high sugar

was associated with accentuated diabetes prevalence, while

reduced sugar exposure was associated with decline in diabetes

prevalence, and that the sugar-diabetes relationship appeared to

meet criteria for temporal causality without being the result of

selection biases or the effect of secular trends that may be artifacts

of economic development or changes in surveillance.

Despite the robustness of our findings to a broad set of

socioeconomic and epidemiologic variables, there are several

important limitations to this analysis. First, as with all cross-

country analyses, the potential exists for ecological fallacies. The

observed associations are biologically plausible, given the numer-

ous mechanisms by which sugar foments pathophysiologic

processes leading to diabetes [19,40]. They are also complemented

by individual data, but unfortunately such individual analyses

cannot identify what factors are most prominently affecting

diabetes rates at the population level in the setting of multiple

other concurrent economic and social changes. Hence, we add

value to the discussion about diabetes prevention strategies by

conducting an ecological statistical analysis that incorporates

broad social change variables to assess the international signifi-

cance of recent laboratory and clinical studies. An ecological

analysis at a population level can also help decipher drivers of

change from small associations found at the individual level. As an

example, while not wearing bicycle helmets is found to be an

important risk factor for traumatic brain injury in cohort studies, it

is not an important driver of all traumatic brain injuries in general

at a population level, since the latter is dominated by motor vehicle

accidents. Similarly, in our analysis, many foods did not have

significant correlations to diabetes prevalence at the population

level, even though they are associated with diabetes in cohort or

Table 3. Years of sugar exposure and diabetes prevalence
rates.

(9)

Diabetes prevalence (%)

Log GDP per capita 1.26**

(0.46)

Change in log GDP 0.79

(2.48)

Years of high sugar intake 0.053*

(0.022)

Fiber –0.0012

(0.0012)

Fruit –0.0022

(0.0024)

Meat 0.0052

(0.0031)

Cereal 0.00029

(0.00099)

Oils 0.00015

(0.0017)

Total kilocalories 0.0010

(0.00099)

Urbanization 0.010

(0.011)

Aging 0.082

(0.084)

Obesity 0.099***

(0.022)

Countries 137

R2 0.52

Food components are expressed in kilocalories/person/day. Urbanization refers
to the percentage of the population living in urban areas. Aging is the
percentage of the population 65 years of age and older. Obesity is the
percentage of the population with BMI at least 30x kg/m2.
Robust standard errors in parentheses
*p , 0.05, ** p , 0.01, *** p , 0.001
doi:10.1371/journal.pone.0057873.t003
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clinical trial studies. This is because at a population level the

significance of these other foods may be not be driving population-

level diabetes rates. Our population-level data do not allow us to

assert mechanistic understandings of relationships between risk

and outcome, but do afford us a sense that the effect size is large

enough to affect the population rates of disease.

Second, we utilized an international food database that tracks

caloric availability, as there are no direct measures of actual

human consumption that can account for food wastage and

provide precise measures of food consumption internationally.

Exclusion of the United States from the data—an outlier-country

in terms of food wastage—did not change our results. In other

countries, supply and consumption are more closely aligned [41],

and differential wastage among foodstuffs does not appear to occur

[42]. Another potential limitation is that we cannot track specific

foods with accuracy, hence further analyses should investigate and

differentiate different types of sugars, or foods like dairy products,

to which sugars are frequently added, as well as other nutritional

components such as proteins and fats. For instance, a recent

ecological analysis correlated high-fructose corn syrup with

diabetes prevalence [43]. Our assessment was also ecological in

nature and cannot identify specific longitudinal causation among

individuals; however, unlike the prior assessment, the correlations

detected here were subjected to several tests to assess relationships

across time, the potential effects of other foodstuffs, the potential

for selection biases, and a larger number of potential confounding

factors.

Third, while considerable debate exists as to what forms of

sugar may be most relevant to this relationship (for example,

whether high-fructose corn syrup (HFCS) is different than sucrose

[44]), our analysis cannot distinguish between any specific added

sugars, such as HFCS or sucrose, or between any specific vehicle,

such as soda or processed food. Our study merely suggests that the

aggregate indicator of added sugar availability statistically predicts

changes in diabetes prevalence over time.

Fourth, our ecological approach limits statistical power as one

makes inferences about individuals based on aggregates; age, sex,

and racial predictions are lost. Important work at the individual

level suggests that certain populations, such as South Asian groups,

may develop metabolic syndrome and diabetes at lower levels of

obesity as assessed by BMI than other populations such as

Caucasians. Environmental factors such as sugar consumption

should be investigated as potential factors in this interaction. A

BMI . 25 kg/m2 rather than 30 kg/m2 may a more appropriate

indicator of obesity in Asians. Substituting overweight for obesity

in the models did not change the effect size or significance of our

findings with regard to sugar, and high sugars with low obesity

rates were observed in countries outside of East and South Asia,

suggesting that ethnic factors alone are unlikely to explain our

observations. Other societal factors associated with diabetes were

those classically associated with metabolic syndrome; including

income, urbanization and aging. All three of these were associated

with dietary and physical activity changes.

Finally, the International Diabetes Federation database contains

diabetes prevalence data based on multiple surveys of varying

quality; as many diabetics go undiagnosed, these are likely

underestimates, and do not distinguish between Type 1 (approx-

imately 10%) and Type 2 diabetes (90%), which would tend to

produce regression towards the mean (underestimating the

relationship between sugar and diabetes). Furthermore, we used

the best available population-wide international data available to

date for this assessment, but these data are known to be highly

imperfect. It is thought that much of the FAO data on foods and

nutrients in the food supply have limits to their reliability, and that

IDF data and WHO data on obesity prevalence are difficult to

validate independently. Hence, any of the findings we observe here

are meant to be exploratory in nature, helping us to detect broad

population patterns that deserve further testing through prospec-

tive longitudinal cohort studies in international settings, which are

only now coming underway.

The observed relationship between dietary sugar exposure and

diabetes in this statistical assessment was not mitigated by

adjusting for confounders related to socioeconomics, aging,

physical activity, or obesity. This suggests that sugar should be

Figure 2. Adjusted association of sugar availability (kcal/person/day) with diabetes prevalence (% adults 20–79 years old).
Regression line is adjusted for all control variables listed in Table 1, including time-trends (period-effects).
doi:10.1371/journal.pone.0057873.g002
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investigated for its role in diabetes pathogenesis apart from its

contributions to obesity.

In summary, population-level variations in diabetes prevalence

that are unexplained by other common variables appear to be

statistically explained by sugar. This finding lends credence to the

notion that further investigations into sugar availability and/or

consumption are warranted to further elucidate the pathogenesis

of diabetes at an individual level and the drivers of diabetes at a

population level [13].
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